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PREFACE.

Mathematics is the language of definiteness, the necessary vocabu-
lary of those who know. Hence the intimate connection between math-
ematics and science.

The tendency to select the problems and illustrations of mathemat-
ics mostly from the scientific, commercial and industrial activities of
to-day, is one with which the writer is in accord. It may seem that in
the following pages puzzles have too largely taken the place of prob-
lems. But this is not a text-book. Moreover, amusement is one of the
fields of applied mathematics.

The author desires to express obligation to Prof. James M. Taylor,
LL.D., of Colgate University (whose pupil the author was for four years
and afterward his assistant for two years) for early inspiration and
guidance in mathematical study; to many mathematicians who have
favored the author with words of encouragement or suggestion while
some of the sections of the book have been appearing in periodical
form; and to the authors and publishers of books that have been used
in preparation. Footnotes give, in most cases, only sufficient reference
to identify the book cited. For full bibliographic data see pages 200–
205. Special thanks are due to E. B. Escott, M.S., of the mathematics
department of the University of Michigan, who read the manuscript.
His comments were of especial value in the theory of numbers. Extracts
from his notes on that subject (many of them hitherto unpublished)
were generously placed at the disposal of the present writer. Where
used, mention of the name will generally be found at the place. Grateful
acknowledgement is made of the kindness and the critical acumen of
Mr. Escott.

The arrangement in more or less distinct sections accounts for oc-
casional repetitions. The author asks the favor of notification of any
errors that may be found.

The aim has been to present some of the most interesting and sug-
gestive phases of the subject. To this aim, all others have yielded, ex-
cept that accuracy has never intentionally been sacrificed. It is hoped

viii
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that this little book may be found to possess all the unity, completeness
and originality that its title claims.

The Author.
New Paltz, N. Y., August, 1907.



THE TWO SYSTEMS OF NUMERATION OF LARGE NUMBERS.

What does a billion mean?
In Great Britain and usually in the northern countries of Europe

the numeration of numbers is by groups of six figures (106 = million,
1012 = billion, 1018 = trillion, etc.) while in south European countries
and in America it is by groups of three figures (106 = million, 109 =
billion, 1012 = trillion, etc.). Our names are derived from the English
usage: billion, the second power of a million; trillion, the third power
of a million; etc.

As the difference appears only in such large numbers, which are
best written and read by exponents, it is not a matter of practical
importance—indeed the difference in usage is rarely noticed—except in
the case of billion. This word is often heard; and it means a thousand
million when spoken by one half of the world, and a million million in
the mouths of the other half.

Billion. “A billion does not strike the average mind as a very great
number in this day of billion dollar trusts, yet a scientist has computed
that at 10:40 a.m., April 29, 1902, only a billion minutes had elapsed
since the birth of Christ.” One wonders where he obtained the data for
such accuracy, but the general correctness of his result is easily veri-
fied. “Billion” is here used in the French and American sense (thousand
million).

An English professor has computed that if Adam was created in
4004 B. C. (Ussher’s chronology), and if he had been able to work
24 hours a day continuously till now at counting at the rate of three a
second, he would have but little more than half completed the task of
counting a billion in the English sense (million million).

1



REPEATING PRODUCTS.

If 142857 be multiplied by successive numbers, the figures repeat in
the same cyclic order; that is, they read around the circle in the margin

1
7 4
5 2

8

in the same order, but beginning at a different figure each time.

2× 142857 = 285714

3× “ = 428571

4× “ = 571428

5× “ = 714285

6× “ = 857142

7× “ = 999999

8× “ = 1142856.

(When we attempt to put this seven-place number in our six-place
circle, the first and last figures occupy the same place. Add them, and
we still have the circular order 142857.)

9× 142857 = 1285713 (285714)

10× “ = 1428570 (428571)

11× “ = 1571427 (571428)

23× “ = 3285711 (285714)

89× “ = 12714273.

(Again placing in the six-place circular order and adding figures that
would occupy the same place, or taking the 12 and adding it to the 73,
we have 714285.)

356× 142857 = 50857092

2



REPEATING PRODUCTS. 3

(adding the 50 to the 092, 857142).
The one exception given above (7× 142857 = 999999) to the circu-

lar order furnishes the clew to the identity of this “peculiar” number:
142857 is the repetend of the fraction 1

7
expressed decimally. Simi-

lar properties belong to any “perfect repetend” (repetend the number
of whose figures is just one less than the denominator of the common
fraction to which the circulate is equal). Thus 1

17
= .0̇588235294117647̇;

2× 0588 · · · = 1176470588235294 (same circular order); 7× 0588 · · · =
4117647058823529; while 17 × 0588 · · · = 9999999999999999. So also
with the repetend of 1

29
, which is 0344827586206896551724137931.

It is easy to see why, in reducing 1/p (p being a prime) to a decimal,
the figures must begin to repeat in less than p decimal places; for at
every step in the process of division the remainder must be less than
the divisor. There are therefore only p− 1 different numbers that can
be remainder. After that the process repeats.

1

7
= .1

3

7
= .14

2

7
= .142

6

7
= .1428

4

7
= .14285

5

7

= .142857
1

7
= . . . .

Hence if we multiply 142857 by 3, 2, 6, 4, 5, we get the repetend
beginning after the 1st, 2d, 3d, 4th, 5th figures respectively.

“If a repetend contains
p− 1

2
digits, all the multiples up to p − 1

will give one of two numbers each consisting of
p− 1

2
digits. Example:

1

13
= .0̇76923̇.

1× 76923 = 76923 2× 76923 = 153846

3× “ = 230769 5× “ = 384615

4× “ = 307692 6× “ = 461538

9× “ = 692307 7× “ = 538461

10× “ = 769230 8× “ = 615384



A SCRAP-BOOK OF ELEMENTARY MATHEMATICS. 4

12× “ = 923076 11× “ = 846153.”

(Escott.)
“In the repetend for 1

7
, if we divide the number into halves, their

sum is composed of 9’s, viz., 142 + 857 = 999. A similar property is
true of the repetend for 1

17
, etc. This property is true also of the two

numbers obtained from 1
13
. However, when we find the repetends of

fractions 1/p where the repetend contains only
p− 1

2
digits, but which

is of the form 4n + 3, it is not the halves of the numbers which are
complementary, but the two numbers themselves. Example:

1

31
= .0̇32258064516129̇

3

31
= .0̇96774193548387̇

30

31
= .9̇67741935483870̇

Sum= .9̇99999999999999̇”

(Escott.)
“A useful application may be made of this property of repeating,

in reducing a fraction 1/p to a decimal. After a number of figures
have been found, as many more may be found by multiplying those
already found by the remainder. It is, of course, advantageous to carry
on the work until a comparatively small remainder has been found.
Example: In reducing 1

97
to a decimal, after we have obtained the

digits .01030927835 we get a remainder 5. Therefore, from this point
on the digits are the same as those of 1

97
multiplied by 5. Multiplying

by 5 (or dividing by 2) we get 11 more digits at once. The lengths of
the periods of the reciprocals of primes have been determined at least
as far as p = 100,000.” (Escott.)



MULTIPLICATION AT SIGHT: A NEW TRICK WITH AN OLD
PRINCIPLE.

This property of repeating the figures, possessed by these num-
bers, enables one to perform certain operations that seem marvelous
till the observer understands the process. For example, one says: “I
will write the multiplicand, you may write below it any multiplier
you choose of—say—two or three figures, and I will immediately set
down the complete product, writing from left to right.” He writes
for the multiplicand 142857. Suppose the observers then write 493 as
the multiplier. He thinks of 493 × the number as 493/7 = 703

7
; so

he writes 70 as the first figures of the product (writing from left to
right). Now 3/7 (i. e., 3 × 1

7
) is thought of as 3 × the repetend, and

it is necessary to determine first where to begin in writing the fig-
ures in the circular order. This may be determined by thinking that,
since 3 × 7(the units figure of the multiplicand) = 21, the last figure
is 1; therefore the first figure is the next after 1 in the circular or-
der, namely 4. (Or one may obtain the 4 by dividing 3 by 7.) So
he writes in the product (after the 70) 4285. From the 71 remaining,
the 70 first written must be subtracted (compare the explanation of
89× 142857 given above). This leaves the last two figures 01, and the
product stands 70428501. When the spectators have satisfied them-
selves by actual multiplication that this is the correct product, let us
suppose that they test the “lightning calculator” with 825 as a multi-
plier. 825/7 = 1176

7
. Write 117. 6 × 7 = 42. Next figure after 2 in

repetend is 8. Write 857. From the remaining 142 subtract the 117.
Write 025.

Note that after the figures obtained by division (117 in the last
example) have been written, there remain just six figures to write, and
that the number first written is to be subtracted from the six-place
number found from the circular order (117 subtracted from 857142 in
the last example). After a little practice, products may be written in
this way without hesitation.

If the multiplier is a multiple of 7, the process is even simpler.

5
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Take 378 for multiplier. 378/7 = 54. Think of it as 537
7
. Write 53.

7× the repetend gives six nines. Mentally subtracting 53 from 999999,
write, after the 53, 999946.

This trick may be varied in many ways, so as not to repeat. (Few
such performances will bear repetition.) E. g., the operator may say,
“I will give a multiplicand, you may write the multiplier, divide your
product by 13, and I will write the quotient as soon as you have written
the multiplier.” He then writes as multiplicand 1857141, which is 13×
142857 and is written instantly by the rule above. Now, as the 13
cancels, the quotient may be written as the product was written in the
foregoing illustrations. Of course another number could have been used
instead of 13.



A REPEATING TABLE.

Some peculiarities depending on the decimal notation of number.
The first is the sum of the digits in the 9’s table.

9× 1 = 9

9× 2 = 18; 1 + 8 = 9

9× 3 = 27; 2 + 7 = 9

9× 4 = 36; 3 + 6 = 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
9× 9 = 81; 8 + 1 = 9

9× 10 = 90; 9 + 0 = 9

9× 11 = 99; 9 + 9 = 18; 1 + 8 = 9

9× 12 = 108; 1 + 0 + 8 = 9

9× 13 = 117; 1 + 1 + 7 = 9

etc.

The following are given by Lucas∗ in a note entitled Multiplications
curieuses :

1× 9 + 2 = 11

12× 9 + 3 = 111

123× 9 + 4 = 1111

1234× 9 + 5 = 11111

12345× 9 + 6 = 111111

123456× 9 + 7 = 1111111

1234567× 9 + 8 = 11111111

12345678× 9 + 9 = 111111111.

∗Récréations Mathématiques, IV, 232–3; Théorie des Nombres, I, 8.

7
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9× 9 + 7 = 88

98× 9 + 6 = 888

987× 9 + 5 = 8888

9876× 9 + 4 = 88888

98765× 9 + 3 = 888888

987654× 9 + 2 = 8888888

9876543× 9 + 1 = 88888888

98765432× 9 + 0 = 888888888.

1× 8 + 1 = 9

12× 8 + 2 = 98

123× 8 + 3 = 987

1234× 8 + 4 = 9876

12345× 8 + 5 = 98765

123456× 8 + 6 = 987654

1234567× 8 + 7 = 9876543

12345678× 8 + 8 = 98765432

123456789× 8 + 9 = 987654321.

12345679× 8 = 98765432

12345679× 9 = 111111111

to which may, of course, be added

12345679× 18 = 222222222

12345679× 27 = 333333333

12345679× 36 = 444444444

etc.



A FEW NUMERICAL CURIOSITIES.∗

112 = 121; 1112 = 12321; 11112 = 1234321; etc.
1 + 2 + 1 = 22; 1 + 2 + 3 + 2 + 1 = 32;

1 + 2 + 3 + 4 + 3 + 2 + 1 = 42; etc.

121 =
22× 22

1 + 2 + 1
; 12321 =

333× 333

1 + 2 + 3 + 2 + 1
; etc.†

The following three consecutive numbers are probably the lowest
that are divisible by cubes other than 1:

1375, 1376, 1377

(divisible by the cubes of 5, 2 and 3 respectively).

A curious property of 37 and 41. Certain multiples of 37 are still
multiples of 37 when their figures are permuted cyclically: 259 = 7×37;
592 = 16 × 37; 925 = 25 × 37. The same is true of 185, 518, and 851;
296, 629, and 962. A similar property is true of multiples of 41: 17589 =
41 × 429; 75891 = 41 × 1851; 58917 = 41 × 1437; 89175 = 41 × 2175;
91758 = 41× 2238.

Numbers differing from their logarithms only in the position of the
decimal point. The determination of such numbers has been discussed
by Euler and by Professor Tait. Following are three examples of a list
that could be extended indefinitely.

log 1.3712885742 = .13712885742

log 237.5812087593 = 2.375812087593

log 3550.2601815865 = 3.5502601815865.

∗Nearly all of the numerical curiosities in this section were given to the writer
by Mr. Escott.

†The Monist, 1906; XVI, 625.
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Powers having same digits.

Consecutive numbers whose squares have the same digits:

132 = 169 1572 = 24649 9132 = 833569

142 = 196 1582 = 24964 9142 = 835396.

Cubes containing the same digits:

3453 = 41063625 3313 = 36264691

3843 = 56623104 4063 = 66923416

4053 = 66430125.

A pair of numbers two of whose powers are composed of the same digits:

322 = 1024 324 = 1048576

492 = 2401 494 = 5764801

Square numbers containing the digits not repeated.

1. Containing the nine digits:∗

118262 = 139854276 203162 = 412739856

123632 = 152843769 228872 = 523814769

125432 = 157326849 230192 = 529874361

146762 = 215384976 231782 = 537219684

156812 = 245893761 234392 = 549386721

159632 = 254817369 242372 = 587432169

180722 = 326597184 242762 = 589324176

190232 = 361874529 244412 = 597362481

193772 = 375468129 248072 = 615387249

∗Published in the Mathematical Magazine, Washington, D.C., in 1883, and com-
pleted in L’Intermédiaire des Mathématiciens, 1897 (4:168).
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195692 = 382945761 250592 = 627953481

196292 = 385297641 255722 = 653927184

259412 = 672935481 272732 = 743816529

264092 = 697435281 290342 = 842973156

267332 = 714653289 291062 = 847159236

271292 = 735982641 303842 = 923187456

2. Containing the ten digits:∗

320432 = 1026753849 456242 = 2081549376

322862 = 1042385796 554462 = 3074258916

331442 = 1098524736 687632 = 4728350169

351722 = 1237069584 839192 = 7042398561

391472 = 1532487609 990662 = 9814072356

Arrangements of the digits.

If the number 123456789 be multiplied by all the integers less than 9
and prime to 9, namely 2, 4, 5, 7, 8, each product contains the nine
digits and uses each digit but once.

Each term in the following subtraction contains each of the nine
digits once.

987654321
123456789
864197532

∗L’Intermédiaire des Mathématiciens, 1907 (14:135).
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To arrange the nine digits additively so as to make 100:

15
36
47
98
2

100

56
8
4
3

71
29

100

951
2

438
76

100

Many other solutions. See Fourrey and Lucas.
To arrange the ten digits additively so as to make 100:

501
2

4938
76

100

8027
54

193
6

100

Many ways of doing this also.
To place the ten digits so as to produce each of the digits:

62

31
− 970

485
= 0

13485

02697
= 5

62

31
× 485

970
= 1

34182

05697
= 6

97062

48531
= 2

41832

05976
= 7

107469

35823
= 3

25496

03187
= 8

23184

05796
= 4

57429

06381
= 9 =

95742

10638
.

Lucas∗ also gives examples where the ten digits are used, the zero not
occupying the first place in a number, for all of the ten numbers above
except 6, which is impossible. It will be noticed that, in the example
given above for 3, the digit 3 occurs twice.

∗Théorie des Nombres, p. 40.
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The nine digits arranged to form a perfect cube:

8

32461759
=

(
2

319

)3
8

24137569
=

(
2

289

)3

125

438976
=

(
5

76

)3
512

438976
=

(
8

76

)3

.

The ten digits arranged to form a perfect cube:

9261

804357
=

(
21

93

)3

.

The ten digits placed to give an approximate value of π:

π =
67389

21450
= 3.141678 + .

Fourier’s method of division∗ by a number of two digits of which
the units digit is 9. Increase the divisor by 1, and increase the divi-
dend used at each step of the operation by the quotient figure for that
step. E. g., 43268÷ 29. The ordinary arrangement is shown at the left

1492
29)43268

29
142
116
266
261

58
58

29)43268
1492

∗Fourier, p. 187.
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for comparison. The form at the right is all that need be written in
Fourier’s method. To perform the operation, one thinks of the divisor
as 30; 4÷3, (43÷30,) 1; write the 1 in the quotient and add it to the 43;
44 − 30 = 14; 14 ÷ 3, 4; etc. The reason underlying it is easily seen.
E. g., at the second step we have, by the common method, 142−4×29.
By Fourier’s method we have 142 + 4 − 4 × 30. The addition of the
same number (the quotient figure) to both minuend and subtrahend
does not affect the remainder.

In the customary method for the foregoing example one practically
uses 30 as divisor in determining the quotient figure (thinking at the
second step, 14 ÷ 3, 4). In Fourier’s method this is extended to the
whole operation and the work is reduced to mere short division.

So also in dividing by 19, 39, 49, etc. The method is, of course,
not limited to divisors of two places, nor to those ending in 9. It may
be used in dividing by a number ending in 8, 7, etc. by increasing the
divisor by 2, 3, etc., and also the dividend used at each step by 2, 3,
etc. times the quotient figure for that step. But the advantage of the
method lies chiefly in the case first stated.

“The method is rediscovered every little while by some one and
hailed as a great discovery.”



NINE.

Curious properties of the number nine, and numerical tricks with
it, are given and explained by many writers; among them Dr. Edward
Brooks, in his Philosophy of Arithmetic. Of all such properties, perhaps
the most practical application is the check on division and multiplica-
tion by casting out nines, the Hindu check as it is called. Next might
come the bookkeeper’s clue to inverted numbers. In double-entry book-
keeping, if there has been inversion (e. g., $4.83 written in the debit side
of one account, and $4.38 in the credit side of another) and no other
mistake, the trial balance will be “off” by a multiple of nine. It can also
be seen in what columns the transposition was made.

Recently suggested, and of no practical interest, is another property
of the “magic number,” easily explained, like the rest, but at first glance
curious: invert the figures of any three-place number; divide the dif-
ference between the original number and the inverted number by nine;
and you may read the quotient forward or backward. Moreover the
figure that occurs in the quotient is the difference between the first and
last figures of the number taken.

845
548

9)297
33

Explanation: Let a, b, c be the hundreds, tens, units figures respectively
of any three-place number. Then the number is 100a+ 10b+ c, and the
number inverted is 100c+ 10b+ a.

(100a+ 10b+ c)− (100c+ 10b+ a)

9
=

99(a− c)
9

= 11(a− c).

The product of 11 and any one-place number will have both figures
alike, and may be read either way.

15
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Better known are the following three—all old and all depending on
the principle, that the remainder, after dividing any number by 9, is
the same as the remainder after dividing the sum of its digits by 9.

1. Find the difference between a number of two figures and the
number made by inverting the figures, conceal the numbers from me,
but tell me one figure of the difference. I will tell you whether there is
another figure in the difference, and, if so, what it is. (This can scarcely
be repeated without every spectator noticing that one merely subtracts
the given figure of the difference from 9.)

2. Write a number of three or more places, divide by 9, and tell me
the remainder; erase one figure, not zero, divide the resulting number
by 9, and tell me the remainder. I will tell you the figure erased (which
is, of course, the first remainder minus the second, or if the first is not
greater than the second, then the first +9− the second).

3. Write a number with a missing figure, and I will immediately
fill in the figure necessary to make the number exactly divisible by 9.
(Suppose 728 57 to be written. Write 7 in the space; for the excess
from the given number after casting out 9’s is 2, and 9− 2 = 7.) This
may be varied by undertaking to fill the space with a figure that shall
make the number divisible by nine and leaving a specified remainder.∗

∗Adapted from Hooper, I, 22.



FAMILIAR TRICKS BASED ON LITERAL ARITHMETIC.

Besides the tricks with the number 9, there are many other well-
known arithmetical diversions, most, but not all, of them, depending on
the Arabic notation of numbers used. Those illustrated in this section
are specially numerous, can be “made while you wait” by any one with
a little ingenuity and an elementary knowledge of algebra (or, more
properly, of literal arithmetic) and, when set forth, are transparent the
moment they are expressed in literal notation. They are amusing to
children, and it is no wonder that the supply of them is perennial. The
following three may be given as fairly good types. The first two are
taken from Dr. Hooper’s book, which was published in 1774. Verbatim
quotation of them is made in order to preserve the flavor of quaintness.
Only the explanation in terms of literal arithmetic is by the present
writer.

1. A person privately fixing on any number, to tell him that number.
After the person has fixed on a number, bid him double it and

add 4 to that sum, then multiply the whole by 5; to the product let
him add 12, and multiply the amount by 10. From the sum of the whole
let him deduct 320, and tell you the remainder, from which, if you cut
off the two last figures, the number that remains will be that he fixed
on.

Let n represent any number selected. The first member of the fol-
lowing equality readily reduces to n, and the identity explains the trick.{

[(2n+ 4)5 + 12]10− 320
}
÷ 100 = n.

2. Three dice being thrown on a table, to tell the number of each of
them, and the order in which they stand.

Let the person who has thrown the dice double the number of that
next his left hand, and add 5 to that sum; then multiply the amount
by 5, and to the product add the number of the middle die; then let the
whole be multiplied by 10, and to that product add the number of the
third die. From the total let there be subtracted 250, and the figures

17
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of the number that remains will answer to the points of the three dice
as they stand on the table.

Let x, y, z represent the numbers of points shown on the three dice
in order. Then the instructions, expressed in symbols, give

[(2x+ 5)5 + y]10 + z − 250.

Removing signs of grouping, we have

100x+ 10y + z,

the number represented by the three digits x, y, z in order.
3. “Take the number of the month in which you were born (1 for

January, 2 for February, etc.), double it; add 5; multiply by 50; add your
age in years; subtract 365; add 115. The resulting number indicates
your age—month and years.” E. g., a person 19 years old and born
in August (8th month) would have, at the successive stages of the
operation, 8, 16, 21, 1050, 1069, 704; and for the final number, 819
(8 for August, 19 for the years).

If we let m represent the number of the month, and y the number
of years, we can express the rule as a formula:

(2m+ 5)50 + y − 365 + 115,

which simplifies to
100m+ y,

the number of hundreds being the number of the month, and the num-
ber expressed by the last two digits being the number of years.



GENERAL TEST OF DIVISIBILITY.∗

Let M represent any integer containing no prime factor that is not
a factor of 10 (that is, no primes but 5 and 2). Then 1/M expressed
decimally is terminate. Call the number of places in the decimal m.
Let N represent any prime except 5, 2, 1. Then the reciprocal of N
expressed decimally is a circulate. Call the number of places in the
repetend n.

1. The remainder obtained by dividing any integer, I, by M is the
same as that obtained by dividing the number represented by the last
(right-hand) m digits of I by M. If the number represented by those
m digits is divisible by M, I is divisible by M, and not otherwise.

2. The remainder obtained by dividing I by N is the same as that
obtained by dividing the sum of the numbers expressed by the succes-
sive periods of n digits of I by N. If that sum is divisible by N, I is
divisible by N, and not otherwise. This depends on Fermat’s theorem,
that Pp−1 − 1 is divisible by p when p and P are prime to each other.

3. If a number is composite and contains a prime factor other than
5 and 2, the divisibility of I by it may be tested by testing with the
factors separately by (1) and (2).

Thus it is possible to test the divisibility of any integer by any other
integer. This is usually of only theoretic interest, as actual division is
preferable. But in the case of 2, 3, 4, 5, 6, 8, 9, and 10 the test is
easy and practical. A simple statement of it for each of these particular
cases is found in almost any arithmetic.

For 11 a test slightly easier than the special application of the
general test is usually given. That is, subtract the sum of the even-
numbered digits from the sum of the odd-numbered digits (counting
from the right) and add 11 to the minuend if smaller than the subtra-
hend. The result gives the same remainder when divided by 11 as the
original number gives. The original number is divisible by 11 if that
result is, and not otherwise. These remainders may be used in the same

∗Divisible without remainder is of course the meaning of “divisible” in such a
connection.

19
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manner as the remainders used in casting out the nines, but are not so
conveniently obtained.

Test of divisibility by 7. No known form of the general test in this
case is as easy as actually dividing by 7. From the point of view of
theory it may be worth noticing that, as 7’s reciprocal gives a comple-
mentary repetend, the general test admits of variety of form.∗ Let us
consider, however, the direct application.

Since the repetend has 6 places, the test for divisibility by 7 is as
follows: A number is divisible by 7 if the sum of the numbers repre-
sented by the successive periods of 6 figures each is divisible by 7, and
not otherwise; e. g.,

Given the number 26,436,080,216,581.

216581
436080

26
7)652687

93241.

No remainder; therefore the given number is divisible by 7.

Test of divisibility by 7, 11, and 13 at the same time.† Since
7× 11× 13 = 1001, divide the given number by 1001. If the remainder
is divisible by 7, 11, or 13, the given number is also, and not otherwise.

To divide by 1001, subtract each digit from the third digit following.
An inspection of a division by 1001 will show why this simple rule holds.
The method may be made clear by an example, 4,728,350,169÷ 1001.

4728350169
472/4626543

3

Quotient, 4723626; remainder, 543.

∗A chapter of Brooks’s Philosophy of Arithmetic is devoted to divisibility by 7.
†This was given to the author by Mr. Escott, who writes: “I have never seen

it published, but it is so simple that it would be surprising if it had not been.”



GENERAL TEST OF DIVISIBILITY. 21

The third digit before the 4 being 0 (understood), write the difference, 4,
beneath the 4. Similarly for 7 and 2. 8−4 = 4 (which for illustration is
here written beneath the 8). We should next have 3− 7. This changes
the 4 just found to 3, and puts 6 under the original 3 (that is, 83−47 =
36). 5−2, 0−3 (always subtracting from a digit of the original number
the third digit to the left in the difference, or lower, number), 1 −
6, etc. Making the corrections mentally we have the number as written.
The number represented by the last three digits, 543, is the remainder
after dividing the given number by 1001, and the number represented
by the other digits, 4723626, is the quotient. With a little practice,
this method can be applied rapidly and without making erasures. The
remainder, 543, which alone is needed for the test, may also be obtained
by subtracting the sum of the even-numbered periods of three figures
each in the original number from the sum of the odd-numbered periods.
A rapid method of obtaining the remainder thus is easily acquired; but
the way illustrated above is more convenient.

However obtained, the remainder is divisible or not by 7, 11, or 13,
according as the given number is divisible or not. (Here 543 is not
divisible by 7, 11, or 13; therefore 4728350169 is not divisible by either
of them.) The original number is thus replaced, for the purpose of
investigation, by a number of three places at most. As this tests for
three common primes at once, it is convenient for one factoring large
numbers without a factor table.



MISCELLANEOUS NOTES ON NUMBER.

The theory of numbers has been called a “neglected but singularly
fascinating subject.”∗ “Magic charm” is the quality ascribed to it by the
foremost mathematician of the nineteenth century.† Gauss said also:
“Mathematics the queen of the sciences, and arithmetic [i. e., theory of
numbers] the crown of mathematics.” And he was master of the sci-
ences of his time. “While it requires some facility in abstract reasoning,
it may be taken up with practically no technical mathematics, is easily
amenable to numerical exemplifications, and leads readily to the fron-
tier. It is perhaps the only branch of mathematics where there is any
possibility that new and valuable discoveries might be made without
an extensive acquaintance with technical mathematics.”‡

An interesting exercise in higher arithmetic is to investigate theo-
rems and the established properties of particular numbers to determine
which have their origin in the nature of number itself and which are
due to the decimal scale in which the numbers are expressed.

Fermat’s last theorem. Of the many theorems in numbers discovered
by Fermat, nearly all have since been proved. A well-known exception is
sometimes called his “last theorem.” It “is to the effect that no integral
values of x, y, z can be found to satisfy the equation xn+yn = zn, if n is
an integer greater than 2. This proposition has acquired extraordinary
celebrity from the fact that no general demonstration of it has been
given, but there is no reason to doubt that it is true.”§ It has been

∗Ball, Hist., p. 416.
†“The most beautiful theorems of higher arithmetic have this peculiarity, that

they are easily discovered by induction, while on the other hand their demonstra-
tions lie in exceeding obscurity and can be ferreted out only by very searching in-
vestigations. It is precisely this which gives to higher arithmetic that magic charm
which has made it the favorite science of leading mathematicians, not to mention its
inexhaustible richness, wherein it so far excels all other parts of pure mathematics.”
(Gauss; quoted by Young, p. 155.)

‡Young, p. 155.
§Ball, Recreations, p. 37.
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proved for special cases, and proved generally if certain assumptions be
granted. Fermat asserted that he had a valid proof. That may yet be
rediscovered; or, more likely, a new proof will be found by some new
method of attack. “Interest in problems connected with the theory of
numbers seems recently to have flagged, and possibly it may be found
hereafter that the subject is approached better on other lines.”∗

Wilson’s theorem may be stated as follows: If p is a prime, 1+(p−1)!
is a multiple of p. This well-known proposition was enunciated by
Wilson,† first published by Waring in his Meditationes Algebraicæ, and
first proved by Lagrange in 1771.

Formulas for prime numbers. “It is easily demonstrated that no
rational algebraic formula can always, give primes. Several remarkable
expressions have been found, however, which give a large number of
primes for consecutive values of x. Legendre gave 2x2 + 29, which gives
primes for x = 0 to 28, or for 29 values of x. Euler found x2 + x + 41,
which gives primes for x = 0 to 39, i. e., 40 values of x. I have found
6x2 +6x+31, giving primes for 29 values of x; and 3x2 +3x+23, giving
primes for 22 values of x. These expressions give different primes. We
can transform them so that they will give primes for more values of x,
but not different primes. For instance, in Euler’s formula if we replace x
by x−40, we get x2−79x+1601, which gives primes for 80 consecutive
values of x.” (Escott.)

A Chinese criterion for prime numbers. With reference to the so-
called criterion, that a number p is prime when the condition, that
2p−1 − 1 be divisible by p, is satisfied, Mr. Escott makes the following

∗Ball, Hist., p. 469.
†As he was not a professional mathematician, but little mention of him is made

in histories of the subject. The following items may be of interest. They are
from De Morgan’s Budget of Paradoxes, p. 132–3. John Wilson (1741–1793) was
educated at Cambridge. While an undergraduate he “was considered stronger in
algebra than any one in the University, except Professor Waring, one of the most
powerful algebraists of the century.” Wilson was the senior wrangler of 1761. He
entered the law, became a judge, and attained a high reputation.
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interesting comment:
“This is a well-known property of prime numbers (Fermat’s Theo-

rem) but it is not sufficient. My attention was drawn to the problem
by a question in L’Intermédiaire des Mathématiciens, which led to a
little article by me in the Messenger of Mathematics. As the smallest
number which satisfies the condition and which is not prime is 341,
and to verify it by ordinary arithmetic (not having the resources of the
Theory of Numbers) would require the division of 2340 − 1 by 341, it is
probable that the Chinese obtained the test by a mere induction.”

Are there more than one set of prime factors of a number? Most
text-books answer no; and this answer is correct if only arithmetic
numbers are considered. But when the conception of number is ex-
tended to include complex numbers, the proposition, that a number
can be factored into prime factors in only one way, ceases to hold.
E. g., 26 = 2× 13 = (5 +

√
−1)(5−

√
−1).

Asymptotic laws. This happily chosen name describes “laws which
approximate more closely to accuracy as the numbers concerned become
larger.”∗ Legendre is among the best-known names here. One of the
most celebrated of the original researches of Dirichlet, in the middle of
the last century, was on this branch of the theory of numbers.

Growth of the concept of number , from the arithmetic integers of
the Greeks, through the rational fractions of Diophantus, ratios and
irrationals recognized as numbers in the sixteenth century, negative
versus positive numbers fully grasped by Girard and Descartes, imagi-
nary and complex by Argand, Wessel, Euler and Gauss,† has proceeded
in recent times to new theories of irrationals and the establishing of the
continuity of numbers without borrowing it from space.‡

Some results of permutation problems. The formulas for the number
of permutations, and the number of combinations, of n dissimilar things

∗Ball, Hist., p. 464.
†See p. 76.
‡See Cajori’s admirable summary, Hist. of Math., p. 372.
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taken r at a time are given in every higher algebra. The most important
may be condensed into one equality:

nPr = n(n− 1)(n− 2) . . . (n− r + 1) =
n!

(n− r)!
= nCrr!.

There are 3,979,614,965,760 ways of arranging a set of 28 dominoes
(i. e., a set from double zero to double six) in a line, with like numbers
in contact.∗

“Suppose the letters of the alphabet to be wrote so small that no one
of them shall take up more space than the hundredth part of a square
inch: to find how many square yards it would require to write all the
permutations of the 24 letters in that size.”† Dr. Hooper computes that
“it would require a surface 18620 times as large as that of the earth to
write all the permutations of the 24 letters in the size above mentioned.”

Fear has been expressed that if the epidemic of organizing soci-
eties should persist, the combinations and permutations of initial letters
might become exhausted. We have F.A.A.M., I.O.O.F., K.M.B., K.P.,
I.O.G.T., W.C.T.U., Y.M.C.A., Y.W.C.A., A.B.A., A.B.S., A.C.M.S.,
etc., etc. An almanac names more than a hundred as “prominent in
New York City,” and its list is exclusive of fraternal organizations, of
which the number is known to be vast. Already there are cases of two
societies having names with the same initial letters. But by judicious
choice this can long be avoided. Hooper’s calculation supposed the en-
tire alphabet to be employed in every combination. Societies usually
employ only 2, 3 or 4 letters. And a letter may repeat, as the A in the
title of the A.L.A. or of the A.A.A. The present problem is therefore
different from that above. The number of permutations of 26 letters
taken two at a time, the two being not necessarily dissimilar, is 262;
three at a time, 263; etc. As there is occasionally a society known by
one letter and occasionally one known by five, we have

261 + 262 + 263 + 264 + 265 = 12,356,630.

∗Ball, Recreations, p. 30, citing Reiss, Annali di matematica, Milan, Nov. 1871.
†Hooper, I, 59.
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This total of possible permutations is easily beyond immediate needs.
By lengthening the names of societies (as seems to have already begun)
the total can be made much larger. Since the time when Hooper’s
calculations were made, two letters have been added to the alphabet.
When the number of societies reaches about the twelve million mark, it
would be well to agitate for a further extension of the alphabet. With
these possibilities one may be assured, on the authority of exact science,
that there is no cause for immediate alarm. The author hastens to allay
the apprehensions of prospective organizers.

Tables. Many computations would not be possible without the aid
of tables. Some of them are monuments to the patient application of
their makers. Once made, they are a permanent possession. The time
saved to the computer who uses the table is the one item taken into
account in judging of the value of a table. It is difficult to appreciate
the variety and extent of the work that has been done in constructing
tables. For this purpose an examination of Professor Glaisher’s article
“Tables” in the Encyclopædia Britannica is instructive.

Anything that facilitates the use of a book of tables is impor-
tant. Spacing, marginal tabs (in-cuts), projecting tabs—all such de-
vices economize a little time at each handling of the book; and in the
aggregate this economy is no trifle. Among American collections of ta-
bles for use in elementary mathematics the best example of convenience
of arrangement for ready reference is doubtless Taylor’s Five-place Log-
arithmic and Trigonometric Tables (1905). Dietrichkeit’s Siebenstellige
Logarithmen und Antilogarithmen (1903) is a model of convenience.

When logarithms to many places are needed, they can be readily
calculated by means of tables made for the purpose, such as Gray’s for
carrying them to 24 places (London, 1876).

Factor tables have been printed which enable one to resolve into
prime factors any composite number as far as the 10th million. They
were computed by different calculators. “Prof. D. N. Lehmer, of the
University of California, is now at work on factor tables which will
extend to the 12th million. When completed they will be published
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by the Carnegie Institution, Washington, D.C. According to Petzval,
tables giving the smallest prime factors of numbers as far as 100,000,000
have been calculated by Kulik, but have remained in manuscript in the
possession of the Vienna Academy. . . Lebesgue’s Table des Diviseurs
des Nombres goes as far as 115500 and is very compact, occupying
only 20 pages.” (Escott.)

Some long numbers. The computation of the value of π to 707 deci-
mal places by Shanks∗ and of e to 346 places by Boorman,† are famous
feats of calculation.

“Paradoxes of calculation sometimes appear as illustrations of the
value of a new method. In 1863, Mr. G. Suffield, M.A., and Mr. J. R.
Lunn, M.A., of Clare College and of St. John’s College, Cambridge,
published the whole quotient of 10000 . . . divided by 7699, throughout
the whole of one of the recurring periods, having 7698 digits. This was
done in illustration of Mr. Suffield’s method of synthetic division.”‡

Exceptions have been found to Fermat’s theorem on binary powers
(which he was careful to say he had not proved). The theorem is,
that all numbers of the form 22n + 1 are prime. Euler showed, in
1732, that if n = 5, the formula gives 4,294,967,297, which = 641 ×
6,700,417. “During the last thirty years it has been shown that the
resulting numbers are composite when n = 6, 9, 11, 12, 18, 23, 36,
and 38; the two last numbers contain many thousands of millions of
digits.”§ To these values of n for which 22n + 1 is composite, must now
be added the value n = 73. “Dr. J. C. Morehead has proved this year
[1907] that this number is divisible by the prime number 275 · 5 + 1.
This last number contains 24 digits and is probably the largest prime

∗See page 105.
†Mathematical Magazine, 1:204.
‡De Morgan, p. 292. “Suffield’s ‘new’ method was discovered by Fourier in

the early part of the century and has been rediscovered many times since. It was
published, apparently as a new discovery, a few years ago in the Mathematical
Gazette.” (Escott.)

§Ball, Recreations, p. 37.
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number discovered up to the present.”∗ If the number 2273 + 1 itself
were written in the ordinary notation without exponents, and if it were
desired to print the number in figures the size of those on this page,
how many volumes like this would be required? They would make a
library many millions of times as large as the Library of Congress.

How may a particular number arise? (1) From purely mathematical
analysis—in the investigation of the properties of numbers, as in the
illustrations just given, in the investigation of the properties of some
ideally constructed magnitude, as the ratio of the diagonal to the side of
a square, or in any investigation involving only mathematical elements;
(2) from measurement of actual magnitude, time etc.: (3) by arbitrary
invention, as when a text-book writer or a teacher makes examples; or
(4) by combinations of these.

Those of class (3) are generally used to develop skill in the manip-
ulation of numbers from classes (1) and (2).

Numbers from source (2), measurement, are the subject of the next
section.

∗Mr. Escott.



NUMBERS ARISING FROM MEASUREMENT.

There is no such thing as an exact measurement of distance, capac-
ity, mass, time, or any such quantity. It is only a question of degree of
accuracy.

“The best time-pieces can be trusted to measure a week within one
part in 756,000.”∗ The equations of standards on page 132 show the de-
gree of accuracy attained in two instances by the International Bureau
of Weights and Measures. In the measure of length (the distance be-
tween two lines on a bar of platinum-iridium) the range of error is shown
to be 0.2 in a million, or one in five million. In the measure of mass it
is one in five hundred million. But these are measurements famous for
their precision, made in cases in which accuracy is of prime importance,
and the comparisons effected under the most favorable conditions. No
such accuracy is attained in most work. In a certain technical school,
two-tenths of a per cent is held to be fair tolerance of error for “exact
work” in chemical analysis. The accuracy in measurement attained by
ordinary artisans in their work is of a somewhat lower degree.

Now in a number expressing measurement the number of significant
figures indicates the degree of accuracy. Hence the number of signif-
icant digits is limited. If any one were to assert that the distance of
Neptune from the sun is 2,788,820,653 miles, the statement would be
immediately rejected. A distance of billions of miles can not, by any
means now known, be measured to the mile. We should be sure that
the last four or five figures must be unknown and that this number
is not to be taken seriously. What astronomers do state is that the
distance is 2,788,800,000 miles.

The metrology of the future will doubtless be able to extend gradu-
ally the limits of precision, and therefore to expand the significant parts
of numbers. But the principle will always hold.

The numbers arising from the measurements of daily life have but
few significant figures.

∗Prof. William Harkness, “Art of Weighing and Measuring,” Smithsonian Report
for 1888, p. 616.
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The following paragraph is another illustration of the principle.

Decimals as indexes of degree of accuracy of measure. The child is
taught that .42 = .420 = .4200. True; but the scientist who reports that
a certain distance is .42 cm, and the scientist who reports it as .420 cm,
wish to convey, and do convey, to their readers different impressions.
From the first we understand that the distance is .42 cm correct to the
nearest hundredth of a cm; that is, it is more than .415 cm and less than
.425 cm. From the second we learn that it is .420 cm to the nearest
thousandth; that is, more than .4195 and less than .4205. Compare
the decimals, including 0.00100, in the equation of the U.S. standard
meter, p. 132.

Exact measurement is an ideal. It is the limit which an ever im-
proving metrology is approaching forever nearer. The question always
is of degree of accuracy of measure. And this question is answered by
the number of decimal places in which the result is expressed.

Some applications. The foregoing principle explains why for very
large and very small numbers the index notation is sufficient; in which
it is said, for example, that a certain star is 5x1013 miles from the
earth. This is easier to write than 5 followed by 13 ciphers, and there
is no need to enumerate and read such a number. Similarly 10 with a
negative exponent serves to write such a decimal fraction as is used to
express the length of a wave of light or any of the minute measurements
of microscopy.

The principle explains also why a table of logarithms for ordinary
use need not tabulate numbers beyond four or five places (four or five
places in the “arguments,” to use the technical term of table makers;
only the logarithms of numbers to 10,000, or 100,000, to use the com-
mon phraseology). Interpolation extends them to one more place with
fair accuracy, and for ordinary computation one rarely needs the loga-
rithm of a number of more than five significant digits.

It explains also why a method of approximation in multiplication
is so desirable. If any of the data are furnished by measurement, the
result can be only approximate at best. Example VII on page 45,
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explained on page 44, is a case in point. To compute that product to
six decimal places would waste time. Worse than that; to show such
a result would pretend to an accuracy not attained, by conveying the
impression that the circumference is known to six decimal places when
in fact it is known to but two decimal places.∗

In a certain village the tax rate, found by dividing the total appro-
priation for the year by the total assessed valuation, was .01981 for the
year 1906. As always (unless the divisor contains no prime factor but
2 and 5) the quotient is an interminate decimal. To how many places
should the decimal be carried? Theoretically it should be carried far
enough to give a product “correct to cents” when used to compute the
tax of the highest taxpayer. In this case the decimal is accurate enough
for all assessments not exceeding $1000. As a matter of fact, there were
several in excess of this amount.

For an understanding of the common applications of arithmetic it
is important that the learner appreciate the elementary considerations
of the theory of error; at least that he habitually ask himself, “To how
many places may my result be regarded as accurate?”

∗Even the second decimal place is in doubt, as may be seen by taking for mul-
tiplicand first 74.276, then 74.284.



COMPOUND INTEREST.

The enormous results obtained by computing compound interest—
as well as the wide divergence between these or any results obtained
from a geometric progression of many terms and the results found in
actual life—may be seen from the following “examples”:

At 3% (the prevailing rate at present in savings banks) $1 put at
interest at the beginning of the Christian era to be compounded annu-
ally would now amount to $(1.03)1906, which by the use of logarithms
is found to be, in round numbers, $3,000,000,000,000,000,000,000,000.
The amount of $1 for the same time and rate but at simple interest
would be only $58.18.

If the Indians hadn’t spent the $24. In 1626 Peter Minuit, first gover-
nor of New Netherland, purchased Manhattan Island from the Indians
for about $24. The rate of interest on money is higher in new countries,
and gradually decreases as wealth accumulates. Within the present gen-
eration the legal rate in the state has fallen from 7% to 6%. Assume for
simplicity a uniform rate of 7% from 1626 to the present, and suppose
that the Indians had put their $24 at interest at that rate (banking
facilities in New York being always taken for granted!) and had added
the interest to the principal yearly. What would be the amount now,
after 280 years? 24× 1.07280 = more than 4,042,000,000.

The latest tax assessment available at the time of writing gives
the realty for the borough of Manhattan as $3,820,754,181. This is
estimated to be 78% of the actual value, making the actual value a
little more than $4,898,400,000.

The amount of the Indians’ money would therefore be more than
the present assessed valuation but less than the actual valuation. The
Indians could have bought back most of the property now, with im-
provements; from which one might point the moral of saving money
and putting it at interest! The rise in the value of the real estate of
Manhattan, phenomenal as it is, has but little more than kept pace
with the growth of money at 7% compound interest. But New York
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realty values are now growing more rapidly: the Indians would better
purchase soon!



DECIMAL SEPARATRIXES.

The term separatrix in the sense of a mark between the integral and
fractional parts of a number written decimally, was used by Oughtred
in 1631. He used the mark x for the purpose. Stevin had used a figure
in a circle over or under each decimal place to indicate the order of that
decimal place. Of the various other separatrixes that have been used,
four are in common use to-day, if (2) and (3) below may be counted
separately:

1. A vertical line: e. g., that separating cents from dollars in ledgers,
bills, etc. As a temporary separatrix the line appears in a work by
Richard Witt, 1613. Napier used the line in his Rabdologia, 1617. This
is a very common separatrix in every civilized country to-day.

2. The period. Fink, citing Cantor, says that the decimal point
is found in the trigonometric tables of Pitiscus (in Germany) 1612.
Napier, in the Rabdologia, speaks of using the period or comma. His
usage, however, is mostly of a notation now obsolete (but he uses the
comma at least once). The period has always been the prevailing form
of the decimal point in America.

3. The Greek colon (dot above the line). Newton advocated placing
the point in this position “to prevent it from being confounded with
the period used as a mark of punctuation” (Brooks). It is commonly
so written in England now.

4. The comma. The first known instance of its use as decimal
separatrix is said to be in the Italian trigonometry of Pitiscus, 1608.
Perhaps next by Kepler, 1616, from which may be dated the German
use of it. Briggs used it in his table of logarithms in 1624, and early
English writers generally employed the comma. English usage changed
to the Greek colon; but the comma is the customary form of the decimal
point on the continent of Europe.

The usage as to decimal point is not absolutely uniform in any of
the countries named; but, in general, one expects to see 1 25

100
written

decimally in the form of 1.25 in America, 1 · 25 in England, and 1,25 in
Germany, France or Italy.
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A mere space to indicate the separation may also be mentioned as
common in print.

The vertical line (for a column of decimals) and the space should
doubtless persist, and one form of the “point.” Prof. G. A. Miller,
of the University of Illinois, who argues for the comma as being the
symbol used by much the largest number of mathematicians, remarks:∗
“As mathematics is pre-eminently cosmopolitan and eternal it is very
important that its symbols should be world symbols. All national dis-
tinctions along this line should be obliterated as rapidly as possible.”

∗“On Some of the Symbols of Elementary Mathematics,” School Science and
Mathematics, May, 1907.
Where the decimal point is a comma the separation of long numbers into periods

of three (or six) figures for convenience of reading is effected by spacing.



PRESENT TRENDS IN ARITHMETIC.

“History is past politics, and politics is present history.” Such is the
apothegm of the famous historian Freeman. In the case of a science
and an art, like arithmetic or the teaching of arithmetic, history is past
method, and method is present history. The fact that our generation
is helping to make the history of arithmetic and of the teaching of
arithmetic—as it is also making history in other matters that attract
more public attention—is the reason for considering now some of the
present trends in arithmetic. A present trend is a pointer pointing
from what has been to what is to be, since the science is a continuum.
Lord Bolingbroke said that we study history to know how to act in the
future, to make the most of the future. That is why we study history
in the making, or present trends, in so far as it is possible for us, living
in the midst, to see those trends.

Very noticeable among them is the gradual decimalization of arith-
metic. Counting by 10 is prehistoric in nearly all parts of the world,
10 fingers being the evident explanation. If we had been present at
the beginning of arithmetical history, we might have given the prim-
itive race valuable advice as to the choice of a radix of notation! It
would then have been opportune to call attention to the advantage
of 12 over 10 arising from the greater factorability of 12. Or if the
pioneers of arithmetic had been like the Gath giant of 2 Sam. 21:20,
with six fingers on each hand, they would doubtless have used 12 as
a radix. Lacking such counsel, and being equipped by nature with
only 10 fingers to use as counters, they started arithmetic on a decimal
basis. History since has been a steady progress in the direction thus
chosen (except in details like the table of time, where the incommen-
surable ratio between the units fixed by nature defied even the French
Revolution).

The Arabic notation “was brought to perfection in the fifth or sixth
century,”∗ but did not become common in Europe till the sixteenth

∗Cajori, Hist. of Elem. Math., p. 154.
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century. It is not quite universal yet, the Roman numerals being still
used on the dials of time-pieces, in the titles of sovereigns, the numbers
of book chapters and subdivisions, and, in general, where an archaic
effect is sought. But the Arabic numerals are so much more convenient
that they are superseding the Roman in these places. The change has
been noticeable even in the last ten or fifteen years.

The extension of the Arabic system to include fractions was made
in the latter part of the sixteenth century. But notwithstanding the
superior convenience of decimal fractions, they spread but slowly; and
it is only in comparatively recent times that they may be said to be
more common than “common fractions.”

The next step was logarithms—a step taken in 1614. Within the
next ten years they were accommodated to what we should call “the
base” 10.

The dawn of the nineteenth century found decimal coinage well
started in the United States, and a general movement toward deci-
malization under way in France contemporaneous with the political
revolution. The subsequent spread of the metric system over most of
the continent of Europe and over many other parts of the world has
been the means of teaching decimal fractions.

The movement is still on. The value and importance of decimals are
now recognized more every year. And much remains to be decimalized.
In stock quotations, fractions are not yet expressed decimally. Three
great nations have still to adopt decimal weights and measures in pop-
ular use, and England has still to adopt decimal coinage. The history
of arithmetic has been, in large part, a slow but well-marked growth of
the decimal idea.

Those who are working for world-wide decimal coinage, weights and
measures—as a time-saver in school-room, counting house and work-
shop—as a boon that we owe to posterity as well as to ourselves—may
learn from such a historical survey both caution and courage. Caution
not to expect a sudden change. Multitudes move slowly in matters
requiring a mental readjustment. The present reform movements—
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for decimal weights and measures in the United States, and decimal
weights, measures and coins in Great Britain—are making more rapid
progress than the Arabic numerals or decimal fractions made: and the
opponents of the present reform are not so numerous or so prejudiced as
were their prototypes who opposed the Arabic notation in the Middle
Ages and later. Caution also against impatience with a conservatism
whose arguments are drawn from the temporary inconvenience of mak-
ing any change. Courage to work and wait—in line with progress.

In using fractions, the Egyptians and Greeks kept the numerators
constant and operated with the denominators. The Romans and Baby-
lonians preferred a constant denominator, and performed operations on
the numerator. The Romans reduced their fractions to the common de-
nominator 12, the Babylonians to 60ths. We also reduce our fractions
to a common denominator; but we choose 100. One of the most char-
acteristic trends of modern arithmetic is the rapid growth in the use of
percentage—another development of the decimal idea. The broker and
the biologist, the statistician and the salesman, the manufacturer and
the mathematician alike express results in per cents.

These and other changes in the methods of computers have brought
about, though tardily, corresponding changes in the subject matter of
arithmetic as taught in the schools. Scholastic puzzles are giving place
to problems drawn from the life of to-day.

Perhaps one may venture the opinion that, in order to merit a place
in the arithmetic curriculum, a topic must be useful either (1) in com-
merce or (2) in industry or (3) in science. Under (3) may be included,
conceivably, a topic whose sole, or chief, use is in later mathemati-
cal work. At least two other reasons have been given for retaining a
subject: (4) It is required for examination. But it will be found that
subjects not clearly justified on one of the grounds above mentioned
are rarely required by examining bodies of this generation; and such
subjects, if pointed out, would doubtless be withdrawn from any syl-
labus. (5) It gives superior mental training. But on closer scrutiny
this argument becomes somewhat evanescent. A survey of results in
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that branch of educational psychology which treats of the coefficient of
correlation between a pupil’s attainments in various activities, weakens
one’s faith in our ability to give a certain amount of general discipline
by a certain amount of special training. Moreover, that discipline can
be as well acquired by the study of subjects that serve a direct, useful
purpose. We may, then, limit our criteria to these: utility for business
or industrial pursuits, and utility for work in science.

Applying these tests to the topics contained in the schoolbooks of
a generation ago, we see that many of them are not worthy of a place
in the crowded curriculum of our generation. Turning to the schools,
we find that many of these topics have, in fact, been dropped. Oth-
ers are receiving less attention each year. Among such may be men-
tioned: “true” discount, partnership involving time, and equation of
payments (all three giving, besides, a false idea of business), and Troy
and apothecaries weight, cube root (except for certain purposes with
advanced pupils) and compound proportion.

At the same time, other topics in the arithmetic course are of in-
creasing importance; notably those involving percentage and other dec-
imal operations, and those relating to stock companies and other de-
velopments of modern economic activity.

School life is adjusting itself to present social conditions, not only
in the topics taught, but in the problems used and the way in which
the topics are treated. Good books no longer set problems in stocks
involving the purchase of a fractional number of shares!

As Agesilaus, king of Sparta, said, “Let boys study what will be
useful to men.”

The Greeks studied �rijmhtik , or theory of numbers, and logistik ,
or practical calculation. Hence the modern definition of arithmetic,
“the science of numbers and the art of computation.” As Prof. David
Eugene Smith points out (in his Teaching of Elementary Mathematics)
“the modern arithmetic of the schools includes much besides this.” It
includes the introduction of the pupil to the commercial, industrial and
scientific life of to-day on the quantitive side.
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Characteristic of our time is the extensive use of arithmetical ma-
chines (such as adding machines and instruments from which per cents
may be read) and of tables (of square roots for certain scientific work,
interest tables for banks, etc.). The initial invention of such appliances
is not recent; it is their variety, adaptability and rapidly extending
usefulness that may be classed as a present phenomenon.

They have not, however, eliminated the necessity for training good
reckoners. They may have narrowed the field somewhat, but in that
remaining part which is both practical and necessary they have set
the standard of attainment higher. Indeed, an important feature of
the present situation is the insistent demand of business men that the
schools turn out better computers. There must soon come, in school,
a stronger emphasis on accuracy and rapidity in the four fundamental
operations.

Emphasis on accuracy and rapidity in calculation leads to the use
of “examples” involving abstract numbers. Emphasis on the business
applications alone leads to the almost exclusive use of “problems” in
which the computative is but an incidental feature. Both are necessary.
It has been well said that examples are to the arithmetic pupil what
exercises are to the learner on the piano, while problems are to the
former what tunes are to the latter. Without exercises, no skill; with
exercises alone, no accomplishment. The exercises are for the technique
of the art. The teacher can not afford to neglect either.

The last century or more has been the age of special methods in
teaching. One has succeeded another in popular favor. Each has taught
us an important lesson—something that will be a permanent acquisition
to the pedagogy of the science. Few things are more interesting to the
student of the history of arithmetic methods than to trace each school-
room practice of to-day to its origin in some worthy contributor to
the science (e. g., in the primary grades, the use of blocks to Trapp,
1780; the “number pictures” to Von Busse; counting by 2’s, 3’s, . . . as
preparation for the multiplication tables to Knilling and Tanck; etc.).
More recently several famous methods have appeared which are still
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advocated. But the present trend is toward a choosing of the best from
each—an eclectic method.

Most questions of method have never been adequately tested. It is,
for instance, asserted by some and denied by others that pupils would
know as much arithmetic at the end of the 8th school year if they were
to begin arithmetic with the 5th or even later. History may well lead us
to doubt the proposition; but who can tell? The greatest desideratum
in all arithmetic teaching to-day is the thorough study of the subject by
the scientific methods employed in educational psychology. Some one
with facilities for doing this service for arithmetic could be a benefactor
indeed. Questions that are matters for accurate test and measurement
should not always remain questions. Meantime, empiricism is unavoid-
able.

To summarize the tendencies noted: the decimalization of arith-
metic, growth of percentage, elimination of many topics from the school
curriculum in arithmetic with increased emphasis on others, modern-
izing the treatment of remaining topics, demand for more accuracy
and rapidity in computation, inclination toward an eclectic method in
teaching arithmetic, present empiricism pending scientific investigation.
This list is, of course, far from exhaustive, but it is believed to be true
and significant.

Lacking such exact information as that just asked for as the desider-
atum of to-day, we may make the best of mere observation of the trends
of our time. And as to the great movements in the history of the art of
arithmetic itself, the conclusions are definite and decisive. By orienting
ourselves, by studying the past and noting the currents, we may ac-
quaint ourselves with the direction of present forces and may take part
in shaping our course. Our to-days are conditioned by our yesterdays,
to-morrow by to-day.



MULTIPLICATION AND DIVISION OF DECIMALS.

For the multiplication of whole numbers the Italians invented many
methods.∗ Pacioli (1494) gives eight. Of these, only one was in common
use, and it alone has survived in commerce and the schools. Shown in I
on p. 45. It was called bericuocolo (honey cake or ginger bread) by the
Florentines, and scacchiera (chess or checker board) by the Venetians.
The little squares in the partial products fell into disuse (and with them
the names which they made appropriate) leaving the familiar form II
on p. 45. The Treviso arithmetic (1478), the first arithmetic printed,
contains a long example in multiplication, which appears about as it
would appear on the blackboard of an American school to-day.

In 1585 appeared Simon Stevin’s immortal La Disme, only seven
pages, but the first publication to expound decimal fractions, though
the same author had used them in an interest table published the year
before. III on p. 45 is from La Disme, and shows Stevin’s notation (the
numbers in circles, or parentheses, indicating the order of decimals,
tenths the first order etc.) IV is the same example with the decimals
expressed by the notation now prevalent in America. Let us call this
arrangement of work Stevin’s method.

An arrangement in which all decimal points are in a vertical column
(see V below) is said to have been used by Adrian Romain a quarter of a
century later. He may not have been the inventor of this arrangement;
but, for the sake of a name, call it Romain’s method.

Romain’s method is advocated in a few of the best recent advanced
arithmetics, but Stevin’s is still vastly the more common; and these
two are the only methods in use. Romain’s has four slight advantages:
(1) A person setting down an example from dictation can begin to write
the multiplier as soon as the place of its decimal point is seen, while in
Stevin’s method he waits to hear the entire multiplier before he writes
any of it, in order to have its last (right-hand) figure stand beneath the

∗For the historical facts in this section the author is indebted mainly to Professor
Cajori and Prof. David Eugene Smith, the two leading American authorities on the
history of mathematics.
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last figure of the multiplicand (though this position may be regarded as
a non-essential feature in Stevin’s arrangement). (2) Romain’s method
fits more naturally with the “Austrian” method of division (decimal
point of quotient over that of dividend). (3) After the partial products
are added, it is not necessary to count and point off in the product
as many decimal places as there are in the multiplicand and multiplier
together, since the decimal point in the product (as well as in the partial
products) is directly beneath that in the multiplicand. (4) Romain’s
method is more readily adapted to abridged multiplication where only
approximate results are required. On the other hand, Stevin’s method
has one very decided advantage: the first figure written in each partial
product is directly beneath its figure in the multiplier, so that it is not
necessary (as it is in Romain’s) to determine the place of the decimal
point in a partial product. So important is this, that Stevin’s alone
has been generally taught to children, notwithstanding the numerous
points in favor of Romain’s.

It occurred to the writer recently to try to combine in one method
the advantages of both of the Flemish methods, and he hit upon the
following simple rule:∗ Write the units figure of the multiplier under the
last (right-hand) figure of the multiplicand, begin each partial product
(as in the familiar method of Stevin) under the figure by which you are
multiplying, and all decimal points in products will then be directly
beneath that in the multiplicand. Decimal points in partial products
may be written or not, as desired. The reason underlying the rule is
apparent. VI shows the arrangement of work.

In this arrangement the placing of the partial products is automatic,
as in Stevin’s method, and the pointing off in the product is automatic,
as in Romain’s. It is available for use by the child in his first multipli-
cation of decimals and by the skilled computer in his abridged work.

∗Since writing this the author has come upon the same method of multiplication
in Lagrange’s Lectures, delivered in 1795 (p. 29–30 of the Open Court Publishing
Co.’s edition). One who invents anything in elementary mathematics is likely to
find that “the ancients have stolen his ideas.”
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To assist in keeping like decimal orders in the same column it is
recommended that the vertical line shown in VII and VIII be drawn
before the partial products are written. One of the earliest uses of
the line as decimal separatrix is in an example in Napier’s Rabdologia
(1617). He draws it through the partial and complete products. It is
said to be the first example of abridged multiplication. A circumference
is computed whose diameter is 635.

VII illustrates the application of the method here advocated to mul-
tiplication in which only an approximation is sought. The diameter of
a circle is found by measurement to be 74.28 cm. This is correct to
0.01 cm. No computation can give the circumference to any higher
degree of accuracy. Partial products are kept to three places in order
to determine the correct figure for the second place in the complete
product. The arrangement of work shows what figures to omit.

It should be remarked that all three methods of multiplication of
decimals are alike—and like the multiplication of whole numbers—in
that one may multiply first by the digit of lowest order in the multiplier
or by the digit of highest order first. The method of multiplying by
the highest order first was described by the Italian arithmeticians as
a dietro. Though it may seem to be working backwards, it is not so in
fact; for it puts the more important before the less, and has practical
advantage in abridged multiplication, like that shown in VII. But that
question is distinct from the one under consideration.

Stevin writes the last figure of the multiplier under the last figure
of the multiplicand; Romain writes units under units; the method here
proposed writes units under last. In whole numbers, units figure is the
last.

Applied to the ordinary multiplication of decimals, as in VI or VIII,
the method here proposed seems to be well adapted to schoolroom use,
possessing all the simplicity of Stevin’s. Methods classes in this normal
school to whom the method was presented, immediately preferred it,
and a grade in the training school used it readily. Of course this proves
nothing, for every method is a success in the hands of its advocates.
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The changes here set forth are, however, not advocated; they are merely
proposed as a possibility.

The analogous method for division of decimals possesses analogous
advantages. It avoids the necessity of multiplying the divisor and divi-
dend by such a power of 10 as will make the divisor integral (as in the
method now perhaps most in favor) and the necessity of counting to
point off in the quotient a number of decimal places equal to the num-
ber in the dividend minus that in the divisor (as in the older method
still common). Like the latter, it begins the division at once; and like
the former, its pointing off is automatic. IX shows the arrangement.
The figure under the last figure of the divisor is units figure of the quo-
tient. This determines the place of the decimal point. That part of the
quotient which projects beyond the divisor, is fractional.

If the order of multiplication used has been a dietro, as in VIII, the
division in IX is readily seen to be the inverse operation. The partial
products appear in the same order as partial dividends.

Like each of the methods in use, it may be abbreviated by writing
only the remainders below the dividend. Shown in X.

If the “little castle” method of multiplication of whole numbers,
with multiplier above multiplicand, had prevailed, instead of the “chess
board,” in the fifteenth century, the arrangement now proposed for the
multiplication and division of decimals would have afforded slightly
greater advantage.

I

3 2 5 7
8 9 4 6

1 9 5 4 2
1 3 0 2 8

2 9 3 1 3
2 6 0 5 6
2 9 1 3 7 1 2 2

II

3 2 5 7
8 9 4 6

1 9 5 4 2
1 3 0 2 8

2 9 3 1 3
2 6 0 5 6
2 9 1 3 7 1 2 2
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III

(0) (1) (2)

3 2 5 7
8 9 4 6

1 9 5 4 2
1 3 0 2 8

2 9 3 1 3
2 6 0 5 6
2 9 1 3 7 1 2 2

(0) (1) (2) (3) (4)

IV

3 2 . 5 7
8 9 . 4 6

1 9 5 4 2
1 3 0 2 8

2 9 3 1 3
2 6 0 5 6
2 9 1 3 . 7 1 2 2

V

3 2 . 5 7
8 9 . 4 6

1 . 9 5 4 2
1 3 . 0 2 8

2 9 3 . 1 3
2 6 0 5 . 6
2 9 1 3 . 7 1 2 2

VI

3 2 . 5 7
8 9 . 4 6

1 . 9 5 4 2
1 3 . 0 2 8

2 9 3 . 1 3
2 6 0 5 . 6
2 9 1 3 . 7 1 2 2

VII

7 4 . 2 8
3 . 1 4 1 6

2 2 2 8 4
7 4 2 8
2 9 7 1

7 4
4 5

2 3 3 3 6

VIII

3 2 . 5 7
8 9 . 4 6

2 6 0 5 6
2 9 3 1 3

1 3 0 2 8
1 9 5 4 2

2 9 1 3 7 1 2 2
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IX

3 2 . 5 7
8 9 . 4 6

2 9 1 3 . 7 1 2 2
2 6 0 5 6

3 0 8 1 1
2 9 3 1 3

1 4 9 8 2
1 3 0 2 8

1 9 5 4 2
1 9 5 4 2

X

3 2 . 5 7
8 9 . 4 6

2 9 1 3 . 7 1 2 2
3 0 8 1 1

1 4 9 8 2
1 9 5 4 2



ARITHMETIC IN THE RENAISSANCE.

The invention of printing was important for arithmetic, not only
because it made books more accessible, but also because it spread the
use of the Hindu (“Arabic”) numerals with their decimal notation.

The oldest text-book on arithmetic to use these numerals is said to
be that of Avicenna, an Arabian physician of Bokhara, about 1000 A. D.
(Brooks). According to Cardan (sixteenth century) it was Leonardo of
Pisa who introduced the numerals into Europe (by his Liber Abaci,
1202). In England, though there is one instance of their use in a
manuscript of 1282, and another in 1325, their use is somewhat ex-
ceptional even in the fifteenth century. Then came printed books and
a more general acceptance of the decimal notation.

The importance of this step can hardly be over-estimated. Even
the Greeks, with all their mathematical acumen, had contented them-
selves with mystic and philosophic properties of numbers and had made
comparatively little progress in the art of computation. They lacked
a suitable notation. When such a notation was adopted at the close
of the Middle Ages, the art advanced rapidly. That advance was one
feature of the Renaissance, a detail in the great intellectual awakening
of that marvelous half century from 1450 to 1500, “the age of progress”.

The choice between the old and the new in arithmetical notation
is well pictured by the illustration∗ of arithmetic in the first printed
cyclopedia, the Margarita Philosophica (1503). Two accountants are
at their tables. The old man is using the abacus; the young man, the
Hindu numerals so familiar to us. The aged reckoner looks askance
at his youthful rival, in whose face is hope and confidence; while on
a dais behind both stands the goddess to decide which shall have the
ascendency. Her eyes are fixed on the younger candidate, at her right,
and there can be no doubt that to the new numerals is to be the victory.
The background of the picture is characteristically medieval. It is an
apt illustration of the passing of the old arithmetic. To us of four

∗See frontispiece.
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centuries after, it whispers (as one has said of the towers of old Oxford)
“the last enchantment of the Middle Age.”

The anonymous book known as the Treviso arithmetic, from its
place of publication, is the first arithmetic ever printed. It appeared
in 1478. In this Italian work of long ago the multiplication looks mod-
ern. But long division was by the galley (or “scratch”) method then
prevalent.

Pacioli’s Summa di Arithmetica was published in 1494 (some say
ten years earlier). It also uses the Hindu numerals.∗

Tonstall’s arithmetic (1522) was “the first important arithmetical
work of English authorship.”† De Morgan calls the book “decidedly the
most classical which ever was written on the subject in Latin, both in
purity of style and goodness of matter.”

Recorde’s celebrated Grounde of Artes (1540) was written in En-
glish. It uses the Hindu numerals, but teaches reckoning by counters.
The exposition is in dialogue form.

The first English work on double entry book-keeping, by John Mellis
(London, 1588), has an appendix on arithmetic.

The Pathway to Knowledge, anonymous, translated from Dutch into
English by W. P., was published in London in 1596. It contains two
lines which are immortal. The translator has been said to be the author
of the lines. In modernized form they are known to every schoolboy.
Of all the arithmetical doggerel of that age, this is pre-eminently the
classic:

“Thirtie daies hath September, Aprill, June, and November,
Februarie, eight and twentie alone; all the rest thirtie and

one.”

On the subject of early arithmetics De Morgan’s Arithmetical Books
is the standard work. An interesting contribution to the subject is Prof.

∗In Pacioli’s work, the words “zero” (cero) and “million” (millione) are found
for the first time in print. Cantor, II, 284.

†Cajori, Hist. of Elem. Math., p. 180.
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David Eugene Smith’s illustrated article, “The Old and the New Arith-
metic,” published by Ginn & Co. in their Textbook Bulletin, Febru-
ary, 1905.



NAPIER’S RODS AND OTHER MECHANICAL AIDS TO
CALCULATION.

No mathematical invention to facilitate computation has been made
for three centuries that is comparable to logarithms. Napier’s rods, or
“Napier’s bones,” once famous, owe their interest now largely to the
fact that they are the invention of the man who gave logarithms to the
world, John Napier, baron of Merchiston. The inventor’s description of
the rods is contained in his Rabdologia, published in 1617, the year of
his death.

The rods consist of 10 strips of wood or other material, with square
ends. A rod has on each of its four lateral faces the multiples of one
of the digits. One of the rods has, on the four faces respectively, the
multiples of 0, 1, 9, 8; another, of 0, 2, 9, 7; etc. Each square gives the
product of two digits, the two figures of the product being separated by
the diagonal of the square. E. g., in Fig. 2 the lowest right hand square
contains the digits 7 and 2, 72 being the product of 9 (at the left of the
same row) and 8 (at the top of the rod).

Fig. 2 represents the faces of the rods giving the multiples of 4, 3,
and 8, placed together and against a rod containing the nine digits to
be used as multiplier, all in position to multiply 438 by any number—
say 26. The products are written off, from the rods. But the tens digit
in each case is to be added to the next units digit; that is, the two
figures in a rhomboid are to be added. The operation of multiplying
438 by 26, after arranging the rods as in Figure 2, would be somewhat
as follows: beginning at the right hand and multiplying first by 6, we
have 8, 4 + 8, (carrying the 1) 1 + 1 + 4, 2, giving the number (from left
to right) 2628, the first partial product. Similarly 876 is read from the
row of squares at the right of the multiplier 2. It is shifted one place
to the left in writing it under the former partial product. Then these
two numbers are added.

Somewhat analogous is the use of the rods for division.
†From Lucas, III, 76.
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Fig. 1.†

“It is evident that they would be of little use to any one who knew
the multiplication table as far as 9 × 9.”‡ Though published (and in-
vented) later than logarithms, which we so much admire, the rods were
welcomed more cordially by contemporaries. Several editions of the

‡Dr. Glaisher in his article “Napier” in the Encyclopædia Britannica.
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Fig. 2.

Rabdologia were brought out on the Continent within a decade. “Noth-
ing shows more clearly the rude state of arithmetical knowledge at the
beginning of the seventeenth century than the universal satisfaction
with which Napier’s invention was welcomed by all classes and re-
garded as a real aid to calculation.”‡ It is from this point of view that
the study of the rods is interesting and instructive to us.

The Rabdologia contains other matter besides the description of rods
for multiplication and division. But such mechanical aids to calculation
are soon superseded.
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It is worthy of note in this connection, however, that in the absence
of so facile an instrument for calculation as our Arabic notation, sim-
ple mechanical devices might be found so serviceable as to persist for
centuries. The abacus, which is familiar to almost every one, but only
as a historical relic, a piece of illustrative apparatus, or a toy, was a
highly important aid to computation among the Greeks and Romans.
Similar to the abacus is the Chinese swan pan. It is said that Orien-
tal accountants are able, by its use, to make computations rivaling in
accuracy and speed those performed by Occidentals with numerals on
paper.

Modern adding machines, per cent devices, and the more compli-
cated and costly calculating instruments have led up to such mechan-
ical marvels as “electrical calculating machines” and the machines of
Babbage and Scheutz, which latter prepare tables of logarithms and
of logarithmic functions without error arithmetical or typographical,
computing, stereotyping and delivering them ready for the press.

If Napier’s rods be regarded as exemplars of such products of the
nineteenth century, they are primitive members of a long line of hon-
orable succession.



AXIOMS IN ELEMENTARY ALGEBRA.

Many text-books on the subject introduce equations with a list of
axioms such as the following:

1. Things equal to the same thing or equal things are equal to each
other.

2. If equals be added to equals, the sums are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. If equals be multiplied by equals, the products are equal.
5. If equals be divided by equals, the quotients are equal.
6. The whole is greater than any of its parts.
7. Like powers, or like roots, of equals are equal.
These time-honored “common notions” are the foundation of logical

arithmetic. On them is based also the reasoning of algebra. But it is
most desirable that, when we extend their meaning to the comparison
of algebraic numbers, we should notice the limitations of the axioms.
Generalization is a characteristic of mathematics. When we generalize,
we remove limitations that have been stated or implied. A proposition
true with those limitations may or may not be true without them. For
illustration: When we proceed from geometry of two dimensions to ge-
ometry of three dimensions, the limitation, always understood in plane
geometry, that all figures considered are (except while employing the
motion postulate for superposition) in the plane of the paper or black-
board, is removed. Some of the propositions true in plane geometry
hold also in solid, and some do not. Compare in this respect the two
theorems, “Through a given external point only one perpendicular can
be drawn to a given line,” and, “Through a given internal point only
one perpendicular can be drawn to a given line.”∗ For another illustra-
tion see the paragraph (p. 24), “Are there more than one set of prime
factors of a number?” No when factor means arithmetic number; yes
when the meaning of the word is extended to include complex numbers.
See also instances of the “fallacy of accident,” p. 67 f.

∗Using the term perpendicular in the sense customary in elementary geometry.

55



A SCRAP-BOOK OF ELEMENTARY MATHEMATICS. 56

We might expect that some of the axioms of arithmetic would need
qualification when we attempt to extend them so as to apply to alge-
braic numbers. And that is what we find. But we do not find that all
authors have notified their readers of the limitations or have observed
them in their own use of the axioms. Surely it is not too much to expect
that the axioms of a science shall be true and applicable in the sense
in which the terms are used in that science.

The fifth, or “division axiom,” should receive the important qual-
ification given it by the best of the books, “divided by equals, except
zero.” Without such limitation the statement is far from axiomatic.

A writer of the sixth “axiom” may also have on another page some-
thing like this: “+3 is the whole, or sum.” Seeing that one of its parts
is +7, one wonders how the author, in a text-book on algebra, could
ever have written the “axiom,” “The whole is greater than any of its
parts.”

+7
−5
+2
−1
+3

In the seventh axiom, like roots of equals are equal arithmetically.
Otherwise worded: Like real roots of equals are equal, like signs being
taken.∗

∗The defense often heard for the unqualified axiom, Like roots of equals are
equal, in algebra—that like here means equal—would reduce the axiom to a plat-
itude, Roots are equal if they are equal. Besides being insipid, this is insufficient.
To be of any use, the axiom must mean, that if C and D are known to represent
each a square root, or each a cube root, of A and B respectively, and if A and B
are known to be equal, then C and D are as certainly known to be two expressions
for the same number. Now in the case of square roots this inference is justified only

when like signs are taken. For cube roots, if A = B = 1, then −1

2
+

1

2

√
−3 is a cube

root of A, and −1

2
− 1

2

√
−3 is a cube root of B; but −1

2
+

1

2

√
−3 and −1

2
− 1

2

√
−3

are not expressions for the same number. If their modulus (page 76) be taken as
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When we use the word “equal” in the axioms, do we mean anything
else than “same”—If two numbers are the same as a third number, they
are the same as each other, etc.?

their absolute value, they are equal to each other and to the real cube root 1 in
absolute value. If our axiom be made to read, Like odd real roots are equal, it is
applicable to such roots without trouble. A has but one cube root that is real, and
B has but one, and they are equal.

It is interesting to notice in passing that the two numbers just used, −1

2
+

1

2

√
−3

and −1

2
− 1

2

√
−3, are a pair of unequal numbers each of which is the square of the

other.



DO THE AXIOMS APPLY TO EQUATIONS?

Most text-books in elementary algebra use them as if they applied.
Most of the algebras have, somewhere in the first fifty or sixty pages,
something like this:

3x+ 4 = 19.

Subtracting 4 from each member,

3x = 15. Ax. 3

Dividing by 3,
x = 5. Ax. 5

This shows how common some very loose thinking on this subject is.
For although no mistake has been made in the algebraic operation, the
citation of axioms as authority for these steps opens the way for a pupil
to divide both members of an equation by an unknown, in which case
he drops a solution,∗ or to apply one of the other axioms and introduce
a solution.

As a matter of fact, the axioms do not apply directly to equations:
for (A) one can follow the axioms, make no mistake, and arrive at a
result which is incorrect: (B) he can violate the axioms and come out
right: (C) the axioms, from their very nature, can not apply directly
to equations.

(A) To follow axioms and come out wrong:

x− 1 = 2. (1)

Multiplying each member by x− 5,

x2 − 6x+ 5 = 2x− 10. Ax. 4
∗Every teacher of elementary algebra is aware of the tendency of pupils (unless

carefully guided) to “divide through by x” when possible, and to fail to note that
they have lost out the solution x = 0.
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Subtracting x− 7 from each member,

x2 − 7x+ 12 = x− 3. Ax. 3

Dividing each member by x− 3,

x− 4 = 1. Ax. 5

Adding 4 to each member,
x = 5. Ax. 2

But x = 5 does not satisfy (1). The only value of x that satisfies (1)
is 3.

Misunderstanding at this point is so common that it is deemed best
to be explicit at the risk of being tedious. The multiplication by x− 5
introduces the solution x = 5, and the division by x−3 loses the solution
x = 3. Now it may be argued, that the axioms of the preceding section
when properly qualified exclude division by zero, and that x − 3 is
here a form of zero since 3 is the value of x for which equation (1) is
true. Exactly; but this only shows that in operating with equations the
question for what value of x they are true is bound to be raised. The
attempt to qualify the axioms and adjust them to this necessity will,
if thoroughgoing, lead to principles of equivalency of equations.∗ Any
objector is requested to study carefully the principles of equivalency as
set forth in one of the best algebras and notice their relation to the
axioms on the one hand and to operations with equations on the other,

∗Such, for example, as the following:
To add or subtract the same expression (known or unknown) to both members

of an equation, does not affect the value of x (the resulting equation is equivalent
to the original).
To multiply or divide both members by a known number not zero, does not affect

the value of x.
To multiply or divide both members by an integral function of x, introduces

or loses, respectively, solutions (namely, the solution of the equation formed by
putting the multiplier equal to zero) it being understood that the equations are in
the standard form.
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and see whether he is not then prepared to say that the axioms do not
apply directly to equations.

It should be noted that the foregoing is not an attack on the integrity
of the axioms, but only on the application of them where they are not
applicable.

If it be objected that in (A) the axioms are not really followed, the
reply is, that they are here followed as they are naturally followed by
pupils taught to apply them directly to equations, and as they are oc-
casionally followed by the authors of some elementary algebras, only
the errors are here made more glaring and the process reduced ad ab-
surdum.

(B) To violate the axioms and come out right:

In order to avoid the objection that the errors made by violating two
axioms may just balance each other, only one axiom will be violated.

x− 1 = 2. (1)

Add 10 to one member and not to the other. This will doubtless be
deemed a sufficiently flagrant transgression of the “addition axiom”:

x+ 9 = 2. (2)

Multiplying each member by x− 3,

x2 + 6x− 27 = 2x− 6. (3) Ax. 4

Subtracting 2x− 6 from each member,

x2 + 4x− 21 = 0. (4) Ax. 3

Dividing each member by x+ 7,

x− 3 = 0. (5) Ax. 5
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Adding 3 to each member,
x = 3. Ax. 2

Inasmuch as 3 is the correct root of equation (1), the error in the first
step must have been balanced by another, or by several. It was done in
obtaining (3) and (5), though at both steps the axioms were applied.

(C) The axioms, from their very nature, can not have any direct
application to equations.

The axioms say that—if equals be added to equals etc.—the results
are equal. But the question in solving equations is, For what value of x
are they equal? Of course they are equal for some value of x. So when
something was added to one member and not to the other, the results
were equal for some value of x. Arithmetic, dealing with numbers,
needs to know that certain resulting numbers are equal to certain oth-
ers; but algebra, dealing with the equation, the conditional equality of
expressions, needs to know on what condition the expressions represent
the same number—in other words, for what values of the unknown the
equation is true. In (B) above, the objection to equation (2) is not that
its two members are not equal (they are “equal” as much as are the two
members of the first equation) but that they are not equal for the same
value of x as in the first equation; that is (2) is not equivalent to (1).

The principles of equivalency of equations as given in a few of the
best of the texts are not too difficult for the beginner. The proof of
them may well be deferred till later. Even if never proved, they would
be, for the present purpose, vastly superior to axioms that do not apply.
To give no reasons would be preferable to the practice of quoting axioms
that do not apply.

The axioms have their place in connection with equations; namely,
in the proof of the principles of equivalency. To apply the axioms
directly in the solution of equations is an error.

Pupils can hardly be expected to think clearly about the nature of
the equation when they are so misled. How the authors of the great
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majority of the elementary texts can have made so palpable a mistake
in so elementary a matter, is one of the seven wonders of algebra.



CHECKING THE SOLUTION OF AN EQUATION.

The habit which many high-school pupils have of checking their
solution of an equation by first substituting for x in both members of
the given equation, performing like operations upon both members until
a numerical identity is obtained, and then declaring their work “proved,”
may be illustrated by the following “proof,” in which the absurdity is
apparent:

1 +
√
x+ 2 = 1−

√
12− x. (1)

Solution:
√
x+ 2 = −

√
12− x (2)

x+ 2 = 12− x (3)

2x = 10

x = 5.

“Proof”:

1 +
√

5 + 2 = 1−
√

12− 5
√

5 + 2 = −
√

12− 5

5 + 2 = 12− 5

7 = 7.

Checking in the legitimate manner—by substituting in one member
of the given equation and reducing the resulting number to its simplest
form, then substituting in the other member and reducing to simplest
form—we have 1 +

√
7 for the first member, and 1−

√
7 for the second.

As these are not equal numbers, 5 is not a root of the equation. There
is no root.

The 5 was introduced in squaring. That is, x = 5 satisfies equa-
tion (3) but not (2) or (1). By the change of a sign in either (1) or (2)
we obtain an equation that is true for x = 5:

1 +
√
x+ 2 = 1−

√
12− x.
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When rational equations are derived from irrational by involution, there
are always other irrational equations, differing from these in the sign of
a term, from which the same rational equations would be derived.

In a popular algebra may be found the equation

x+ 5−
√
x+ 5 = 6

and in the answer list printed in the book, “4, or −1” is given for this
equation. 4 is a solution, but −1 is not. Unfortunately this instance is
not unique.

As the fallacy in the erroneous method shown above is in assuming
that all operations are reversible, that method may be caricatured by
the old absurdity,

To prove that

5 = 1.

Subtracting 3 from each,

2 = −2.

Squaring

4 = 4.

∴ 5 = 1!



ALGEBRAIC FALLACIES.

A humorist maintained that in all literature there are really only a
few jokes with many variations, and proceeded to give a classification
into which all jests could be placed—a limited list of type jokes. A fellow
humorist proceeded to reduce this number (to three, if the writer’s
memory is correct). Whereupon a third representative of the profession
took the remaining step and declared that there are none. Whether
these gentlemen succeeded in eliminating jokes altogether or in adding
another to an already enormous number, depends perhaps on the point
of view.

The writer purposes to classify and illustrate some of the commoner
algebraic fallacies, in the hope, not of adding a striking original speci-
men, but rather of standardizing certain types, at the risk of blighting
them. Fallacies, like ghosts, are not fond of light. Analysis is perilous
to all species of the genus.

Of the classes, or subclasses, into which Aristotle divided the fal-
lacies of logic, only a few merit special notice here. Prominent among
these is that variety of paralogism known as undistributed middle. In
mathematics it masks as the fallacy of converse, or employing a process
that is not uniquely reversible as if it were. For example, the following:∗

Let c be the arithmetic mean between two unequal numbers a and b;
that is, let

a+ b = 2c. (1)

Then

(a+ b)(a− b) = 2c(a− b)
a2 − b2 = 2ac− 2bc.

∗Taken, with several of the other illustrations, from the fallacies compiled by
W. W. R. Ball. See his Mathematical Recreations and Essays.
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Transposing,

a2 − 2ac = b2 − 2bc. (2)

Adding c2 to each,

a2 − 2ac+ c2 = b2 − 2bc+ c2 (3)

∴ a− c = b− c

and

a = b

But a and b were taken unequal.
Of course the two members of (3) are arithmetically equal but of

opposite quality; their squares, the two members of (2), are equal. The
fallacy here is so apparent that it would seem superfluous to expose it,
were it not so common in one form or another.

For another example take the absurdity used in the preceding sec-
tion to caricature an erroneous method of checking a solution of an
equation. Let us resort to a parallel column arrangement:

A bird is an animal; Two equal numbers have equal
squares;

A horse is an animal; These two numbers have equal
squares;

∴ A horse is a bird. ∴ These two numbers are equal.

The untutored man pooh-poohs
at this, because the conclusion is
absurd, but fails to notice a like
fallacy on the lips of the political
speaker of his own party.

The first-year high-school pupil
derides this whenever the conclu-
sion is absurd, but would allow
to pass unchallenged the fallacious
method of checking shown in the
preceding section.
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In case of indicated square roots the fallacy may be much less appar-
ent. By the common convention as to sign, + is understood before

√
.

Considering, then, only the positive even root or the real odd root, it
is true that “like roots of equals are equal,” and

n
√
ab =

n
√
a · n
√
b.

But if a and b are negative, and n even, the identity no longer holds,
and by assuming it we have the absurdity√

(−1)(−1) =
√
−1 ·
√
−1

√
1 = (

√
−1)2

1 = −1.

Or take for granted that
√
a

b
=

√
a√
b
for all values of the letters. The

following is an identity, since each member =
√
−1:√

1

−1
=

√
−1

1
.

Hence! √
1√
−1

=

√
−1√
1
.

Clearing of fractions,
(
√

1)2 = (
√
−1)2.

Or
1 = −1.

The “fallacy of accident,” by which one argues from a general rule to
a special case where some circumstance renders the rule inapplicable,
and its converse fallacy, and De Morgan’s suggested third variety of
the fallacy, from one special case to another, all find exemplification in
pseudo-algebra. As a general rule, if equals be divided by equals, the
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quotients are equal; but not if the equal divisors are any form of zero.
The application of the general rule to this special case is the method
underlying the largest number of the common algebraic fallacies.

x2 − x2 = x2 − x2.

Factoring the first member as the difference of squares, and the second
by taking out a common factor,

(x+ x)(x− x) = x(x− x). (1)

Canceling x− x,

x+ x = x

(2)

2x = x

2 = 1. (3)

Dividing by 0 changes identity (1) into equation (2), which is true for
only one value of x, namely 0. Dividing (2) by x leaves the absurdity (3).

Take another old illustration:∗
Let

x = 1.

Then

x2 = x.

And

x2 − 1 = x− 1.

∗Referred to by De Morgan as “old” in a number of the Athenæum of forty years
ago.
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Dividing both by x− 1,

x+ 1 = 1.

But

x = 1.

Whence, by substituting,

2 = 1.

The use of a divergent series furnishes another type of fallacy, in
which one assumes something to be true of all series which in fact is
true only of the convergent. For this purpose the harmonic series is
perhaps oftenest employed.

1 +
1

2
+

1

3
+

1

4
+ . . . .

Group the terms thus:

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+(

1

9
+ . . . to 8 terms

)
+

(
1

17
+ . . . to 16 terms

)
+ . . . .

Every term (after the second) in the series as now written > 1
2
. There-

fore the sum of the first n terms increases without limit as n increases
indefinitely.∗ The series has no finite sum; it is divergent. But if the
signs in this series are alternately + and −, the series

1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

∗The sum of the first 2n terms > 1 + 1
2 n.
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is convergent. With this in mind, the following fallacy is transparent
enough:

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

=

(
1 +

1

3
+

1

5
+ . . .

)
−
(

1

2
+

1

4
+

1

6
+ . . .

)
=

[(
1 +

1

3
+

1

5
+ . . .

)
+

(
1

2
+

1

4
+

1

6
+ . . .

)]
− 2

(
1

2
+

1

4
+

1

6
+ . . .

)
=

(
1 +

1

2
+

1

3
+

1

4
+ . . .

)
−
(

1 +
1

2
+

1

3
+

1

4
+ . . .

)
= 0.

But

log 1 = 0.

Suppose ∞ written in place of each parenthesis.
∞ and 0 are both convenient “quantities” for the fallacy maker.
By tacitly assuming that all real numbers have logarithms and that

they are amenable to the same laws as the logarithms of arithmetic
numbers, another type of fallacy emerges:

(−1)2 = 1.

Since the logarithms of equals are equal,

2 log(−1) = log 1 = 0

∴ log(−1) = 0

∴ log(−1) = log 1

and − 1 = 1.
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The idea of this type is credited to John Bernoulli. Some great
minds have turned out conceits like these as by-products, and many
amateurs have found delight in the same occupation. To those who
enjoy weaving a mathematical tangle for their friends to unravel, the
diversion may be recommended as harmless. And the following may be
suggested as promising points around which to weave a snarl: the tan-
gent of an angle becoming a discontinuous function for those particular
values of the angle which are represented by (n + 1

2
)π; discontinuous

algebraic functions; the fact that when h, j, and k are rectangular unit
vectors the commutative law does not hold, but hjk = −kjh; the well-
known theorems of plane geometry that are not true in solid geometry
without qualification; etc.

Let us use one of these to make a fallacy to order. In the frac-
tion 1/x, if the denominator be diminished, the fraction is increased.

When x = 5, 3, 1, −1, −3, −5, a decreasing series, then 1/x = 1/5,
1/3, 1, −1, −1/3, −1/5, an increasing series, as, by rule, each term of
the second series is greater than the term before it: 1/3 > 1/5, 1 > 1/3,
−1/5 > −1/3. Then the fourth term is greater than the third; that is
−1 > +1.

Neither the fallacies of formal logic nor those of algebra invalidate
sound reasoning. From the counterfeit coin one does not infer that the
genuine is valueless. Scrutiny of the counterfeit may enable us to avoid
being deceived later by some particularly clever specimen. Counterfeit
coins also, if so stamped, make good playthings.



TWO HIGHEST COMMON FACTORS.

If asked for the H. C. F. of a2 − x2 and x3 − a3, one pupil will give
a − x, and another x − a. Which is right? Both. It is only in such
a case that pupils raise the question; but the example is not peculiar
in having two H.C.F. If the given expressions had been x2 − a2 and
x3− a3, x− a would naturally be obtained, and would probably be the
only H.C.F. offered; but a − x is as much a common factor and is of
as high a degree. Perhaps it is taken as a matter of course—certainly
it is but rarely stated—that every set of algebraic expressions has two
highest common factors, arithmetically equal but of opposite quality.

As the term “highest” is used in a technical way, the purist will
perhaps pardon the solecism “two highest.”

Similarly, of course, there are two L.C.M. of every set of algebraic
expressions. By going through the answer list for exercises in L.C.M. in
an algebra and changing the signs, one obtains another list of answers.
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POSITIVE AND NEGATIVE NUMBERS.

To speak of arithmetical numbers as positive, is still so common an
error as to need correction at every opportunity. The numbers of arith-
metic are not positive. They are numbers without quality. Negatives
are not later than positives, either in the individual’s conception or in
that of the race. How can the idea of one of two opposites be earlier
than the other, or clearer? The terms “positive” and “negative” being
correlative, neither can have meaning without the other.∗

An “algebraic balance” has been patented and put on the market,†
designed to illustrate positive and negative numbers, also transposition
and the other operations on an equation. It is composed of a system of
levers and scale pans with weights. The value of this excellent apparatus
in illustrating positive and negative numbers is in showing them to
be opposites of each other. E. g., a weight in the positive scale pan
neutralizes the pull on the beam exerted by a weight of equal mass in
the negative scale pan. The two weights are of equal mass, as the two
numbers are of equal arithmetical value. When the weight is put into
either scale pan, it represents a “real,” or quality, number; it becomes
either + or −.

The unfortunate expression “less than nothing”(due to Stifel), the
attempt to consider negative numbers apart from positive and to teach
negative after positive, and the name “fictitious” for negative numbers,
all seem absurd enough now; but they became so only when the real
significance of positive and negative as opposites was clearly seen. The
value of the illustration from debts and credits (due to the Hindus)

∗A good exercise to develop clear thinking as to the relation between positive,
negative and arithmetic numbers is, to consider the correspondence of the positive
and negative solutions of an equation to the arithmetic solutions of the problem
that gave rise to the equation, and the question to what primary assumptions this
correspondence is due.

†By F. C. Donecker, Chicago. Described in School Science and Mathematics.
See also “Another Algebraic Balance,” by N. J. Lennes, id., Nov. 1905; and “Content-
Problems for High School Algebra,” by G. W. Meyers, id., Jan. 1907, reprinted from
School Review.
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and from the thermometer, lies in the aptness for bringing out the
oppositeness of positive and negative.

For the illustration from directed lines, see Fig. 3 on the following
page.

It is appropriate that the advertisements of the algebraic balance
use the quotation from Cajori’s History of Elementary Mathematics :
“Negative numbers appeared ‘absurd’ or ‘fictitious’ so long as math-
ematicians had not hit upon a visual or graphical representation of
them. . . . Omit all illustrations by lines, or by the thermometer, and
negative numbers will be as absurd to modern students as they were to
the early algebraists.”



VISUAL REPRESENTATION OF COMPLEX NUMBERS.

If the sect OR, one unit long and extending to the right of O, be
taken to represent +1, then −1 will be represented by OL, extending
one to the left of O. +a would be pictured by a line a units long
and to the right; −a, a units long and to the left. This simplest and
best-known use of directed lines gives us a geometric representation of
real numbers. The Hindus early gave this interpretation to numbers
of opposite quality; but it does not appear to have been given by a
European until 1629, by Girard.∗

Fig. 3.

Conceiving the line of unit length to be revolved in what is as-
sumed as the positive direction (counter-clockwise) −1 may be called
the factor that revolves from OR (+1) to OL (−1). Then

√
−1 is the

factor which, being used twice, produces that result; using it once as
a factor revolving the line through one of the two right angles. Then
OU pictures the number +

√
−1. Similarly, since multiplication of −1

∗Albert Girard, Invention Nouvelle en l’Algèbre, Amsterdam. Perhaps also the
first to distinctly recognize imaginary roots of an equation.
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by −
√
−1 twice produces +1, −

√
−1 may be considered as the factor

which revolves from OL through one right angle to OD. If distances to
the right are called +, then distances to the left are −, and +

√
−1 · b

denotes a line b units long and extending up, and −
√
−1·b a line b units

Fig. 4.

long extending down. The geometric interpretation of the imaginary
was made by H. Kühn in 1750, in the Transactions of the St. Petersburg
Academy.

To represent graphically the number a+ b
√
−1 (see Fig. 4), we lay

off OA in the + direction and a units long; AB, b units long and in
the direction indicated by

√
−1; and draw OB. The directed line OB

represents the complex number a + b
√
−1. And the length of OB,√

a2 + b2, is the modulus of a + b
√
−1. The geometric interpretation

of such a number was made by Jean Robert Argand, of Geneva, in his
Essai, 1806. The term “modulus” in this connection was first used by
him, in 1814.
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These geometric interpretations by Kühn and Argand, and espe-
cially one made by Wessel,∗ who extended the method to a representa-
tion in space of three dimensions, may be regarded as precursors of the
beautiful methods of vector analysis given to the world by Sir William
Rowan Hamilton in 1852 and 1866 under the name “quaternions.”

The letter i as symbol for the unit of imaginary numbers,
√
−1, was

suggested by Euler. It remained for Gauss to popularize the sign i and
the geometric interpretations made by Kühn and Argand.

The contrasting terms “real” and “imaginary” as applied to the roots
of an equation were first used by Descartes. The name “imaginary” was
so well started that it still persists, and seems likely to do so, although
it has long been seen to be a misnomer.† A few writers use the terms
scalar and orthotomic in place of real and imaginary.

The historical development of this subject furnishes an illustration
of the general rule, that, as we advance, each new generalization in-
cludes as special cases what we have previously known on the subject.
The general form of the complex number, a + bi, includes as special
cases the real number and the imaginary. If b = 0, a + bi is real. If
a = 0, a + bi is imaginary. The common form of a complex number is
the sum of a real number and an imaginary.‡

In 1799 Gauss published the first of his three proofs that every
algebraic equation has a root of the form a+ bi.

The linear equation forces us to the consideration of numbers of
opposite quality: x − a = 0 and x + a = 0, satisfied by the values +a
and −a respectively. The pure quadratic gives imaginary in contrast
with real roots: x2 − a2 = 0 and x2 + a2 = 0 satisfied by ±a and ±ai.

∗To the Copenhagen Academy of Sciences, 1797.
†It is interesting to notice the prestige of Descartes’s usage in fixing the language

of algebra: the first letters of the alphabet for knowns, the last letters for unknowns,
the present form of exponents, the dot between factors for multiplication.

‡Professor Schubert (p. 14) adds that “we have found the most general numerical
form to which the laws of arithmetic can lead.”
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The complete quadratic

ax2 + bx+ c = 0

has for its roots a pair of conjugate complex numbers when the dis-
criminant, b2 − 4ac, is negative and b is not = 0.

But though the recognition of imaginary and complex numbers is a
necessary consequence of simple algebraic analysis, no complete under-
standing or appreciation of them is possible until there is some tangible
or visible representation of them. History’s lesson to us in this respect
is plain: positive and negative, imaginary, and complex numbers must
be graphically represented in teaching algebra.

The algebraic balance mentioned on page 72 might be further de-
veloped by the addition of an appliance whereby imaginary numbers
should be illustrated, a weight put into a certain pan having the effect
of pulling the main beam to one side, and arrangements for pulling the
beam in several other directions to illustrate complex numbers.

If in a football game we denote the forces exerted in the direction OR
(in Fig. 3) by positive real numbers, then the opponents’ energy ex-
erted in exactly the opposite direction, OL, will be denoted by negative
numbers. Forces in the line of OU or OD will be denoted by imaginary
numbers; and all other forces in the game, acting in any other direction
on the field, will be denoted by complex numbers of the general type.∗

Each force represented by a general complex number is resolvable
into two forces, one represented by a real number and the other by an
imaginary, as OB (in Fig. 4) is the resultant of OA and AB.

A trigonometric representation of an imaginary number as exponent
is furnished by the formula

ei = cos 1 + i sin 1.

∗Illustration from Taylor’s Elements of Algebra, where the visual representation
of imaginary and complex numbers is made in full.



ILLUSTRATIONS OF THE LAW OF SIGNS IN ALGEBRAIC
MULTIPLICATION.

A Geometric Illustration.

If distances to the right of O be called +, then distances to the left
will be −. Call distances up from O +, and those down −. Rectan-
gle OR has ab units of area. Assume that the product ab is +.

Fig. 5.

Suppose SR to move to the left until it is a units to the left of O,
in the position S′R′. The base diminished, became zero, and passed
through that value, and therefore is now negative; so also the rectangle.
The product of −a and +b is −ab.

Suppose TR′ to move downward until it is b units below O. The
rectangle, previously −, has passed through zero, and must now be +.
The product of −a and −b is +ab.

Similarly (+a)(−b) = −ab.
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From a Definition of Multiplication.

Multiplication is the process of performing upon one of two given
numbers (the multiplicand) the same operation which is performed
upon the primary unit to obtain the other number (the multiplier.)∗

When the multiplier is an arithmetical integer, the primary unit is
that of arithmetic, 1, and we have the special case that is correctly
defined in the primary school as, “taking one number as many times as
there are units in another.”

Suppose we are to multiply +4 by +3. Assuming +1 as the primary
unit, the multiplier is produced by taking that unit additively “three
times,” (+1)+(+1)+(+1). That is what the number +3 means; and to
multiply +4 by it, means to do that to +4. (+4) + (+4) + (+4) = +12.
Similarly, the product of −4 by + 3 = (−4) + (−4) + (−4) = −12.

To multiply +4 by −3: The multiplier is the result obtained by
taking three times additively the primary unit with its quality changed.
The product of +4 by−3 is therefore the result obtained by taking three

∗In this definition, “the same operation which is performed upon the primary
unit to obtain the multiplier” is to be understood to mean the most fundamental
operation by which the multiplier may be obtained from unity, or that operation
which is primarily signified by the multiplier. E. g., If the multiplier is 2, this
number primarily means unity taken twice, or the unit added to itself; multiplying
4 by 2 therefore means adding 4 to itself, giving the result 8. Dr. Young, in his new
book, The Teaching of Mathematics, p. 227, says that as 2 is 1+12, therefore 2× 4
would by this definition be 4 + 42, or 20; or, as 2 is 1 + 1/1, therefore 2× 4 would
be 4 + 4/4, or 5; etc. But while it is true that 1 + 12 and 1 + 1/1 are each equal
to 2, neither of them is the primary signification of 2, or represents 2 in the sense of
the definition. Neither of them is a proper statement of the multiplier “within the
meaning of the law.”
It is not maintained that this definition has no difficulties, or that it directly helps

a learner in comprehending the meaning of such a multiplication as
√
2 ×
√
3, but

only that it is a generalization that is helpful for the purpose for which it is used,
and that it is in line with the fundamental idea of multiplication so far as that idea
is understood.
The definition is only tentative, and this treatment does not pretend to be a

proof.
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times additively +4 with its quality changed. (−4)+(−4)+(−4) = −12.
Similarly, to multiply −4 by −3 is to take three times additively −4
with its quality changed: (+4) + (+4) + (+4) = +12.

Summarizing the four cases, we have “the law of signs”: the product
is + when the factors are of like quality, − when they are of unlike
quality.

A more General Form of the Law of Signs.

In deriving the law from the definition of multiplication, the pri-
mary unit was assumed as +1. Assume −1 as the primary unit, and
multiply +4 by +3. The multiplier, +3, is obtained from the pri-
mary unit, −1, by taking three times additively the unit with its sign
changed. Performing the same operation on the multiplicand, +4, we
have (−4)+(−4)+(−4) = −12. Similarly, the product of −4 by +3 =
(+4) + (+4) + (+4) = +12. To multiply +4 by −3: The multiplier
is the result obtained by taking three times additively the unit, −1,
without change of sign; therefore the product of +4 by − 3 = (+4) +
(+4) + (+4) = +12. So also −4 multiplied by −3 gives −12. Summa-
rizing these four cases, we have the law of signs when −1 is taken as
the primary unit: the product is − when the factors are of like quality,
+ when they are of unlike quality.

In the geometric illustration above, we first assumed the rectangle
+a by +b to be +. Assuming the contrary, the sign of each subsequent
product is reversed, and we have a geometric illustration of the law of
signs when −1 is taken as the primary unit.

The law of signs taking +1 as the primary unit, and that taking
−1 as the primary unit, may be combined into one law thus: If the
two factors are alike in quality, the product is like the primary unit
in quality; if the two factors are opposite in quality, the quality of the
product is opposite to that of the primary unit. Or: Like signs give
like (like the primary unit); unlike signs give unlike (the unit).

The assumption of still other numbers as primary unit leads to other
laws—other “algebras.”
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Multiplication as a Proportion.

Since by definition a product bears the same relation to the multi-
plicand that the multiplier bears to the primary unit, this equality of
relation may be stated in the form of a proportion:

product : multiplicand :: multiplier : primary unit

or,
primary unit : multiplier :: multiplicand : product.

Gradual Generalization of Multiplication.

From the time when Pacioli found it necessary (and difficult) to
explain how, in the case of proper fractions in arithmetic, the product
is less than the multiplicand, to the present with its use of the term
multiplication in higher mathematics, is a long evolution. It is one of the
best illustrations of the generalization of a term that was etymologically
restricted at the beginning.



EXPONENTS.

The definition of exponent found in the elementary algebras is suf-
ficient for the case to which it is applied—the case in which the expo-
nents are arithmetic integers. Our assumption of a primary unit for
algebra being what it is, the distinction between arithmetic numbers
as exponents and positive numbers as exponents is usually neglected.
Or we may simply define positive exponent. The meaning of negative
and fractional exponents is easily deduced. In fact those who first used
exponents and invented an exponential notation (Oresme in the four-
teenth century and Stevin independently in the sixteenth) had fractions
as well as whole numbers as exponents. And negative exponents had
been invented before Wallis studied them in the seventeenth century.
Each of these can be defined separately. And modern mathematics
has used other forms of exponents. They have been made to follow
the laws of exponents first proved for ordinary integral exponents, and
their significance has been assigned in conformity thereto. Each sepa-
rate species of exponent is defined. A unifying conception of them all
might express itself in a definition covering all known forms as special
cases. The general treatment of exponents is yet to come.

Wanted: a definition of exponent that shall be general for
elementary mathematics.
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AN EXPONENTIAL EQUATION.

The chain-letters, once so numerous, are now—it is to be hoped—
obsolete. In the form that was probably most common, the first writer
sends three letters, each numbered 1. Each recipient is to copy and
send three, numbered 2, and so on until number 50 is reached.

Query: If every one were to do as requested, and it were possible
to avoid sending to any person twice, what number of letter would be
reached when every man, woman and child in the world should have
received a letter?

Let n represent the number. Take the population of the earth to
be fifteen hundred million. Then this large number is the sum of the
series

3, 32, 33, . . . 3n

S =
a(rn − 1)

r − 1
=

3(3n − 1)

2
3

2
(3n − 1) = 1,500,000,000

3n − 1 = 1,000,000,000

n log 3 = log(109)

n =
9

log 3
= 18.86.

There are not enough people in the world for the letters numbered 19
to be all sent.
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TWO NEGATIVE CONCLUSIONS REACHED IN THE
NINETEENTH CENTURY.

1. That general equations above the fourth degree are insoluble by
pure algebra.

The solution of equations of the third and fourth degree had been
known since 1545. Two centuries and a half later, young Gauss, in
his thesis for the doctorate, proved that every algebraic equation has a
root, real or imaginary.∗ He made the conjecture in 1801 that it might
be impossible to solve by radicals any general equation of higher degree
than the fourth. This was proved by Abel, a Norwegian, whose proof
was printed in 1824, when he was about twenty-two years old. Two
years later the proof was published in an expanded form, with more
detail.

Thus inventive effort was turned in other directions.
2. That the “parallel postulate” of Euclid can never be proved from

the other postulates and axioms.
Ever since Ptolemy, in the second century, the attempt had been

made to prove this postulate, or “axiom,” and thus place it among
theorems. In 1826, Lobachevsky, professor and rector at the University
of Kasan, Russia, proved the futility of the attempt, and published
his proof in 1829. He constructed a self-consistent geometry in which
the other postulates and axioms are assumed and the contrary of this,
thus showing that this is independent of them and therefore can not be
proved from them. No notice of his researches appeared in Germany
till 1840. In 1891 Lobachevsky’s work was made easily available to
English readers through a translation by Prof. George Bruce Halsted.†

∗Of this proof, published when Gauss was twenty-two years old, Professor
Maxime Bôcher remarks (Bulletin of Amer. Mathematical Society, Dec. 1904, p. 118,
noted): “Gauss’s first proof (1799) that every algebraic equation has a root gives a
striking example of the use of intuition in what was intended as an absolutely rig-
orous proof by one of the greatest and at the same time most critical mathematical
minds the world has ever seen.” It should be added that Gauss afterward gave two
other proofs of the theorem.

†Austin, Texas, 1892. It contains a most interesting introduction by the trans-
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The effort previously expended in attempting the impossible was
henceforth to be turned to the development of non-Euclidean geometry,
to investigating the consequences of assuming the contrary of certain
axioms, to n-dimensional geometry. “As is usual in every marked intel-
lectual advance, every existing difficulty removed has opened up new
fields of research, new tendencies of thought and methods of investi-
gation, and consequently new and more difficult problems calling for
solution.”∗

High-school geometry must simply assume (choose) Euclid’s pos-
tulate of parallels, perhaps preferably in Playfair’s form of it: Two
intersecting lines can not both be parallel to the same line.

lator. Dr. Halsted translated also Bolyai’s work (1891), compiled a Bibliography of
Hyperspace and Non-Euclidean Geometry (1878) of 174 titles by 81 authors, and
has himself written extensively on the subject, being probably the foremost writer
in America on non-Euclidean geometry and allied topics.

∗Withers, p. 63–4.



THE THREE PARALLEL POSTULATES ILLUSTRATED.

In contrast to Euclid’s postulate (just quoted) Lobachevsky’s is,
that through a given point an indefinite number of lines can be drawn
in a plane, none of which cut a given line in the plane, while Riemann’s
postulate is, that through the point no line can be drawn in the plane
that will not cut the given line. Thus we have three elementary plane
geometries.

An excellent simple illustration of the contrast has been devised:
Let AB and PC be two straight lines in the same plane, both unlimited

Fig. 6.

in both directions; AB fixed in position; and PC rotating about the
point P, say in the positive (counter-clockwise) direction, intersecting
first toward the right as shown in Figure 6.

“Three different results are logically possible. When the rotating
line ceases to intersect the fixed line in one direction [toward the right]
it will immediately intersect in the opposite direction [toward the left],
or it will continue to rotate for a time before intersection takes place, or
else there will be a period of time during which the two lines intersect
in both directions. The first of these possibilities gives Euclid’s, the
second Lobachevsky’s, and the third Riemann’s geometry.

“The mind’s attitude toward these three possibilities taken succes-
sively illustrates in a curious way the essentially empirical nature of the
straight line as we conceive it. Logically one of these possibilities is just
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as acceptable as the other. From this point of view strictly taken there
is certainly no reason for preferring one of them to another. Psycholog-
ically, however, Riemann’s hypothesis seems absolutely contradictory,
and even Euclid’s is not quite so acceptable as that of Lobachevsky.”

As a slight test of the relative acceptability of these hypotheses to
the unsophisticated mind, the present writer drew on the blackboard a
figure like that above, mentioned in simple language the three possibil-
ities, and asked pupils to express opinion on slips of paper. Forty-six
out of 54 voted that the second is the true one. Two said they “guessed”
it is, twenty-one “thought” so, thirteen “felt sure,” and ten “knew.” Six
“thought” that the first supposition is correct, and two “felt sure” of
it. No one voted for the third, and the writer has never heard but one
person express opinion in favor of the third supposition. Some of the
pupils had had a few weeks of plane geometry. Of these, most who
voted in the majority wanted to change as soon as it was pointed out
that the second supposition implies that two intersecting lines can both
be parallel to the same line. Undoubtedly some of the more immature
were unable to grasp the idea that the lines are of unlimited length, and
possibly it may be somewhat general that those who favor the second
supposition do not fully grasp that idea. Such a test merely illustrates
that Euclid’s postulate is not in all its forms apodictic.

The whole question of parallel postulates is admirably treated by
Dr. Withers,∗ to whose book (p. 117) the writer is indebted for the two
paragraphs quoted above.

In trigonometry. The familiar figure in trigonometry representing
the line values of the tangent of an angle at the center of a unit circle
as the angle increases and passes through 90◦ is another form of this

∗John William Withers, Euclid’s Parallel Postulate: Its Nature, Validity, and
Place in Geometrical Systems, his thesis for the doctorate at Yale, published by The
Open Court Publishing Co., 1905. It includes a bibliography of about 140 titles on
this and more or less closely related subjects, mentioning Halsted’s bibliography of
174 titles and Roberto Bonola’s of 353 titles. To these lists might be added Man-
ning’s Non-Euclidean Geometry (1901) which is brief, elementary and interesting.
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figure. And the assumption that intersection of the final (revolving)
side with the line of tangents begins at an infinite distance below at
the instant it ceases above, places our trigonometry on a Euclidean
basis.

Parallels meet at infinity. Kepler’s definition would seem paradoxi-
cal if offered in elementary geometry, but is valuable in more advanced
work, and is intelligible enough when made in the language of limits.
Let PP′ be perpendicular to SQ; let Q move farther and farther to the
right while P remains fixed; and let P′PR be the limit toward which
angle P′PQ approaches as the distance of Q from P′ increases without
limit.∗ Then PR is parallel to SQ. That is, parallelism is attributed
to the limiting position of intersecting lines as the point of intersection
recedes without limit; which, for the sake of brevity, we may express
by the familiar sentence, “Parallels meet at infinity.”

The three postulates again. Now suppose PS to move, P remaining
fixed and S moving to the left, TPP′ being the limit of angle SPP′ as
P′S increases without limit. Then PT is parallel to SQ. According
to Euclid’s postulate PT and PR are one straight line; according to

Fig. 7.

Lobachevsky’s they are not; while according to Riemann’s Q and S can
∗In Fig. 6 the moving line rotated until after it ceased to intersect the fixed line

toward the right. In the present illustration (Fig. 7) PQ rotates only as Q, the point
of intersection, recedes along the line SP′Q.
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not recede to an infinite distance (but Q comes around, so to speak,
through S, to P′ again) and there is no limiting position (in the termi-
nology of the theory of limits) and no parallel in the Euclidean sense
of the term.



GEOMETRIC PUZZLES.

“A rectangular hole 13 inches long and 5 inches wide was discovered
in the bottom of a ship. The ship’s carpenter had only one piece of
board with which to make repairs, and that was but 8 inches square
(64 square inches) while the hole contained 65 square inches. But he

Fig. 8.

knew how to cut the board so as to make it fill the hole”! Or in more
prosaic form:

Fig. 8 is a square 8 units on a side, area 64; cut it through the heavy
lines and rearrange the pieces as indicated by the letters in Fig. 9, and
you have a rectangle 5 by 13, area 65. Explain.

Fig. 10 explains. EH is a straight line, and HG is a straight line,
but they are not parts of the same straight line. Proof:

Let X be the point at which EH produced meets GJ; then from the
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Fig. 9. Fig. 10.

similarity of triangles EHK and EXJ

XJ : HK = EJ : EK

XJ : 3 = 13 : 8

XJ = 4.875.
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But

GJ = 5.

Similarly, EFG is a broken line.
The area of the rectangle is, indeed, 65, but the area of the rhom-

boid EFGH is 1.
Professor Ball∗ uses this to illustrate that proofs by dissection and

superposition are to be regarded with suspicion until supplemented by
mathematical reasoning.

“This geometrical paradox . . . seems to have been well known
in 1868, as it was published that year in Schlömilch’s Zeitschrift für
Mathematik und Physik, Vol. 13, p. 162.”

In an article in The Open Court, August 1907, (from which the
preceding four lines are quoted), Mr. Escott generalizes this puzzle.
The puzzle is so famous that his analysis can not but be of interest.
With his permission it is here reproduced:

In Fig. 11, it is shown how we can arrange the same pieces so as to
form the three figures, A, B, and C. If we take x = 5, y = 3, we shall
have A = 63, B = 64, C = 65.

Let us investigate the three figures by algebra.

A = 2xy + 2xy + y(2y − x) = 3xy + 2y2

B = (x+ y)2 = x2 + 2xy + y2

C = x(2x+ y) = 2x2 + xy

C− B = x2 − xy − y2

B− A = x2 − xy − y2.

These three figures would be equal if x2 − xy − y2 = 0, i. e., if

x

y
=

1 +
√

5

2

∗Recreations, p. 49.
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Fig. 11.



GEOMETRIC PUZZLES. 95

so the three figures cannot be made equal if x and y are expressed in
rational numbers.

We will try to find rational values of x and y which will make the
difference between A and B or between B and C unity.

Solving the equation

x2 − xy − y2 = ±1

we find by the Theory of Numbers that the y and x may be taken as
any two consecutive numbers in the series

1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

where each number is the sum of the two preceding numbers.
The values y = 3 and x = 5 are the ones commonly given. For these

we have, as stated above, A < B < C.
The next pair, x = 8, y = 5 give A > B > C, i. e., A = 170,

B = 169, C = 168.
Fig. 12 shows an interesting modification of the puzzle.

A = 4xy + (y + x)(2y − x) = 2y2 + 2yz + 3xy − xz
B = (x+ y + z)2 = x2 + y2 + z2 + 2yz + 2zx+ 2xy

C = (x+ 2z)(2x+ y + z) = 2x2 + 2z2 + 2yz + 5zx+ xy.

When x = 6, y = 5, z = 1 we have A = B = C = 144.
When x = 10, y = 10, z = 3 we have A > B > C, viz.,

A = 530, B = 529, C = 528.

Another puzzle is made by constructing a cardboard rectangle
13 by 11, cutting it through one of the diagonals (Fig. 13) and sliding
one triangle against the other along their common hypotenuse to the
position shown in Fig. 14. Query: How can Fig. 14 be made up of
square VRXS, 12 units on a side, area 144, + triangle PQR, area 0.5,
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Fig. 12.
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+ triangle STU, area 0.5, = total area 145; when the area of Fig. 13 is
only 143?

Inspection of the figures, especially if aided by the cross lines, will
show that VRXS is not a square. VS is 12 long; but SX < 12. TX = 11
(the shorter side in Fig. 13) but ST < 1 (see ST in Fig. 13).

Fig. 13.

ST : VP = SU : VU

ST : 11 = 1 : 13

ST = 11
13
.

Rectangle VRXS = 12× 1111
13

= 142 2
13
.

Triangle PQR = triangle STU = 1
2
· 11
13
· 1 = 11

26
.

Fig. 14 = rectangle + 2 triangles
= 142 2

13
+ 11

13
= 143.
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By sliding the triangles one place (to the first cross line) in the other
direction we appear to have a rectangle 14 by 10 and two small triangles
with an area of 1

2
each, total area 141—as much smaller than Fig. 13

as Fig. 14 is larger. Slide the triangles one more place in the direction
last used, and the apparent area is 139. The explanation is of course

Fig. 14.

similar to that given for Fig. 14.
This paradox also might be treated by an analysis resembling that

by which Mr. Escott has treated the preceding.
Very similar is a puzzle due to S. Loyd, “the puzzlist.” Fig. A is a

square 8×8, area 64. Fig. B shows the pieces rearranged in a rectangle
apparently 7× 9, area 63.
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Fig. A. Fig. B.

Paradromic rings.∗ A puzzle of a very different sort is made as fol-
lows. Take a strip of paper, say half as wide and twice as long as this
page; give one end a half turn and paste it to the other end. The ring
thus formed is used in theory of functions to illustrate a surface that
has only one face: a line can be drawn on the paper from any point of
it to any other point of it, whether the two points were on the same
side or on opposite sides of the strip from which the ring was made.
The ring is to be slit—cut lengthwise all the way around, making the
strip of half the present width. State in advance what will result. Try
and see. Now predict the effect of a second and a third slitting.

∗The theory of these rings is due to Listing, Topologie, part 10. See Ball’s
Recreations, p. 75–6.



DIVISION OF PLANE INTO REGULAR POLYGONS.

The theorem seems to have been pleasing to the ancients, as it is
to high-school pupils to-day, that a plane surface can be divided into
equilateral triangles, squares, or regular hexagons, and that these are
the only regular polygons into which the surface is divisible. As a
regular hexagon is divided by its radii into six equilateral triangles,

Fig. 15. Fig. 16.

the division of the surface into triangles and hexagons gives the same
arrangement (Fig. 16).

The hexagonal form of the bee’s cell has long attracted attention
and admiration. The little worker could not have chosen a better form if
he had had the advantage of a full course in Euclid! The hexagon is best
adapted to the purpose. It was discussed from a mathematical point
of view by Maclaurin in one of the last papers he wrote.∗ It has been
pointed out† that the hexagonal structure need not be attributed to
mechanical instinct, but may be due solely to external pressure. (The

∗In Philosophical Transactions for 1743.
†See for example E. P. Evans’s Evolutional Ethics and Animal Psychology,

p. 205.
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cells of the human body, originally round, become hexagonal under
pressure from morbid growth.)

Agricultural journals are advising the planting of trees (as also
corn etc.) on the plan of the equilateral triangle instead of the square.
Each tree is as far from its nearest neighbors in Fig. 16 as in Fig. 15.
The circles indicated in the corner of each figure represent the soil etc.
on which each tree may be supposed to draw. The circles in Fig. 16 are
as large as in Fig. 15 but there is not so much space lost between them.
As the distance from row to row in Fig. 16 = the altitude of one of the
equilateral triangles = 1

2

√
3 = 0.866 of the distance between trees, it

requires (beyond the first row) only 87% as much ground to set out a
given number of trees on this plan as is required to set them out on
the plan of Fig. 15. It may be predicted that, as land becomes scarce,
pressure will force the orchards, gardens and fields into a uniformly
hexagonal arrangement.



A HOMEMADE LEVELING DEVICE.

The newspapers have been printing instructions for making a simple
instrument useful in laying out the grades for ditches on a farm, or in
similar work in which a high degree of accuracy is not needed.

Strips of thin board are nailed together, as shown in Fig. 17, to
form a triangle with equal vertical sides. The mid-point of the base is
marked, and a plumb line is let fall from the opposite vertex. When the
instrument is placed so that the line crosses the mark, the bar at the

Fig. 17.

base is horizontal, being perpendicular to the plumb line. The median
to the base of an isosceles triangle is perpendicular to the base. From
the lengths of the sides of the triangle it may be computed—or it may
be found by trial—how far from the middle of the crossbar a mark must
be placed so that when the plumb line crosses it the bar shall indicate
a grade of 1 in 200, 1 in 100, etc.
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“ROPE STRETCHERS.”

If a rope 12 units long be marked off into three segments of 3, 4,
and 5 units, the end points brought together, and the rope stretched,
the triangle thus formed is right-angled (Fig. 18). This was used by
the builders of the pyramids. The Egyptian word for surveyor means,

Fig. 18.

literally, “rope stretcher.” Surveyors to this day use the same principle,
counting off some multiple of these numbers in links of their chain.
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THE THREE FAMOUS PROBLEMS OF ANTIQUITY.

1. To trisect an angle or arc.
2. To “duplicate the cube.”
3. To “square the circle.”
The trisection of an angle is an ancient problem; “but tradition

has not enshrined its origin in romance.”∗ The squaring of the circle
is said to have been first attempted by Anaxagoras. The problem to
duplicate the cube “was known in ancient times as the Delian problem,
in consequence of a legend that the Delians had consulted Plato on
the subject. In one form of the story, which is related by Philoponus,
it is asserted that the Athenians in 430 B. C., when suffering from
the plague of eruptive typhoid fever, consulted the oracle at Delos as
to how they could stop it. Apollo replied that they must double the
size of his altar which was in the form of a cube. To the unlearned
suppliants nothing seemed more easy, and a new altar was constructed
either having each of its edges double that of the old one (from which
it followed that the volume was increased eightfold) or by placing a
similar cubic altar next to the old one. Whereupon, according to the
legend, the indignant god made the pestilence worse than before, and
informed a fresh deputation that it was useless to trifle with him, as
his new altar must be a cube and have a volume exactly double that of
his old one. Suspecting a mystery the Athenians applied to Plato, who
referred them to the geometricians, and especially to Euclid, who had
made a special study of the problem.”† It is a hard-hearted historical
criticism that would cast a doubt on a story inherently so credible as
this on account of so trifling a circumstance as that Plato was not born
till 429 B. C. and Euclid much later.

Hippias of Elis invented the quadratrix for the trisection of an angle,
and it was later used for the quadrature of the circle. Other Greeks
devised other curves to effect the construction required in (1) and (2).
Eratosthenes and Nicomedes invented mechanical instruments to draw

∗Ball, Recreations, p. 245.
†Ball, Hist., p. 43–4; nearly the same in his Recreations, p. 239–240.
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such curves. But none of these curves can be constructed with ruler and
compass alone. And this was the limitation imposed on the solution of
the problems.

Antiquity bequeathed to modern times all three problems unsolved.
Modern mathematics, with its more efficient methods, has proved
them all impossible of construction with ruler and compass alone—a
result which the shrewdest investigator in antiquity could have only
conjectured—has shown new ways of solving them if the limitation of
ruler and compass be removed, and has devised and applied methods
of approximation. It has dissolved the problems, if that term may be
permitted.

It was not until 1882 that the transcendental nature of the num-
ber π was established (by Lindemann). The final results in all three of
the problems, with mathematical demonstrations, are given in Klein’s
Famous Problems of Elementary Geometry. A more popular and el-
ementary discussion is Rupert’s Famous Geometrical Theorems and
Problems.

It should be noted that the number π, which the student first meets
as the ratio of the circumference to the diameter of a circle, is a number
that appears often in analysis in connections remote from elementary
geometry; e. g., in formulas in the calculus of probability.

The value of π was computed to 707 places of decimals by William
Shanks. His result (communicated in 1873) with a discussion of the
formula he used (Machin’s) may be found in the Proceedings of the
Royal Society of London, Vol. 21. No other problem of the sort has been
worked out to such a degree of accuracy—“an accuracy exceeding the
ratio of microscopic to telescopic distances.” An illustration calculated
to give some conception of the degree of accuracy attained may be found
in Professor Schubert’s Mathematical Essays and Recreations, p. 140.

Shanks was a computer. He stands in contrast to the circle-squarers,
who expect to find a “solution.” Most of his computation serves, appar-
ently, no useful purpose. But it should be a deterrent to those who—
immune to the demonstration of Lindemann and others—still hope to
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find an exact ratio.
The quadrature of the circle has been the most fascinating of math-

ematical problems. The “army of circle-squarers” has been recruited in
each generation. “Their efforts remained as futile as though they had
attempted to jump into a rainbow” (Cajori); yet they were undismayed.
In some minds, the proof that no solution can be found seems only to
have lent zest to the search.

That these problems are of perennial interest, is attested by the fact
that contributions to them still appear. In 1905 a little book was pub-
lished in Los Angeles entitled The Secret of the Circle and the Square,
in which also the division of “any angle into any number of equal angles”
is considered. The author, J. C. Willmon, gives original methods of ap-
proximation. School Science and Mathematics for May 1906 contains
a “solution” of the trisection problem by a high-school boy in Missouri,
printed, apparently, to show that the problem still has fascination for
the youthful mind. In a later number of that magazine the problem is
discussed by another from the vantage ground of higher mathematics.

While the three problems have all been proved to be insolvable
under the condition imposed, still the attempts made through many
centuries to find a solution have led to much more valuable results, not
only by quickening interest in mathematical questions, but especially
by the many and important discoveries that have been made in the
effort. The voyagers were unable to find the northwest passage, and
one can easily see now that the search was necessarily futile; but in the
attempt they discovered continents whose resources, when developed,
make the wealth of the Indies seem poor indeed.



THE CIRCLE-SQUARER’S PARADOX.

Professor De Morgan, in his Budget of Paradoxes (London, 1872)
gave circle-squarers the honor of more extended individual notice and
more complete refutation than is often accorded them. The Budget first
appeared in instalments in the Athenæum, where it attracted the corre-
spondence and would-be contributions of all the circle-squarers, and the
like amateurs, of the day. His facetious treatment of them drew forth
their severest criticisms, which in turn gave most interesting material
for the Budget. He says he means that the coming New Zealander shall
know how the present generation regards circle-squarers. Theirs is one
of the most amusing of the many paradoxes of which he wrote. The
book is out of print, and so rare that the following quotations from it
may be acceptable:

“Mere pitch-and-toss has given a more accurate approach to the
quadrature of the circle than has been reached by some of my paradox-
ers. . . . The method is as follows: Suppose a planked floor of the usual
kind, with thin visible seams between the planks. Let there be a thin
straight rod, or wire, not so long as the breadth of the plank. This rod,
being tossed up at hazard, will either fall quite clear of the seams, or
will lay across one seam. Now Buffon, and after him Laplace, proved
the following: That in the long run the fraction of the whole number of
trials in which a seam is intersected will be the fraction which twice the
length of the rod is of the circumference of the circle having the breadth
of a plank for its diameter. In 1855 Mr. Ambrose Smith, of Aberdeen,
made 3,204 trials with a rod three-fifths of the distance between the
planks: there were 1,213 clear intersections, and 11 contacts on which
it was difficult to decide. Divide these contacts equally . . . this gives
π = 3.1553. A pupil of mine made 600 trials with a rod of the length
between the seams, and got π = 3.137.” (P. 170–1.)∗

∗Ball, in his Mathematical Recreations and Essays (p. 261, citing the Messenger
of Mathematics, Cambridge, 1873, 2: 113–4) adds that “in 1864 Captain Fox made
1120 trials with some additional precautions, and obtained as the mean value π =
3.1419.”
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“The celebrated interminable fraction 3.14159 . . . , which the math-
ematician calls π, is the ratio of the circumference to the diameter.
But it is thousands of things besides. It is constantly turning up in
mathematics: and if arithmetic and algebra had been studied without
geometry, π must have come in somehow, though at what stage or un-
der what name must have depended upon the casualties of algebraical
invention. This will readily be seen when it is stated that π is nothing
but four times the series

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . .

ad infinitum. It would be wonderful if so simple a series had but one
kind of occurrence. As it is, our trigonometry being founded on the
circle, π first appears as the ratio stated. If, for instance, a deep study of
probable fluctuation from the average had preceded geometry, π might
have emerged as a number perfectly indispensable in such problems as—
What is the chance of the number of aces lying between a million + x
and a million − x, when six million of throws are made with a die?”
(P. 171.)

“More than thirty years ago I had a friend . . . who was . . . thor-
oughly up in all that relates to mortality, life assurance, etc. One day,
explaining to him how it should be ascertained what the chance is of the
survivors of a large number of persons now alive lying between given
limits of number at the end of a certain time, I came, of course, upon
the introduction of π, which I could only describe as the ratio of the
circumference of a circle to its diameter. ‘Oh, my dear friend! that
must be a delusion; what can the circle have to do with the numbers
alive at the end of a given time?’—‘I cannot demonstrate it to you; but
it is demonstrated.’ ” (P. 172.)

“The feeling which tempts persons to this problem [exact quadra-
ture] is that which, in romance, made it impossible for a knight to pass
a castle which belonged to a giant or an enchanter. I once gave a lecture
on the subject: a gentleman who was introduced to it by what I said
remarked, loud enough to be heard all around, ‘Only prove to me that
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it is impossible, and I will set about it this very evening.’
“This rinderpest of geometry cannot be cured, when once it has

seated itself in the system: all that can be done is to apply what the
learned call prophylactics to those who are yet sound.” (P. 390.)

“The finding of two mean proportionals is the preliminary to the
famous old problem of the duplication of the cube, proposed by Apollo
(not Apollonius) himself. D’Israeli speaks of the ‘six follies of science,’—
the quadrature, the duplication, the perpetual motion, the philoso-
pher’s stone, magic, and astrology. He might as well have added the
trisection, to make the mystic number seven: but had he done so, he
would still have been very lenient; only seven follies in all science, from
mathematics to chemistry! Science might have said to such a judge—as
convicts used to say who got seven years, expecting it for life, ‘Thank
you, my Lord, and may you sit there till they are over,’—may the
Curiosities of Literature outlive the Follies of Science!” (P. 71.)



THE INSTRUMENTS THAT ARE POSTULATED.

The use of two instruments is allowed in theoretic elementary geom-
etry, the ruler and the compass—a limitation said to be due to Plato.

It is understood that the compass is to be of unlimited opening.
For if the compass would not open as far as we please, it could not be
used to effect the construction demanded in Euclid’s third postulate,
the drawing of a circle with any center and any radius. Similarly, it
is understood that the ruler is of unlimited length for the use of the
second postulate.

Also that the ruler is ungraduated. If there were even two marks
on the straight-edge and we were allowed to use these and move the
ruler so as to fit a figure, the problem to trisect an angle (impossible
to elementary geometry) could be readily solved, as follows:

Let ABC be the angle, and P, Q the two points on the straight-edge.
(Fig. 19.)

On one arm of angle B lay off BA = PQ. Bisect BA, at M.
Draw MK ‖ BC, and ML ⊥ BC.
Adjust the straight-edge to fit the figure so that P lies on MK,

Q on ML, and at the same time the straight-edge passes through B.
Then BP trisects the angle.

Proof. ∠PBC = its alternate ∠BPM.
Mark N the mid-point of PQ, and draw NM. Then N, the mid-point

of the hypotenuse of the rt. 4 PQM, is equidistant from the vertexes
of the triangle.

∴ ∠BPM = ∠PMN.

Exterior ∠BNM = ∠BPM + ∠PMN

= 2∠BPM.
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Fig. 19.

∵ NM = 1
2
PQ = BM

∴ ∠MBN = ∠BNM

∠PBC = ∠BPM = 1
2
∠BNM = 1

2
∠ABN = 1

3
∠ABC.



A SCRAP-BOOK OF ELEMENTARY MATHEMATICS. 112

A. B. Kempe,∗ from whom this form of the well-known solution is
adapted, raises the question whether Euclid does not use a graduated
ruler and the fitting process when, in book 1, proposition 4, he fits
side AB of triangle ABΓ to side ∆E of triangle ∆EZ—the first proof by
superposition, with which every high-school pupil is familiar. It may
be replied that Euclid does not determine a point (as P is found in
the angle above) by fitting and measuring. He superposes only in his
reasoning, in his proof.

Our straight-edge must be ungraduated, or it grants us too much;
it must be unlimited or it grants us too little.

∗How to Draw a Straight Line, note (2).



THE TRIANGLE AND ITS CIRCLES.

The following statement of notation and familiar definitions may be
permitted:

O, orthocenter of the triangle ABD, the point of concurrence of the
three altitudes of the triangle.

G, center of gravity, center of mass, or centroid, of the triangle, the
point of concurrence of the three medians.

C, circumcenter of the triangle, center of the circumscribed circle,
point of concurrence of the perpendicular bisectors of the sides of the
triangle.

I, in-center of the triangle, center of the inscribed circle, point of
concurrence of the bisectors of the three interior angles of the triangle.

E, E, E, ex-centers, centers of the escribed circles, each E the point
of concurrence of the bisectors of two exterior angles of the triangle and
one interior angle.

An obtuse angled triangle is used in the figure so that the centers
may be farther apart and the figure less crowded.

Collinearity of centers. O, G, and C are collinear, and OG =
twice GC.

Corollary: The distance from O to a vertex of the triangle is twice
the distance from C to the side opposite that vertex.∗

The nine-point circle. Let L, M, N be the mid-points of the sides;
A′, B′, D′, the projections of the vertexes on the opposite sides; H, J, K,
the mid-points of OA, OB, OD, respectively. Then these nine points
are concyclic; and the circle through them is called the nine-point circle
of the triangle (Fig. 20).

The center of the nine-point circle is the mid-point of OC, and its
radius is half the radius of the circumscribed circle.

∗Or this corollary may easily be proved independently and the proposition that
O, G, and C are in a straight line of which G is a trisection point be derived from it,
as the writer once did when unacquainted with the results that had been achieved
in this field.
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Fig. 20.

The discovery of the nine-point circle has been erroneously at-
tributed to Euler. Several investigators discovered it independently in
the early part of the nineteenth century. The name nine-point circle is
said to be due to Terquem (1842) editor of Nouvelles Annales. Karl
Wilhelm Feuerbach proved, in a pamphlet of 1822, what is now known
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as “Feuerbach’s theorem”: The nine-point circle of a triangle is tangent
to the inscribed circle and each of the escribed circles of the triangle.

So many beautiful theorems about the triangle have been proved
that Crelle—himself one of the foremost investigators of it—exclaimed:
“It is indeed wonderful that so simple a figure as the triangle is so
inexhaustible in properties. How many as yet unknown properties of
other figures may there not be!”

The reader is referred to Cajori’s History of Elementary Mathemat-
ics and the treatises on this subject mentioned in his note, p. 259, and
to the delightful monograph, Some Noteworthy Properties of the Tri-
angle and Its Circles, by W. H. Bruce, president of the North Texas
State Normal School, Denton. Many of Dr. Bruce’s proofs and some of
his theorems are original.



LINKAGES AND STRAIGHT-LINE MOTION.

Under the title How to Draw a Straight Line, A. B. Kempe wrote
a little book which is full of theoretic interest to the geometer, as it
touches one of the foundation postulates of the science.

We occasionally run a pencil around a coin to draw a circumference,
thus using one circle to produce another. But this is only a makeshift:
we have an instrument, not itself circular, with which to draw a circle—
the compass. Now, when we come to draw a straight line we say that
that postulate grants us the use of a ruler. But this is demanding a

Fig. 21. Fig. 22.

straight edge for drawing a straight line—given a straight line to copy.
Is it possible to construct an instrument, not itself straight, which shall
draw a straight line? Such an instrument was first invented by Peaucel-
lier, a French army officer in the engineer corps. It is a “linkage.” Since
that time (1864) other linkages have been invented to effect rectilinear
motion, some of them simpler than Peaucellier’s. But as his is earliest,
it may be taken as the type.

Preliminary to its construction, however, let us consider a single
link (Fig. 21) pivoted at one end and carrying a pencil at the other.
The pencil describes a circumference. If two links (Fig. 22) be hinged
at H, and point F fastened to the plane, point P is free to move in
any direction; its path is indeterminate. The number of links must be
odd to give determinate motion. If a system of three links be fastened
at both ends, a point in the middle link describes a definite curve—
say a loop. Five links can give the requisite straight-line motion; but
Peaucellier’s was a seven-link apparatus.
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Fig. 23. Fig. 24.

Fig. 25. Fig. 26.
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Such a linkage can be made by any teacher. The writer once made
a small one of links cut out of cardboard and fastened together by
shoemaker’s eyelets; also a larger one (about 30 times the size of Fig. 23)
of thin boards joined with bolts. F and O (Fig. 23) were made to fasten
in mouldings above the blackboard, and P carried a piece of crayon.
This proved very interesting to a geometry class for a lecture. It is
needless to say that no one would think of any such appliance for daily
class-room use. The ruler is the practical instrument.

Fig. 24 is a diagram of the apparatus shown in Fig. 23. FA = FB.
In all positions APBC is a rhombus. F and O are fastened at points
whose distance apart is equal to OC. Then C moves in an arc of a circle
whose center is O; A and B move in an arc with center at F. It is to
be shown that P moves in a straight line.

Draw PP′ ⊥ FO produced.∗ FCC′, being inscribed in a semicircle,
is a right angle. Hence 4s FP′P and FC′C, having ∠F in common, are
similar, and

FP : FP′ = FC′ : FC

FP · FC = FP′ · FC′. (1)

F, C, and P, being each equidistant from A and B, lie in the same
straight line; and the diagonals of the rhombus APBC are perpendicular
bisectors of each other. Hence

FB2 = FM2 + MB2

PB2 = MP2 + MB2

∴ FB2 − PB2 = FM2 −MP2

= (FM + MP)(FM−MP)

= FP · FC (2)

From (1) and (2), FP′ · FC′ = FB2 − PB2.
∗Imagine these lines drawn, if one objects to drawing a straight line as one step

in the process of showing that a straight line can be drawn!
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But as the linkage moves, FC′, FB, and PB all remain constant;
therefore FP′ is constant. That is, P′, the projection of P on FO, is
always the same point; or in other words, P moves in a straight line
(perpendicular to FO).

If the distance between the two fixed points, F and O, be made
less than the length of the link OC, P moves in an arc of a circle with
concave toward O (Fig. 25). As OC − OF approaches zero as a limit,
the radius of the arc traced by P increases without limit.

Then as would be expected, if OF be made greater than OC,
P traces an arc that is convex toward O (Fig. 26). The smaller
OF − OC, the longer the radius of the arc traced by P. It is curious
that so small an instrument may be used to describe an arc of a circle
with enormous radius and with center on the opposite side of the arc
from the instrument.

The straight line—the “simplest curve” of mathematicians—lies be-
tween these two arcs, and is the limiting form of each.

Linkages possess many interesting properties. The subject was first
presented to English-speaking students by the late Professor Sylvester.
Mr. Kempe showed “that a link-motion can be found to describe any
given algebraic curve.”



THE FOUR-COLORS THEOREM.

This theorem, known also as the map makers’ proposition, has be-
come celebrated. It is, that four colors are sufficient for any map, no
two districts having a common boundary line to be colored the same;
and this no matter how numerous the districts, how irregular their
boundaries or how complicated their arrangement.

That four colors may be necessary can be seen from Fig. 27. A few
trials will convince most persons that it is probably impossible to draw

Fig. 27.

a map requiring more than four. To give a mathematical proof of it, is
quite another matter.

The proposition is said to have been long known to map makers. It
was mentioned as a mathematical proposition by A. F. Möbius, in 1840,
and later popularized by De Morgan. All that is needed to give a
proposition celebrity is to proclaim it one of the unsolved problems
of the science. Cayley’s remark, in 1878, that this one had remained
unproved was followed by at least two published demonstrations within
two or three years. But each had a flaw. The chance is still open for
some one to invent a new method of attack.

If the proposition were not true, it could be disproved by a single
special case, by producing a “map” with five districts of which each
bounds every other. Many have tried to do this.

It has been shown that there are surfaces on which the proposition
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would not hold true. The theorem refers to a plane or the surface of a
globe.

For historical presentation and bibliographic notes, see Ball’s Recre-
ations, pp. 51–3; or for a more extended discussion, Lucas, IV, 168
et seq.



PARALLELOGRAM OF FORCES.

One of the best-known principles of physics is, that if a ball, B, is
struck a blow which if acting alone would drive the ball to A, and a
blow which alone would drive it to C, and both blows are delivered at
once, the ball takes the direction BD, the diagonal of the parallelogram

Fig. 28.

of BA and BC, and the force is just sufficient to drive the ball to D.
BD is the resultant of the two forces.

If a third force, represented by some line BE, operates simultane-
ously with those represented by BA and BC, then the diagonal of the
parallelogram of BD and BE is the resultant of the three forces. And
so on.

Hence the resultant of forces is always less than the sum of the
forces unless the forces act in the same direction. The more nearly
their lines of action approach each other, the more nearly does their
resultant approach their sum.

One is tempted to draw the moral, that social forces have a resultant
and obey an analogous law, the result of all the educational or other
social energy expended on a child, or in a community, being less than
the sum, unless all forces act in the same line.
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A QUESTION OF FOURTH DIMENSION BY ANALOGY.

After class one day a normal-school pupil asked the writer the fol-
lowing question, and received the following reply:

Q. If the path of a moving point (no dimension) is a line (one
dimension), and the path of a moving line is a surface (two dimensions),
and the path of a moving surface is a solid (three dimensions), why isn’t
the path of a moving solid a four-dimensional magnitude?

A. If your hypotheses were correct, your conclusion should follow
by analogy. The path of a moving point is, indeed, always a line. The
path of a moving line is a surface except when the line moves in its
own dimension, “slides in its trace.” The path of a moving surface is
a solid only when the motion is in a third dimension. The generation
of a four-dimensional magnitude by the motion of a solid presupposes
that the solid is to be moved in a fourth dimension.
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SYMMETRY ILLUSTRATED BY PAPER FOLDING.

The following simple device has been found by the writer to give
pupils an idea of symmetry with a certainty and directness which no
verbal explanation unaided can approach. Require each pupil to take
a piece of calendered or sized paper, fold and crease it once, straighten
it out again, draw rapidly with ink any figure on one half of the paper,
and fold together while the ink is still damp. The original drawing and
the trace on the other half of the paper are symmetric with respect
to the crease as an axis. Again: Fold a paper in two perpendicular
creases. In one quadrant draw a figure whose two end points lie one
in each crease. Quickly fold so as to make a trace in each of the other
quadrants. A closed figure is formed which is symmetric with respect
to the intersection of the creases as center.

T. Sundara Row, in his Geometric Exercises in Paper Folding
(edited and revised by Beman and Smith),∗ has shown how to make
many of the constructions of plane geometry by paper folding, in-
cluding beautiful illustrations of some of the regular polygons and the
locating of points on some of the higher plane curves.

Illustrations of symmetry by the use of the mirror are well brought
out in a brief article recently published in American Education.†

∗Chicago, The Open Court Publishing Co.
†Number for March 1907, p. 464–5, article “Symmetrical Plane Figures,” by

Henry J. Lathrop.
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APPARATUS TO ILLUSTRATE LINE VALUES OF
TRIGONOMETRIC FUNCTIONS.

A piece of apparatus to illustrate trigonometric lines represent-
ing the trigonometric ratios may be constructed somewhat as follows
(Fig. 29):

To the center O of a disc is attached a rod OR, which may be
revolved. A tangent rod is screwed to the disc at A. Along this a little

Fig. 29.

block bearing the letter T is made to slide easily. The block is also
connected to the rod OR, so that T marks the intersection of the two
lines. Similarly a block R is moved along the tangent rod BR. At P, a
unit’s distance from O on the rod OR, another rod (PM) is pivoted. A
weight at the lower end keeps the rod in a vertical position. It passes
through a block which is made to slide freely along OA and which bears
the letter M.

As the rod OR is revolved in the positive direction, increasing the
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angle O, MP represents the increasing sine, OM the decreasing cosine,
AT the increasing tangent, BR the decreasing cotangent, OT the in-
creasing secant, OR the decreasing cosecant.



“SINE.”

Students in trigonometry sometimes say: “From the line value, or
geometric representation, of the trigonometric ratios it is easy to see
why the tangent and secant were so named. And the co-functions are
the functions of the complementary angles. But what is the origin of
the name sine?” It is a good question. The following answer is that of
Cantor, Fink, and Cajori; but Cantor deems it doubtful.

The Greeks used the entire chord of double the arc. The Hindus,
though employing half the chord of double the arc (what we call sine
in a unit circle), used for it their former name for the entire chord, jîva,
which meant literally “bow-string,” a natural designation for chord.
Their work came to us through the Arabs, who transliterated the San-
skrit jîva into Arabic dschiba. Arabic being usually written in “un-
pointed text” (without vowels) like a modern stenographer’s notes,
dschiba having no meaning in Arabic, and the Arabic word dschaib
having the same consonants, it was easy for the latter to take the place
of the former. But dschaib means “bosom.” Al Battani, the foremost
astronomer of the ninth century, wrote a book on the motion of the
heavenly bodies. In the twelfth century this was translated into Latin
by Plato Tiburtinus, who rendered the Arabic word by the Latin sinus
(bosom). And sinus, Anglicized, is “sine.”
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GROWTH OF THE PHILOSOPHY OF THE CALCULUS.

The latter half of the seventeenth century produced that powerful
instrument of mathematical research, the differential calculus.∗ The
master minds that invented it, Newton and Leibnitz, failed to clear the
subject of philosophical difficulties.

Newton’s reasoning is based on this initial theorem in the Prin-
cipia: “Quantities, and the ratios of quantities, that during any finite
time constantly approach each other, and before the end of that time
approach nearer than any given difference, are ultimately equal.” It is
not surprising that neither this statement nor its demonstration gave
universal satisfaction. The “zeros” whose ratio was considered in the
method of fluxions were characterized by the astute Bishop Berkeley as
“ghosts of departed quantities.”

Leibnitz based his calculus on the principle that one may substi-
tute for any magnitude another which differs from it only by a quantity
infinitely small. This is assumed as “a sort of axiom.” Pressed for an ex-
planation, he said that, in comparison with finite quantities, he treated
infinitely small quantities as incomparables, negligible “like grains of
sand in comparison with the sea.” This, if consistently held, should
have made the calculus a mere method of approximation.

According to the explanations of both, strictly applied, the calcu-
∗Newton and Leibnitz invented it in the sense that they brought it to compara-

tive perfection as an instrument of research. Like most epoch-making discoveries it
had been foreshadowed. Cavalieri, Kepler, Fermat and many others had been work-
ing toward it. One must go a long way back into the history of mathematics to find
a time when there was no suggestion of it. As this note is penned the newspapers
bring a report that Mr. Hiberg, a Danish scientist, says he has recently discov-
ered in a palimpsest in Constantinople, a hitherto unknown work on mathematics
by Archimedes. “The manuscript, which is entitled ‘On Method,’ is dedicated to
Eratosthenes, and relates to the applying of mechanics to the solution of certain
problems in geometry. There is in this ancient Greek manuscript a method that
bears a strong resemblance to the integral calculus of modern days, and is capable
of being used for the solution of problems reserved for the genius of Leibnitz and
Newton eighteen centuries later.” (N. Y. Tribune.)
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lus should have produced results that were close approximations. But
instead, its results were absolutely accurate. Berkeley first, and after-
ward L. N. M. Carnot, pointed out that this was due to compensation
of errors. This phase of the subject is perhaps nowhere treated in a
more piquant style than in Bledsoe’s Philosophy of Mathematics.

The method of limits permits a rigor of demonstration not possible
to the pure infinitesimalists. Logically the methods of the latter are to
be regarded as abridgments. As treated by the best writers the calculus
is to-day on a sound philosophical basis. It is admirable for its logic as
well as for its marvelous efficiency.

But many writers are so dominated by the thinking of the past
that they still use the symbol 0 to mean sometimes “an infinitely small
quantity” and sometimes absolute zero. Clearer thinking impels to the
use of ι (iota) or i or some other symbol to mean an infinitesimal,
denoting by 0 only zero.

This distinction implies that between their reciprocals. The sym-
bol ∞, first used for an infinite by Wallis in the seventeenth century,
has long been used both for a variable increasing without limit and for
absolute infinity. The revised edition of Taylor’s Calculus (Ginn 1898)
introduced a new symbol oϕ, a contraction of a/0, for absolute infinity,
using∞ only for an infinite (the reciprocal of an infinitesimal). It is to
be hoped that this usage will become universal.

In the book just referred to is perhaps the clearest and most concise
statement to be found anywhere of the inverse problems of the differen-
tial calculus and the integral calculus, as well as of the three methods
used in the calculus.



SOME ILLUSTRATIONS OF LIMITS.

Physical illustrations of variables are numerous. But to find a simi-
lar case of a constant, is not easy. The long history of the determination
of standards (yard, meter etc.) is the history of a search for physical
constants. Constants are the result of abstraction or are limited by
definition. Non-physical constants are numerous, and enter into most
problems.

If one person is just a year older than another, the ratio of the age of

the younger to that of the older, at successive birthdays, is
0

1
,

1

2
,

2

3
,

3

4
,

4

5
. . .

49

50
,

50

51
. . . . In general: the ratio of the ages of any two persons

is a variable approaching unity as limit. The sum of of their ages is a
variable increasing without limit. The difference between their ages is
a constant.

Fig. 30.

When pupils have the idea of the time-honored point P which moves
half way from A to B the first second, half the remaining distance the
next second, etc., but have trouble with the product of a constant and
a variable, they have sometimes been helped by the following “optical
illustration”: Imagine yourself looking at Fig. 30 through a glass that
makes everything look twice as large as it appears to the naked eye.
AP still seems to approach AB as limit; that is, twice the “real” AP
is approaching twice the “real” AB as limit. Now suppose your glass
magnifies 3 times, n times. AP still approaches AB magnified the same
number of times. That is, if AP

.
= AB, then any constant × AP

.
=

that constant× AB.
Reverse the glass, making AP look one-nth part as large as at first.

It approaches one-nth of the “real” AB. Putting this in symbols, with
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x representing the variable, and c the constant,

lim
(x
c

)
=

limx

c
.

Or in words: The limit of the ratio of a variable to a constant is the
ratio of the limit of the variable to the constant.

Fig. 31.

Let x represent the broken line from A to C (Fig. 31), composed first
of 4 parts, then of 8, then of 16 (the last division shown in the figure)
then of 32, etc. The polygon bounded by x, AB and BC

.
= 4ABC.

What of the length of x? Most persons to whom this old figure is new
answer off-hand, “x .

= AC.” But a minute’s reflection shows that x is
constant and = AB + BC.



LAW OF COMMUTATION.

This law, emphasized for arithmetic in McLellan and Dewey’s Psy-
chology of Number, and explicitly employed in all algebras that give
attention to the logical side of the subject, is one whose importance is
often overlooked. So long as it is used implicitly and regarded as of uni-
versal application, its import is neglected. An antidote: to remember
that there are regions in which this law does not apply. E. g.:

In the “geometric multiplication” of rectangular vectors used in
quaternions, the commutative property of factors does not hold, but
a change in the cyclic order of factors reverses the sign of the product.

Even in elementary algebra or arithmetic, the commutative princi-
ple is not valid in the operation of involution. Professor Schubert, in
his Mathematical Essays and Recreations, has called attention to the
fact that this limitation—the impossibility of interchanging base and
exponent—renders useless any high operation of continued involution.
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EQUATIONS OF U.S. STANDARDS OF LENGTH AND MASS.

By order approved by the secretary of the treasury April 5, 1893,
the international prototype meter and kilogram are regarded as fun-
damental standards, the yard, pound etc. being defined in terms of
them.

All of the nations taking part in the convention have very accu-
rate copies of the international standards. The degree of accuracy of
the comparisons may be seen from the equations expressing the rela-
tion of meter no. 27 and kilogram no. 20, of the United States, to the
international prototypes. T represents the number of degrees of the
centigrade scale of the hydrogen thermometer. The last term in each
equation shows the range of error.

M no. 27 = 1m− 1.6µ+ 8.657µT + 0.00100µT2 ± 0.2µ

K no. 20 = 1 kg− 0.039mg± 0.002mg.

(U.S. coast and geodetic survey.)
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THE MATHEMATICAL TREATMENT OF STATISTICS.

This is one of the most important and interesting applications of
mathematics to the needs of modern civilization. Just as data gathered
by an incompetent observer are worthless—or by a biased observer,
unless the bias can be measured and eliminated from the result—so
also conclusions obtained from even the best data by one unacquainted
with the principles of statistics must be of doubtful value.

The laws of statistics are applications of mathematical formulas,
especially of permutations, combinations and probability. Take for il-
lustration two simple laws (the mathematical derivation of them would
not be so simple):

1. Suppose a number of measurements have been made. If the
measures be laid off as abscissas, and the number of times each measure
occurs be represented graphically as the corresponding ordinate, the
line drawn through the points thus plotted is called the distribution
curve for these measures. The area between this line and the axis of x
is the surface of frequency.

If a quantity one is measuring is due to chance combinations of an
infinite number of causes, equal in amount and independent, and all
equally likely to occur, the surface of frequency is of the form shown in
Fig. 32, the equation of the curve being y = e−x

2 .
Most effects that are measured are not due to such combinations of

causes, and their distribution curves are more or less irregular; but un-
der favorable conditions they frequently approximate this, which may
be called the normal, “the normal probability integral.” In these cases
the tables that have been computed for this surface are of great assis-
tance.

2. Every one knows that, other things being equal, the greater the
number of measurements made, the greater the probability of their av-
erage (or other mean) being the true one. It is shown mathematically
that the probability varies as the square root of the number of mea-
sures. E. g., if in one investigation 64 cases were measured, and in
another 25 cases, the returns from the first investigation will be more
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Fig. 32.

trustworthy than those from the second in the ratio of 8 to 5.
It is also apparent that, if the average deviation (or other measure of

variability) of the measures from their average in one set is greater than
in another, the average is less trustworthy in that set in which the vari-
ability is the greater. Expressed mathematically, the trustworthiness
varies inversely as the variability. E. g., in one investigation the aver-
age deviation of the measures from their average is 2 (2 cm, 2 grams,
or whatever the unit may be) while in another investigation (involving
the same number of measures etc.) the average deviation is 2.5. Then
the probable approach to accuracy of the average obtained in the first
investigation is to that of the average obtained in the second as 1/2 is
to 1/2.5, or as 5 to 4.

If the two investigations differed both in the number of measures
and in the deviation from the average, both would enter as factors in
determining the relative confidence to be reposed in the two results.
E. g., combine the examples in the two preceding paragraphs: An aver-
age was obtained from 64 measures whose variability was 2, and another
from 25 measures whose variability was 2.5. Then

trustworthiness
of first average

}
:

trustworthiness
of second average

}
=
√

64× 1

2
:
√

25× 1

2.5
= 2 : 1.

The trustworthiness of the mean of a number of measures varies directly
as the square root of the number of measures and inversely as their
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variability.
The foregoing principles—the A B C of statistical science—show

some of its method and its value and the direction in which it is work-
ing. Perhaps the most readable treatise on the subject is Professor
Edward L. Thorndike’s Introduction to the Theory of Mental and So-
cial Measurements. It presupposes only an elementary knowledge of
mathematics and contains references to more technical works on the
subject.

Professor W. S. Hall, in “Evaluation of Anthropometric Data” (Jour.
Am. Med. Assn., Chicago, 1901) showed that the curve of distribu-
tion of biologic data is the curve of the coefficients in the expansion of
an algebraic binomial. In a most interesting article, “A Guide to the
Equitable Grading of Students,” in School Science and Mathematics
for June, 1906, he applies this principle to the distribution of student
records in a class.

In the expansion of (a+b)5 there are 6 terms, and the coefficients are
1, 5, 10, 10, 5, 1. Their sum is 32. If 320 students do their work and are
tested and graded under normal (though perhaps unusual) conditions,
and 6 different marks are used—say A, B, C, D, E, F—the number of
pupils attaining each of these standings should approximate 10, 50, 100,
100, 50, 10, respectively. If 3200 students were rated in 6 groups under
similar conditions, the numbers in the groups would be ten times as
great—100, 500, 1000 etc., and the approximation would be relatively
closer than when only 320 were tested. The study of the conditions that
cause deviation from this normal distribution of standings is instructive
both statistically and pedagogically.

A rough-and-ready statistical method, available in certain cases,
may be illustrated as follows: Suppose we are engaged in ascertain-
ing the number of words in the vocabulary of normal-school juniors.
(Such an investigation is now in progress under the direction of Dr.
Margaret K. Smith, of the normal faculty at New Paltz.) Let us select
at random a page of the dictionary—say the 13th—and by appropri-
ate tests ascertain the number of words on this page that the pupil
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knows, divide this number by the number of words on the page, and
thus obtain a convenient expression for the part of the words known.
Suppose the quotient to be .3016. Turn to page 113 and make similar
tests, and divide the number known on both pages by the number of
words on both pages, giving—say—.2391. After trying page 213 the
result is found for three pages. In each case the decimal represents the
total result reached thus far in the experiment. Suppose the successive
decimals to be

.3016

.2391

.2742

.2688

.2562

.2610

.2628

.2631

.2642

.2638

A few decimals thus obtained may convince the experimenter that the
first figure has “become constant.” Many more may be necessary to
determine the second figure unless the “series converges” rapidly as
above. If the first two figures be found to be 26, this student knows
26% of the words in the dictionary. Multiplying the “dictionary total”
by this coefficient, gives the extent of the student’s vocabulary, correct
to 1% of the dictionary total. If a higher degree of accuracy had been
required, a three-place coefficient would have been determined.

This method has the practical advantage that the coefficient found
at each step furnishes, by comparison with the coefficients previously
obtained, an indication of the degree of accuracy that will be attained
by its use. The labor of division may be diminished by using, on each
page, only the first 20 words (or other multiple of 10). Similarly with
each student to be examined. The method here described is applicable
to certain classes of measures.



MATHEMATICAL SYMBOLS.

The origin of most of the symbols in common use may be learned
from any history of mathematics. The noteworthy thing is their re-
centness. Of our symbols of operation the oldest are + and −, which
appear in Widmann’s arithmetic (Leipsic, 1489).

Consider the situation in respect to symbols at the middle of the
sixteenth century. The radical sign had been used by Rudolff, ( ), ×,
÷, >, and < were still many years in the future, = had not yet ap-
peared (though another symbol for the same had been used slightly)
and + and − were not in general use. Almost everything was expressed
by words or by mere abbreviations. Yet at that time both cubic and
biquadratic equations had been solved and the methods published. It is
astonishing that men with the intellectual acumen necessary to invent
a solution of equations of the third or fourth degree should not have hit
upon a device so simple as symbols of operation for the abridgment of
their work.

The inconvenience of the lack of symbols may be easily tested by
writing—say—a quadratic equation and solving it without any of the
ordinary symbols of algebra.

Even after the introduction of symbols began, the process was slow.
But recently it has moved with accelerating velocity, until now not
only do we have a symbol for each operation—sometimes a choice of
symbols—but most of the letters of the alphabet are engaged for special
mathematical uses. E. g.:

a finite quantity, known number, side of triangle opposite A, inter-
cept on axis of x, altitude . . .

b known number, side of triangle opposite B, base, intercept on axis
of y . . .

c constant . . .

d differential, distance . . .
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e base of Napierian logarithms.

A considerable inroad has been made on the Greek alphabet, e. g.:

γ inclination to axis of x.

π 3.14159. . .

Σ sum of terms similarly obtained.

σ standard deviation (in theory of measurements).

But the supply of alphabets is by no means exhausted. There is no
cause for alarm.



BEGINNINGS OF MATHEMATICS ON THE NILE.

Whatever the excavations in Babylonia and Assyria may ultimately
reveal as to the state of mathematical learning in those early civiliza-
tions, it is established that in Egypt the knowledge of certain mathe-
matical facts and processes was so ancient as to have left no record of
its origin.

The truth of the Pythagorean theorem for the special case of the
isosceles right triangle may have been widely known among people using
tile floors (see Beman and Smith’s New Plane Geometry, p. 103). That
3, 4, and 5 are the sides of a right triangle was known and used by the
builders of the pyramids and temples. The Ahmes papyrus (1700 B. C.
and based on a work of perhaps 3000 B. C. or earlier) contains many
arithmetical problems, a table of unit-fractions, etc., and the solution of
simple equations, in which hau (heap) represents the unknown. Though
one may feel sure that arithmetic must be the oldest member of the
mathematical family, still the beginnings of arithmetic, algebra and
geometry are all prehistoric. When the curtain raises on the drama of
human history, we see men computing, solving linear equations, and
using a simple case of the Pythagorean proposition.

140



A FEW SURPRISING FACTS IN THE HISTORY OF
MATHEMATICS.

That spherical trigonometry was developed earlier than plane
trigonometry (explained by the fact that the former was used in
astronomy).

That the solution of equations of the third and fourth degree pre-
ceded the use of most of the symbols of operation, even of =.

That decimals—so simple and convenient—should not have been
invented till after so much “had been attempted in physical research
and numbers had been so deeply pondered” (Mark Napier).

That logarithms were invented before exponents were used; the
derivation of logarithms from exponents—now always used in teach-
ing logarithms—being first pointed out by Euler more than a century
later.

That the earliest systems of logarithms (Napier’s, Speidell’s), con-
structed for the sole object of facilitating computation, should have
missed that mark (leaving it for Briggs, Gellibrand, Vlacq, Gunter and
others) but should have attained theoretical importance, lending them-
selves to the purposes of modern analytical methods (Cajori).
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QUOTATIONS ON MATHEMATICS.

Following are some of the quotations that have been used at different
times in the decoration of a frieze above the blackboard in the writer’s
recitation room:

Let no one who is unacquainted with geometry leave here. (This
near the door and on the inside—an adaptation of the motto that Plato
is said to have had over the outside of the entrance to his school of phi-
losophy, the Academy: “Let no one who is unacquainted with geometry
enter here.”)

God geometrizes continually. Plato.
There is no royal road to geometry. Euclid.
Mathematics, the queen of the sciences. Gauss.
Mathematics is the glory of the human mind. Leibnitz.
Mathematics is the most marvelous instrument created by the ge-

nius of man for the discovery of truth. Laisant.
Mathematics is the indispensable instrument of all physical research.

Berthelot.
All my physics is nothing else than geometry. Descartes.
There is nothing so prolific in utilities as abstractions. Faraday.
The two eyes of exact science are mathematics and logic. De Mor-

gan.
All scientific education which does not commence with mathematics

is, of necessity, defective at its foundation. Compte.
It is in mathematics we ought to learn the general method always

followed by the human mind in its positive researches. Compte.
A natural science is a science only in so far as it is mathematical.

Kant.
The progress, the improvement of mathematics are linked to the

prosperity of the state. Napoleon.
If the Greeks had not cultivated conic sections, Kepler could not

have superseded Ptolemy. Whewell.
No subject loses more than mathematics by any attempt to disso-

ciate it from its history. Glaisher.
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AUTOGRAPHS OF MATHEMATICIANS.

For the photograph from which this cut (Fig. 33) was made the
writer is indebted to Prof. David Eugene Smith. As an explorer in the
bypaths of mathematical history and a collector of interesting speci-
mens therefrom, Dr. Smith is, perhaps, without a peer.∗

The reader will be interested to see a facsimile of the handwriting
of Euler and Johann Bernoulli, Lagrange and Laplace and Legendre,
Clifford and Dodgson, and William Rowan Hamilton, and others of the
immortals, grouped together on one page. In the upper right corner is
the autograph of Moritz Cantor, the historian of mathematics. On the
sheet overlapping that, the name over the verses is faint; it is that of
J. J. Sylvester, late professor in Johns Hopkins University.

One who tries to decipher some of these documents may feel that
he is indeed “In the Mazes of Mathematics.”† Mathematicians are not
as a class noted for the elegance or the legibility of their chirography,
and these examples are not submitted as models of penmanship. But
each bears the sign manual of one of the builders of the proud structure
of modern mathematics.

∗Several handsome sets of portraits of mathematicians, edited by Dr. Smith,
are published by The Open Court Publishing Company.

†This section first printed in a series bearing that title, in The Open Court,
March–July, 1907.
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Fig. 33.



BRIDGES AND ISLES, FIGURE TRACING, UNICURSAL
SIGNATURES, LABYRINTHS.

This section presents a few of the more elementary results of the
application of mathematical methods to these interesting puzzle ques-
tions.∗

Fig. 34.

The city of Königsberg is near the mouth of the Pregel river, which
has at that point an island called Kneiphof. The situation of the seven
bridges is shown in Fig. 34. A discussion arose as to whether it is
possible to cross all the bridges in a single promenade without crossing
any bridge a second time. Euler’s famous memoir was presented to

∗For more extended discussion, and for proofs of the theorems here stated,
see Euler’s Solutio Problematis ad Geometriam Situs Pertinentis, Listing’s Vorstu-
dien sur Topologie, Ball’s Mathematical Recreations and Essays, Lucas’s Récréations
Mathématiques, and the references given in notes by the last two writers named.
To these two the present writer is especially indebted.
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the Academy of Sciences of St. Petersburg in 1736 in answer to this
question. Rather, the Königsberg problem furnished him the occasion
to solve the general problem of any number and combination of isles
and bridges.

Conceive the isles to shrink to points, and the problem may be
stated more conveniently with reference to a diagram as the problem
of tracing a given figure without removing the pencil from the paper

Fig. 35.

and without retracing any part; or, if not possible to do so with one
stroke, to determine how many such strokes are necessary. Fig. 35 is a
diagrammatic representation of Fig. 34, the isle Kneiphof being at the
point K.

The number of lines proceeding from any point of a figure may be
called the order of that point. Every point will therefore be of either an
even order or an odd order. E. g., as there are 3 lines from point A of
Fig. 36, the order of the point is odd; the order of point E is even. The
well-known conclusions reached by Euler may now be stated as follows:

In a closed figure (one with no free point or “loose end”) the number
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Fig. 36.

Fig. 37. Fig. 38.

of points of odd order is even, whether the figure is unicursal or not.
E. g., Fig. 36, a multicursal closed figure, has four points of odd order.

A figure of which every point is of even order can be traced by one
stroke starting from any point of the figure. E. g., Fig. 37, the magic
pentagon, symbol of the Pythagorean school, and Fig. 38, a “magic
hexagram commonly called the shield of David and frequently used on
synagogues” (Carus), have no points of odd order; each is therefore
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unicursal.
A figure with only two points of odd order can be traced by one

stroke by starting at one of those points. E. g., Fig. 39 (taken originally
from Listing’s Topologie) has but two points of odd order, A and Z;
it may therefore be traced by one stroke beginning at either of these
two points and ending at the other. One may make a game of it by

Fig. 39.

drawing a figure, as Lucas suggests, like Fig. 39, but in larger scale
on cardboard, placing a small counter on the middle of each line that
joins two neighboring points, and setting the problem to determine the
course to follow in removing all the counters successively (simply tracing
continuously and removing each counter as it is passed, an objective
method of recording which lines have been traced).

A figure with more than two points of odd order is multicursal. E. g.,
Fig. 40 has more than two points of odd order and requires more than
one course, or stroke, to traverse it.

The last two theorems just stated are special cases of Listing’s:
Let 2n represent the number of points of odd order; then n strokes

are necessary and sufficient to trace the figure. E. g., Fig. 39 with
2 points of odd order, requires one stroke; Fig. 40, representing a frag-
ment of masonry, has 8 points of odd order and requires four strokes.

Return now to the Königsberg problem of Fig. 34. By reference to
the diagram in Fig. 35 it is seen that there are four points of odd order.
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Fig. 40.

Hence it is not possible to cross every bridge once and but once without
taking two strolls.

An interesting application of these theorems is the consideration of
the number of strokes necessary to describe an n-gon and its diagonals.
As the points of intersection of the diagonals are all of even order, we
need to consider only the vertexes. Since from each vertex there is a
line to every other vertex, the number of lines from each vertex is n−1.
Hence, if n is odd, every point is of even order, and the entire figure can
be traced unicursally beginning at any point; e. g., Fig. 41, a pentagon

Fig. 41.

with its diagonals. If n is even, n − 1 is odd, every vertex is of odd
order, the number of points of odd order is n, and the figure can not be
described in less than n/2 courses; e.g., Fig. 36, quadrilateral, requires
two strokes.
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Unicursal signatures. A signature (or other writing) is of course
subject to the same laws as are other figures with respect to the number
of times the pen must be put to the paper. Since the terminal point
could have been connected with the point of starting without lifting
the pen, the signature may be counted as a closed figure if it has no
free end but these two. The number of points of odd order will be
found to be even. The dot over an i, the cross of a t, or any other

Fig. 42. Fig. 43.

mark leaving a free point, makes the signature multicursal. There are
so many names not requiring separate strokes that one would expect
more unicursal signatures than are actually found. De Morgan’s (as
shown in the cut in the preceding section) is one; but most of the
signatures there shown were made with several strokes each. Of the
signatures to the Declaration of Independence there is not one that is
strictly unicursal; though that of Th Jefferson looks as if the end of
the h and the beginning of the J might often have been completely
joined, and in that case his signature would have been written in a
single course of the pen.

Fig. 42, formed of two crescents, is “the so-called sign manual of
Mohammed, said to have been originally traced in the sand by the
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point of his scimetar without taking the scimetar off the ground or
retracing any part of the figure,” which can easily be done beginning at
any point of the figure, as it contains no point of odd order. The mother
of the writer suggests that, if the horns of Mohammed’s crescents be

Fig. 44.

omitted, a figure (Fig. 43) is left which can not be traced unicursally.
There are then four points of odd order; hence two strokes are requisite
to describe the figure.

Labyrinths such as the very simple one shown in Fig. 44 (published
in 1706 by London and Wise) are familiar, as drawings, to every one.
In some of the more complicated mazes it is not so easy to thread one’s
way, even in the drawing, where the entire maze is in sight, while in the
actual labyrinth, where walls or hedges conceal everything but the path
one is taking at the moment, the difficulty is greatly increased and one
needs a rule of procedure.
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The mathematical principles involved are the same as for tracing
other figures; but in their application several differences are to be no-
ticed in the conditions of the two problems. A labyrinth, as it stands,
is not a closed figure; for the entrance and the center are free ends,
as are also the ends of any blind alleys that the maze may contain.
These are therefore points of odd order. There are usually other points
of odd order. Hence in a single trip the maze can not be completely
traversed. But it is not required to do so. The problem here is, to go
from the entrance to the center, the shorter the route found the better.
Moreover, the rules of the game do not forbid retracing one’s course.

It is readily seen (as first suggested by Euler) that by going over
each line twice the maze becomes a closed figure, terminating where it
begins, at the entrance, including the center as one point in the course,
and containing only points of even order. Hence every labyrinth can
be completely traversed by going over every path twice—once in each
direction. It is only necessary to have some means of marking the
routes already taken (and their direction) to avoid the possibility of
losing one’s way. This duplication of the entire course permits no failure
and is so general a method that one does not need to know anything
about the particular labyrinth in order to traverse it successfully and
confidently. But if a plan of the labyrinth can be had, a course may be
found that is shorter.

Theseus, as he threaded the Cretan labyrinth in quest of the Mino-
taur, would have regarded Euler’s mathematical theory of mazes as
much less romantic than the silken cord with Ariadne at the outer end;
but there are occasions where a modern finds it necessary to “go by the
book.” Doubtless the labyrinth of Daedalus was “a mighty maze, but
not without a plan.”

Fig. 45 presents one of the most famous labyrinths, though by no
means among the most puzzling. It is described in the Encyclopædia
Britannica (article “Labyrinth”) as follows:

“The maze in the gardens at Hampton Court Palace is considered
to be one of the finest examples in England. It was planted in the early
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Fig. 45.

part of the reign of William III, though it has been supposed that a maze
had existed there since the time of Henry VIII. It is constructed on the
hedge and alley system, and was, we believe, originally planted with
hornbeam, but many of the plants have died out, and been replaced by
hollies, yews, etc., so that the vegetation is mixed. The walks are about
half a mile in length, and the extent of ground occupied is a little over
a quarter of an acre. The center contains two large trees, with a seat
beneath each. The key to reach this resting place is to keep the right
hand continuously in contact with the hedge from first to last, going
round all the stops.”



THE NUMBER OF THE BEAST.

“Here is wisdom. He that hath understanding, let him count the
number of the beast; for it is the number of a man: and his number
is Six hundred and sixty and six.” (Margin, “Some ancient authorities
read Six hundred and sixteen.”) Revelation 13:18.

No wonder that these words have been a powerful incentive to a
class of interpreters who delight in apocalyptic literature, especially to
such as have a Pythagorean regard for hidden meaning in numbers.

There were centuries in which no satisfactory interpretation was
generally known. At about the same time, in 1835, Benary, Fritzsche,
Hitzig and Reuss connected the number 666 with “Emperor (Cæsar)
Neron,” [Hebrew]. In the number notation of the Hebrews the letter
[Hebrew] = 100, [Hebrew] = 60, [Hebrew] = 200, [Hebrew] = 50,
[Hebrew] = 200, [Hebrew] = 6, [Hebrew] = 50. These numbers added
give 666. Omitting the final letter from the name (making it “Em-
peror Nero”) the number represented is 616, the marginal reading. The
present writer’s casual opinion is that the foregoing is the meaning
intended in the passage; and that after the fear of Nero passed, the
knowledge of the meaning of the number gradually faded, and had
to be rediscovered long afterward. It is, however, strange, that only
about a century after the writing of the Apocalypse the connection of
the number with Nero was apparently unknown to Irenæus. He made
several conjectures of words to fit the number.

In the later Middle Ages and afterward, the number was made to fit
heresies and individual heretics. Protestants in turn found that a little
ingenuity could discover a similar correspondence between the number
and symbols for the papacy or names of popes. So the exchange of these
expressions of regard continued. When the name is taken in Greek, the
number is expressed in Greek numerals, where every letter is a numeral;
but when Latin is used, only M, D, C, L, X, V, and I have numerical
values.

V I C A R I V S F I L I I D E I
5 +1+100 +1 +5 +1 +50 +1 +1+500 +1 = 666.
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This and a similar derivation from Luther’s name are perhaps the most
famous of these performances.

De Morgan cites a book by Rev. David Thom,∗ from which he quotes
names, significant mottoes etc. that have been shown to spell out the
number 666. He gives 18 such from the Latin and 38 from the Greek
and omits those from the Hebrew. Some of these were made in jest,
but many in grim earnest. He also gives a few from other sources than
the book mentioned.

The number of such interpretations is so great as to destroy the
claim of any. “We can not infer much from the fact that the key fits
the lock, if it is a lock in which almost any key will turn.” A certain
interest still attaches to all such cabalistic hermeneutics, and they are
not without their lesson to us, but it is not the lesson intended by
the interpreter. When it comes to the use of such interpretations by
one branch of the Church against another, one would prefer as less
irreverent the suggestion of De Morgan, that the true explanation of
the three sixes is that the interpreters are “six of one and half a dozen
of the other.”

∗The Number and Names of the Apocalyptic Beasts, part 1, 8vo, 1848. See
De Morgan’s Budget of Paradoxes, p. 402–3.



MAGIC SQUARES.

“A magic square is one divided into any number of equal squares, like
a chess-board, in each of which is placed one of a series of consecutive
numbers from 1 up to the square of the number of cells in a side, in
such a manner that the sum of those in the same row or column and
in each of the two diagonals is constant.” (Encyclopædia Britannica.)

The term is often extended to include an assemblage of numbers
not consecutive but meeting all other requirements of this definition. If
every number in a magic square be multiplied by any number, q, integral
or fractional, arithmetical, real or imaginary, such an assemblage is
formed, and by the distributive law of multiplication its sums are each
q times those in the original square.

Fig. 46.

One way (De la Loubère’s) of constructing any odd-number square
is as follows:

1. In assigning the consecutive numbers, proceed in an oblique
direction up and to the right (see 4, 5, 6 in Fig. 46).

2. When this would carry a number out of the square, write that
number in the cell at the opposite end of the column or row, as shown
in case of the canceled figures in the margin of Fig. 46.
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3. When the application of rule 1 would place a number in a cell
already occupied, write the new number, instead, in the cell beneath
the one last filled. (The cell above and to the right of 3 being occupied,
4 is written beneath 3.)

4. Treat the marginal square marked x as an occupied cell, and
apply rule 3.

5. Begin by putting 1 in the top cell of the middle column.
This rule will fill any square having an odd number of cells in each

row and column.
The investigation of some of the properties of the simple squares

just described is an interesting diversion. For example, after the 5-
square and 7-square have been constructed and one is familiar with the
rule, he may set himself the problem to find a formula for the sum of
the numbers in each row, column or diagonal of any square. Noticing
that the diagonal from lower left corner to upper right is composed of
consecutive numbers, it will be easy to write the formula for the sum
of that series (the required sum) if we can find the formula for the
number in the lower left corner. Since the number of cells in each row
or column of the squares we are considering is odd, we represent that
number by the general formula for an odd number, 2n+ 1. Our square,
then, is a (2n + 1)-square. If n be taken = 1, we have a 3-square; if
n = 2, a 5-square; etc. Now it is seen by inspection that the number
in the lower left cell is n(2n + 1) + 1, the succeeding numbers in the
diagonal being n(2n + 1) + 2, n(2n + 1) + 3, etc. Summing this series
to 2n+ 1 terms, we have the required formula, (2n+ 1)(2n2 + 2n+ 1).
This might be tabulated as follows (including 1 as the limiting case of
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a magic square):

ARBITRARY
VALUES
OF n (SUC-
CESSIVE
INTEGERS)

NO. OF CELLS
IN EACH
ROW OR
COLUMN
(SUCCES-
SIVE ODD
NUMBERS)

THE NUMBER IN
THE LOWER
LEFT CORNER

SUM OF THE NUMBERS IN
ANY ROW, COLUMN OR
DIAGONAL

n 2n+ 1 n(2n+ 1) + 1 (2n+ 1)(2n2 + 2n+ 1)
0 1 1 1
1 3 4 15
2 5 11 65
3 7 22 175
4 9 37 369
5 11 56 671

etc. etc.

Following is the 11-square; sum, 671:

68 81 94 107 120 1 14 27 40 53 66
80 93 106 119 11 13 26 39 52 65 67
92 105 118 10 12 25 38 51 64 77 79

104 117 9 22 24 37 50 63 76 78 91
116 8 21 23 36 49 62 75 88 90 103

7 20 33 35 48 61 74 87 89 102 115
19 32 34 47 60 73 86 99 101 114 6
31 44 46 59 72 85 98 100 113 5 18
43 45 58 71 84 97 110 112 4 17 30
55 57 70 83 96 109 111 3 16 29 42
56 69 82 95 108 121 2 15 28 41 54

There are also “geometrical magic squares,” in which the product
of the numbers in every row, column and diagonal is the same. If
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a number be selected as base and the numbers in an ordinary magic
square be used as exponents by which to affect it, the resulting powers
form a geometric square (by the first law of exponents). E. g., Take
2 as base and the numbers in the square (Fig. 46) as exponents. The
resulting geometrical magic square (Fig. 47) has 215 for the product of
the numbers in each line.

Fig. 47.

The theory of magic squares in general, including even-number
squares, squares with additional properties, etc., and including the ex-
tension of the idea to cubes, is given in the article “Magic Squares” in
the Encyclopædia Britannica, together with some account of their his-
tory. See also Ball’s Recreations ; Lucas’s Récréations, vol. 4, Cinquième
Récréation, “Les Carrés magiques de Fermat”; and the comprehensive
article, “A Mathematical Study of Magic Squares,” by L. S. Frierson,
in The Monist for April, 1907, p. 272–293.

The oldest manuscript on magic squares still preserved dates from
the fourth or fifth century. It is by a Greek named Moscopulus. Magic
squares engraved on metal or stone are said to be worn as talismans in
some parts of India to this day. (Britannica.)

Among the most prominent of the modern philosophers who
have amused themselves by perfecting the theory of magic squares is



A SCRAP-BOOK OF ELEMENTARY MATHEMATICS. 160

Franklin, “the model of practical wisdom.”

Domino magic squares. A pleasing diversion is the forming of magic
squares with dominoes. This phase of the subject has been set forth
by several writers; among them Ball,∗ who also mentions coin magic
squares. The following are by Mr. Escott, who remarks: “I do not know

Fig. 48. Fig. 49.

how many solutions there are. I give five [of which two are reproduced
here], which I found after a few trials. In each of these magic squares
the sum is the greatest possible, 19. If we subtract every number from 6,
we get magic squares where the sum is the least possible, 5.”

Magic hexagons.† Sum of any side of triangle = sum of vertexes of
either triangle = sum of vertexes of convex hexagon = sum of vertexes
of any parallelogram = 26. “There are only six solutions, of which this
is one.” (Fig. 50.)

Place the numbers 1 to 19 on the sides of the equilateral triangles
so that the sum on every side is the same.

∗Recreations, p. 165–6.
†From Mr. Escott, who says: “The first appeared in Knowledge, in 1895, and

the second is due to Mr. S. Lloyd.”
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Fig. 50.

Fig. 51. Fig. 52.

The sum on the sides of the triangles in Fig. 51 is 22. In Fig. 52
it is 23. If we subtract each of the above numbers from 20, we have
solutions where the sums are respectively 38 and 37.



THE SQUARE OF GOTHAM.

(From Teachers’ Note Book, by permission.)

The wise men of Gotham, famous for their eccentric blunders, once
undertook the management of a school; they arranged their establish-
ment in the form of a square divided into 9 rooms. The playground
occupied the center, and 24 scholars the rooms around it, 3 being in
each. In spite of the strictness of discipline, it was suspected that the
boys were in the habit of playing truant, and it was determined to set

Fig. 53. Fig. 54.

a strict watch. To assure themselves that all the boys were on the
premises, they visited the rooms, and found 3 in each, or 9 in a row.
Four boys then went out, and the wise men soon after visited the rooms,
and finding 9 in each row, thought all was right. The four boys then
came back, accompanied by four strangers; and the Gothamites, on
their third round, finding still 9 in each row, entertained no suspicion
of what had taken place. Then 4 more “chums” were admitted, but the
wise men, on examining the establishment a fourth time, still found
9 in each row, and so came to an opinion that their previous suspicions
had been unfounded.

Figures 53–56 show how all this was possible, as they represent
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Fig. 55. Fig. 56.

the contents of each room at the four different visits; Fig. 53, at the
commencement of the watch; Fig. 54, when four had gone out; Fig. 55,
when the four, accompanied by another four had returned; and Fig. 56,
when four more had joined them.



A MATHEMATICAL GAME-PUZZLE.

“Place 15 checkers on the table. You are to draw (take away either
1, 2, or 3); then your opponent is to draw (take 1, 2, or 3 at his option);
then you draw again; then your opponent. You are to force him to take
the last one.”

Solution: When your opponent makes his last draw, there must be
just one checker left for him to take. Since at every draw you are limited
to removing either 1, 2, or 3, you can, by your last draw, leave just 1
if, and only if, you find on the board before that draw either 2, 3, or 4.
You must, therefore, after your next to the last draw, leave the board
so that he can not but leave, after his next to the last draw, either
2, 3, or 4. 5 is clearly the number that you must leave at that time;
since if he takes 1, he leaves 4; if 2, 3; if 3, 2. Similarly, after your next
preceding draw you must leave 9; after your next preceding, 13; that is,
you must first draw 2. Then after each draw that he makes, you draw
the difference between 4 and the number that he has just drawn, (if he
takes 1, you follow by taking 3; if he takes 2, you take 2; if he takes 3,
you take 1). Four being the sum of the smallest number and the largest
that may be drawn, you can always make the sum of two consecutive
draws (your opponent’s and yours) 4, and you can not always make it
any other number.

Following would be a more general problem: Let your opponent
place on the board any number of checkers leaving you to choose who
shall first draw (1, 2, or 3 as before). Required to leave the last checker
for him. Solution: If the number he places on the board is a number of
the form 4n+ 1, choose that he shall draw first. Then keep the number
left on the board in that form by making his draw + yours = 4, until
n = 0; that is, until there is but one left. If the number that he places
on the board is not of that form; draw first and reduce it to a number
that is of that form, and proceed as before.

The problem might be further generalized by varying the number
that may be taken at a draw.
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PUZZLE OF THE CAMELS.

There was once an Arab who had three sons. In his will he be-
queathed his property, consisting of camels, to his sons, the eldest son
to have one-half of them, the second son one-third, and the youngest
one-ninth. The Arab died leaving 17 camels, a number not divisible by
either 2, 3, or 9. As the camels could not be divided, a neighboring
sheik was called in consultation.

He loaned them a camel, so that they had 18 to divide.

The first son took 1
2
. . . . . . . . . . . . . . . . . . . . . . . . . 9

The second took 1
3

. . . . . . . . . . . . . . . . . . . . . . . . . . 6
The third took 1

9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

They had divided equitably, and were able to return the camel that
had been loaned to them.

It should be noted that 1
2

+ 1
3

+ 1
9

= 17
18
, not unity. The numbers

9, 6, 2 are in the same ratio as 1
2
, 1

3
, 1

9
.

This is probably an imitation of the old Roman inheritance problem
which may be found in Cajori’s History of Mathematics, p. 79–80, or
in his History of Elementary Mathematics, p. 41.
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A FEW MORE OLD-TIMERS.

A man had eight gallons of wine in a keg. He wanted to divide it
so as to get one-half. He had no measures but a three gallon keg, a
five gallon keg and a seven gallon keg. How did he divide it? (The five
gallon keg is unnecessary.)

Only one dimension on Wall street. Broker (determined to see the
bright side): “Every time I bought stocks for a rise, they went down;
and when sold them, they went up. Luckily they can’t go sidewise.”

The apple women. Two apple women had 30 apples each for sale.
If the first had sold hers at the rate of 2 for 1 cent, she would have
received 15 cents. If the other had sold hers at 3 for 1 cent, she would
have received 10 cents. Both would have had 25 cents. But they put
them all together and sold the 60 apples at 5 for 2 cents, thus getting
24 cents. What became of the other cent?

G. D. with same remainder. Given three (or more) integers, as
27, 48, 90; required to find their greatest integral divisor that will leave
the same remainder.

Solution: Subtract the smallest number from each of the others.
The G. C. D. of the differences is the required divisor. 48 − 27 = 21;
90 − 27 = 63; G. C. D. of 21 and 63 is 21. If the given numbers be
divided by 21, there is a remainder of 6 in each case.

“15 Christians and 15 Turks, being at sea in one and the same ship
in a terrible storm, and the pilot declaring a necessity of casting the
one half of those persons into the sea, that the rest might be saved;
they all agreed, that the persons to be cast away should be set out by
lot after this manner, viz., the 30 persons should be placed in a round
form like a ring, and then beginning to count at one of the passengers,
and proceeding circularly, every ninth person should be cast into the
sea, until of the 30 persons there remained only 15. The question is,
how those 30 persons should be placed, that the lot might infallibly fall
upon the 15 Turks and not upon any of the 15 Christians.”
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The early history of this problem is given by Professor Cajori in
his History of Elementary Mathematics, p. 221–2, who also quotes
mnemonic verses giving the solution: 4 Christians, then 5 Turks, then
2 Christians, etc.

The solution is really found by arranging 30 numbers or counters
in a ring, or in a row to be read in circular order. Count according to
the conditions of the problem, marking every ninth one “T” until 15 are
marked, then mark the remaining 15 “C.”

The same problem has appeared in other forms. Sometimes other
classes of persons take the places of the Christians and Turks, some-
times every tenth one is lost instead of every ninth.



A FEW CATCH QUESTIONS.

What number can be divided by every other number without a
remainder?

“Four-fourths exceeds three-fourths by what fractional part?” This
question will usually divide a company.

Can a fraction whose numerator is less than its denominator be
equal to a fraction whose numerator is greater than its denominator?
If not, how can

−3

+6
=

+5

−10
?

In the proportion
+6 : −3 :: −10 : +5

is not either extreme greater than either mean? What has become of
the old rule, “greater is to less as greater is to less”?

Where is the fallacy in the following?

1 mile square = 1 square mile
∴ 2 miles square = 2 square miles.

(Axiom: If equals be multiplied by equals, etc.)
Or in this (which is from Rebiere):

A glass 1
2
full of water = a glass 1

2
empty

∴ A glass full = a glass empty.

(Axiom: If equals be multiplied.)
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SEVEN-COUNTERS GAME.

Required to place seven counters on seven of the eight spots in
conformity to the following rule: To place a counter, one must set out
from a spot that is unoccupied and move along a straight line to the
spot where the counter is to be placed.

Fig. 57.

The writer remembers seeing this as a child when the game was
probably new. The solution is so easy that it offered no difficulty then.
A puzzle whose solution is seen by almost any one in a minute or two is
hardly worth a name, and one wonders to see it in Lucas’s Récréations
mathématiques and dignified by the title “The American Game of Seven
and Eight.” Lucas explains that the game, invented by Knowlton, of
Buffalo, N. Y., was published, in 1883, by an American journal offering
at first a prize to the person who should send, within a fixed time, the
solution expressed in the fewest words.

Lucas’s statement of the solution is, Take always for point of desti-
nation the preceding point of departure. Starting, for example, from the
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point 4, following the line 4–1, and placing a counter at 1; the spot 4
must be the second spot of arrival. As one can reach 4 only by the line
7–4, the spot 7 will necessarily be the second point of departure; etc.,
the seven moves being

4–1, 7–4, 2–7, 5–2, 8–5, 3–8, 6–3.

Lucas∗ generalizes the game somewhat and adds other amusements
with counters, less trivial than “the American game.”

∗Vol. 3, sixth recreation, from which the figure and description in the text are
taken.



TO DETERMINE DIRECTION BY A WATCH.

Those who are familiar with this very elementary operation usually
take it for granted that every one knows it. Inquiry made recently in
a class of normal school students revealed the fact that but few had
heard of it and not one could explain or state the method. The writer
has not infrequently known well informed persons to express surprise
and pleasure at hearing it.

With the face of the watch up, point the hour hand to the sun. Then
the point midway between the present hour mark and XII is toward the
south. E. g., at 4 o’clock, when the hour hand is held toward the sun,
II is toward the south.

Or the rule may be stated thus: With the point that is midway
between the present hour and XII held toward the sun, XII is toward
the south. E. g., at 4 o’clock hold II toward the sun; then the line from
the center of the face to the mark XII is the south line.

The reason is apparent. At 12 o’clock the sun, the hour hand and
the XII mark are all toward the south. The sun and the hour hand
revolve in the same direction, but the hour hand makes the complete
revolution in 12 hours, the sun in 24. Hence the rule.

The errors due to holding the watch horizontal instead of in the
plane of the ecliptic, and to the difference between standard time and
solar time, are negligible for the purpose to which this rule is usually
put.

Ball∗ mentions that the “rule is given by W. H. Richards, Military
Topography, London, 1883.” Being so simple and convenient, it was
probably known earlier.

Professor Ball also gives (p. 356) the rule for the southern hemi-
sphere: “If the watch is held so that the figure XII points to the sun,
then the direction which bisects the angle between the hour of the day
and the figure XII will point due north.”

∗Recreations, p. 355.
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MATHEMATICAL ADVICE TO A BUILDING COMMITTEE.

It will be remembered that the man who, under the pseudonym
Lewis Carroll, wrote Alice’s Adventures in Wonderland was really Rev.
Charles Lutwidge Dodgson, lecturer in mathematics at Oxford. To
a building committee about to erect a new school building he gave
some advice that added gaiety to the deliberations. Children who have
laughed at the Mock Turtle’s description of his school life in the sea,
as given to Alice, will recognize the same humor in these suggestions
to the building committee:

“It is often impossible for students to carry on accurate mathemat-
ical calculations in close contiguity to one another, owing to their mu-
tual interference and a tendency to general conversation. Consequently
these processes require different rooms in which irrepressible conversa-
tionists, who are found to occur in every branch of society, might be
carefully and permanently fixed.

“It may be sufficient for the present to enumerate the following req-
uisites; others might be added as the funds permitted:

“A. A very large room for calculating greatest common measure.
To this a small one might be attached for least common multiple; this,
however, might be dispensed with.

“B. A piece of open ground for keeping roots and practising their
extraction; it would be advisable to keep square roots by themselves,
as their corners are apt to damage others.

“C. A room for reducing fractions to their lowest terms. This should
be provided with a cellar for keeping the lowest terms when found.

“D. A large room, which might be darkened and fitted up with a
magic lantern for the purpose of exhibiting circulating decimals in the
act of circulation.

“E. A narrow strip of ground, railed off and carefully leveled, for
testing practically whether parallel lines meet or not; for this purpose
it should reach, to use the expressive language of Euclid, ‘ever so far.’ ”
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THE GOLDEN AGE OF MATHEMATICS.

“The eighteenth century was philosophic, the nineteenth scientific.”
Mathematics—itself “the queen of the sciences,” as Gauss phrased it—
is the necessary method of all exact investigation. Kepler exclaimed:
“The laws of nature are but the mathematical thoughts of God.” No
wonder, therefore, that the nineteenth century surpassed its predeces-
sors in extent and variety of mathematical invention and application.

One reads now of “the recent renaissance of mathematics.” Strictly,
there is no new birth or awakening of mathematics, for its productivity
has long been continuous. Being the index of scientific progress, it
must rise with the rise of civilization. That rise has been so rapid of
late that, speaking comparatively, one may be justified in characterizing
the present great mathematical activity as a renaissance.

“The committee appointed by the Royal Society to report on a
catalogue of periodical literature estimated, in 1900, that more than
1500 memoirs on pure mathematics were now issued annually.”∗

Poets put the golden age of the race in the past. Prophets have seen
that it is in the future. The recent marvelous growth of mathematics
has been said to place its golden age in the present or the immediate
future. Professor James Pierpont,† after summing up the mathematical
achievements of the nineteenth century, exclaimed: “We who stand on
the threshold of a new century can look back on an era of unparalleled
progress. Looking into the future an equally bright prospect greets our
eyes; on all sides fruitful fields of research invite our labor and promise
easy and rich returns. Surely this is the golden age of mathematics!”

And this golden age must last as long as men interrogate nature
or value precision or seek truth. “Mathematics is pre-eminently cos-
mopolitan and eternal.”

∗Ball, Hist., p. 455.
†Address before the department of mathematics of the International Congress

of Arts and Science, St. Louis, Sept. 20, 1904, on “The History of Mathematics in
the Nineteenth Century,” Bull. Am. Mathem. Society, 11:3:159.
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THE MOVEMENT TO MAKE MATHEMATICS TEACHING
MORE CONCRETE.

With the increased mathematical production has come a movement
for improved teaching. The impetus is felt in many lands. “The world-
wide movement in the teaching of mathematics, in the midst of which
we stand,” are the recent words of a leader in this department.∗

The movement is, in large part, for more concrete teaching—for a
closer correlation between the mathematical subjects themselves and
between the mathematics and the natural sciences, for extensive use of
graphical representation, the introduction of more problems pertaining
to pupils’ interests and experiences, a larger use of induction and appeal
to intuition at the expense of rigorous proof in the earlier years, the
postponement of the more abstract topics, and the constant aim to
show the useful applications.

Some of the more conservative things that are urged are what every
good teacher has been doing for years. On the other hand, some of
the more radical suggestions will doubtless prove impractical and be
abandoned. Still the movement as a whole is healthful and full of
promise.

Among American publications that are taking part in it may be
mentioned the magazine School Science and Mathematics, which is do-
ing much for the correlation of elementary pure and applied mathe-
matics, the Reports of the various committees, the Proceedings of the
Central Association of Science and Mathematics Teachers and similar
organizations, and Dr. Young’s new book, The Teaching of Mathemat-
ics.

The Public School Journal says, “The position of mathematics as a
mental tonic would be strengthened,” and quotes Fourier, “The deeper
study of nature is the most fruitful source of mathematical study.”

The movement to teach the calculus through engineering problems
∗Dr. J. W. A. Young, assistant professor of the pedagogy of mathematics in the

University of Chicago, in an address before the mathematical section of the Central
Association of Science and Mathematics Teachers, Nov. 30, 1906.
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and the like has attracted wide attention.
Some of the applications of the rudiments of descriptive geometry

to drawing (mechanical, perspective etc.) are not far to seek in works
on drawing.

The applications of geometry to elementary science have been given
in outline. It would be well if there were available lists of the common
applications in the trades. E. g., (in the carpenter’s trade):

The chalk line to mark a straight (etymologically, stretched) line.
Illustrating the old statement, “The straight line is the shortest distance
between two points.”

Putting the spirit level in two non-parallel positions on a plane
surface to see whether the surface is horizontal. “A plane is determined
by two intersecting straight lines.”

Etc.
Perhaps most teachers of geometry have made, or induced pupils

to make, some such list; but the writer is not aware that any extensive
compilation is in print.

Fairly complete lists of the applications of algebra to the natural
sciences may be found in the publications named above.

The new industrial arithmetic is one of the educational features of
our time. There should be an arithmetic with problems drawn largely
from agricultural life. The 1905 catalog of the Northern Illinois State
Normal School, De Kalb, contains a valuable classified outline of child
activities involving and illustrating number. Dr. Charles A. McMurry,
in his Special Method in Arithmetic, mentions the need of “much more
abundant statistical data than the arithmetics contain.”

If we could have these things as teaching material, without the af-
fliction of a fad for teaching mathematics entirely through its practical
applications, it would be a boon indeed.

While rejoicing in the movement for correlation of mathematics and
the other sciences, these two points should not be overlooked:

1. The sciences commonly called natural are not the only obser-
vational sciences. The field of applied mathematics is as broad as the
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field of definite knowledge or investigation. Some parts of this field are
specially worthy of note in this connection. The statistical sciences,
the social sciences treated mathematically, the application of the meth-
ods of exact science to social measurements such as those obtained
in educational psychology and the study of population, public health,
economic problems etc.—these are sciences aiming at accuracy. They
seek to achieve expression in natural law. They offer some of the best
opportunities of applied mathematics. The recent growth in the sci-
ences of this group has been, if possible, more marked than that of the
physical sciences. Nor are they less characteristic of the spirit of our
time. Indeed it has been said that the quotation beginning the preced-
ing section should be extended so as to say, “The eighteenth century
was philosophic, the nineteenth scientific, and the twentieth is to be
sociologic.”

The statistical sciences call for a broad acquaintance with mathe-
matical lore which is sometimes regarded as abstract and impractical by
certain critics of current mathematical curricula.∗ The social sciences
are not studied by those who are pursuing elementary mathematical
courses. It is not proposed that elementary mathematics should be
correlated with them instead of with the physical sciences, or in ad-
dition thereto. But it should be remembered that use in the physical
sciences is by no means the only ultimate aim which makes mathematics
practical.

2. The beautiful has its place in mathematics as elsewhere. The
∗It is true that the statistical sciences are exposed to caricature, as in the story

of the German statistician who announced that he had tabulated returns from
the marriage records of the entire country for the year and had discovered that the
number of men married that year was exactly equal to the number of women married
in the same period of time! It is true that statisticians have (rarely) computed results
that might have been deduced a priori. It is true also that some of the results of
statistical science have not proved to be practical or yielded material returns. But
these things might be said also of the natural sciences, whose inestimable value is
everywhere recognized. The social sciences mathematically developed are to be one
of the controlling factors in civilization.
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prose of ordinary intercourse and of business correspondence might be
held to be the most practical use to which language is put, but we should
be poor indeed without the literature of imagination. Mathematics too
has its triumphs of the creative imagination, its beautiful theorems, its
proofs and processes whose perfection of form has made them classic.
He must be a “practical” man who can see no poetry in mathematics!

Let mathematics be correlated with physical science; let it be con-
crete; but let the movement be understood and the subject taught in
the light of the broadest educational philosophy.



THE MATHEMATICAL RECITATION AS AN EXERCISE IN
PUBLIC SPEAKING.∗

The value of translating from a foreign language, in broadening the
vocabulary by compelling the mind to move in unfrequented paths of
thought; of drawing, in quickening the appreciation of exact relations,
proportion and perspective; of the natural sciences, in developing inde-
pendence of thought—this is all familiar to the student of oratory; often
has he been told the value of pursuing these studies for one entering
his profession. But one rarely hears of the mathematical recitation as
a preparation for public speaking. Yet mathematics shares with these
studies their advantages, and has another in a higher degree than either
of them.

Most readers will agree that a prime requisite for healthful expe-
rience in public speaking is that the attention of speaker and hearers
alike be drawn wholly away from the speaker and concentrated upon
his thought. In perhaps no other class-room is this so easy as in the
mathematical, where the close reasoning, the rigorous demonstration,
the tracing of necessary conclusions from given hypotheses, commands
and secures the entire mental power of the student who is explaining,
and of his classmates. In what other circumstances do students feel so
instinctively that manner counts for so little and mind for so much?
In what other circumstances, therefore, is a simple, unaffected, easy,
graceful manner so naturally and so healthfully cultivated? Manner-
isms that are mere affectation or the result of bad literary habits recede
to the background and finally disappear, while those peculiarities that
are the expression of personality and are inseparable from its activ-
ity continually develop, where the student frequently presents, to an
audience of his intellectual peers, a connected train of reasoning.

How interesting is a recitation from this point of view! I do not recall
more than two pupils reciting mathematics in an affected manner. In
both cases this passed away. One of these, a lady who was previously

∗Article by the writer in New York Education, now American Education, for
January, 1899.
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acquainted with the work done during the early part of the term, lost
her mannerisms when the class took up a subject that was advance
work to her, and that called out her higher powers.

The continual use of diagrams to make the meaning clear stimulates
the student’s power of illustration.

The effect of mathematical study on the orator in his ways of think-
ing is apparent—the cultivation of clear and vigorous deduction from
known facts.

One could almost wish that our institutions for the teaching of the
science and the art of public speaking would put over their doors the
motto that Plato had over the entrance to his school of philosophy:
“Let no one who is unacquainted with geometry enter here.”



THE NATURE OF MATHEMATICAL REASONING.∗

Why is mathematics “the exact science”? Because of its self-imposed
limitations. Mathematics concerns itself, not with any problem of the
nature of things in themselves, but with the simpler problems of the
relations between things. Starting from certain definite assumptions,
the mathematician seeks only to arrive by legitimate processes at con-
clusions that are surely right if the data are right; as in geometry. So
the arithmetician is concerned only that the result of his computation
shall be correct assuming the data to be correct; though if he is also a
teacher, he is in that capacity concerned that the data of the problems
set for his pupils shall correspond to actual commercial, industrial or
scientific conditions of the present day.

Mathematics is usually occupied with the consideration of only one
or a few of the phases of a situation. Of the many conditions involved,
only a few of the most important and the most available are considered.
All other variables are treated as constants. Take for illustration the
“cistern problem,” which as it occurs in the writings of Heron of Alexan-
dria (c. 2d cent. B. C.) must be deemed very respectable on the score
of age: given the time in which each pipe can fill a cistern separately,
required the time in which they will fill it together. This assumes the
flow to be constant. Other statements of the problem, in which one
pipe fills while another empties, presuppose the outflow also to be con-
stant whether the cistern is full or nearly empty; or at least the rate
of outflow is taken as an average rate and treated as a constant. Or
the “days-work problem” (which is only the cistern problem disguised):
given the time in which each man can do a piece of work separately,
required the time in which they will do it together. This assumes that
the men work at the same rate whether alone or together. Some per-
sons who have employed labor know how violent an assumption this

∗vanced section of teachers institutes. For a treatment of old and new definitions
of mathematics, the reader is referred to Prof. Maxime Bôcher’s “The Fundamental
Conceptions and Methods of Mathematics,” Bull. Am. Math. Soc., II:3:115–135.
(Footnote text is truncated in the original.—Transcriber.)
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is, and are prepared to defend the position of the thoughtless school
boy who says, “If A can do a piece of work in 5 days which B can do
in 3 days, it will take them 8 days working together,” as against the
answer 17

8
days, which is deemed orthodox among arithmeticians. Or,

to move up to the differential calculus for an illustration: “The differen-
tials of variables which change non-uniformly are what would be their
corresponding increments if at the corresponding values considered the
change of each became and continued uniform with respect to the same
variable.”∗

Mathematics resembles fine art in that each abstracts some one per-
tinent thing, or some few things, from the mass of things and concen-
trates attention on the element selected. The landscape painter gives
us, not every blade of grass, but only those elements that serve to bring
out the meaning of the scene. With mathematics also as with fine art,
this may result in a more valuable product then any that could be ob-
tained by taking into account every element. The portrait painted by
the artist does not exactly reproduce the subject as he was at any one
moment of his life, yet it may be a truer representation of the man
than one or all of his photographs. So it is with one of Shakespeare’s
historical dramas and the annals which were its “source.” “The truest
things are things that never happened.”

Mathematics is a science of the ideal. The magnitudes of geometry
exist only as mental creations, a chalk mark being but a physical aid
to the mind in holding the conception of a geometric line.

The concrete is of necessity complex; only the abstract can be sim-
ple. This is why mathematics is the simplest of all studies—simplest
in proportion to the mastery attained. The same standard of mastery
being applied, physics is much simpler than biology: it is more math-
ematical. As we rise in the scale mathematically, relations become
simple, until in astronomy we find the nearest approach to conformity
by physical nature to a single mathematical law, and we see a meaning
in Plato’s dictum, “God geometrizes continually.”

∗Taylor’s Calculus, p. 8.
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Mathematics is thinking God’s thought after him. When anything
is understood, it is found to be susceptible of mathematical statement.
The vocabulary of mathematics “is the ultimate vocabulary of the ma-
terial universe.” The planets had for many centuries been recognized as
“wanderers” among the heavenly bodies; much had come to be known
about their movements; Tycho Brahe had made a series of careful ob-
servations of Mars; Kepler stated the law: Every planet moves in an
elliptical orbit with the sun at one focus, and the radius vector gen-
erates equal areas in equal times. When the motion was understood,
it was expressed in the language of mathematics. Gravitation waited
long for a Newton to state its law. When the statement came, it was
in terms of “the ultimate vocabulary”: Every particle of matter in the
universe attracts every other particle with a force varying directly as
the masses, and inversely as the square of the distances. When any
other science—say psychology—becomes as definite in its results, those
results will be stated in as mathematical language. After many experi-
ments to determine the measure of the increase of successive sensations
of the same kind when the stimulus increases, and after tireless effort
in the application of the “just perceptible increment” as a unit. Prof.
G. T. Fechner of Leipsic announced in 1860, in his Psychophysik, that
the sensation varies as the logarithm of the stimulus. Fechner’s law has
not been established by subsequent investigations; but it was the ex-
pression of definiteness in thinking, whether that thinking was correct
or not, and it illustrates mathematics as the language of precision.

Mathematics, the science of the ideal, becomes the means of inves-
tigating, understanding and making known the world of the real. The
complex is expressed in terms of the simple. From one point of view
mathematics may be defined as the science of successive substitutions
of simpler concepts for more complex—a problem in arithmetic or al-
gebra shown to depend on previous problems and to require only the
fundamental operations, the theorems of geometry shown to depend on
the definitions and axioms, the unknown parts of a triangle computed
from the known, the simplifications and far-reaching generalizations of
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the calculus, etc. It is true that we often have successive substitu-
tions of simpler concepts in other sciences (e. g., the reduction of the
forms of logical reasoning to type forms; the simplifications culminating
in the formulas of chemistry; etc.) but we naturally apply the adjec-
tive mathematical to those phases of any science in which this method
predominates. In this view also it is seen why mathematical rigor of
demonstration is itself an advancing standard. “Archimedean proof”
was to the Greeks a synonym for unquestionable demonstration.

If a relation between variables is stated in mathematical symbols,
the statement is a formula. A formula translated into words becomes a
principle if the indicative mode is used, a rule if the imperative mode.

Mathematics is “ultimate” in the generality of its reasoning. By the
aid of symbols it transcends experience and the imaging power of the
mind. It determines, for example, the number of diagonals of a polygon
of 1000 sides to be 498500 by substitution in the easily deduced formula
n(n−3)/2, although one never has occasion to draw a representation of
a 1000-gon and could not make a distinct mental picture of its 498500
diagonals.

If there are other inhabited planets, doubtless “these all differ from
one another in language, customs and laws.” But one can not imagine a
world in which π is not equal to 3.14159+, or e not equal to 2.71828+,
though all the symbols for number might easily be very different.

In recent years a few “astronomers,” with an enterprise that would
reflect credit on an advertising bureau, have discussed in the news-
papers plans for communicating with the inhabitants of Mars. What
symbols could be used for such communication? Obviously those which
must be common to rational beings everywhere. Accordingly it was
proposed to lay out an equilateral triangle many kilometers on a side
and illuminate it with powerful arc lights. If our Martian neighbors
should reply with a triangle, we could then test them on other poly-
gons. Apparently the courtesies exchanged would for some time have
to be confined to the amenities of geometry.

Civilization is humanity’s response to the first—not the last, or by
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any means the greatest—command of its Maker, “Subdue the earth
and have dominion over it.” And the aim of applied mathematics is
“the mastery of the world quantitatively.” “Science is only quantitative
knowledge.” Hence mathematics is an index of the advance of civiliza-
tion.

The applications of mathematics have furnished the chief incentive
to the investigation of pure mathematics and the best illustrations in
the teaching of it; yet the mathematician must keep the abstract sci-
ence in advance of the need for its application, and must even push
his inquiry in directions that offer no prospect of any practical appli-
cation, both from the point of view of truth for truth’s sake and from
a truly far-sighted utilitarian viewpoint as well. Whewell said, “If the
Greeks had not cultivated conic sections, Kepler could not have super-
seded Ptolemy.” Behind the artisan is a chemist, “behind the chemist a
physicist, behind the physicist a mathematician.” It was Michael Fara-
day who said, “There is nothing so prolific in utilities as abstractions.”



ALICE IN THE WONDERLAND OF MATHEMATICS.

Years after Alice had her “Adventures in Wonderland” and “Through
the Looking-glass,” described by “Lewis Carroll,” she went to college.
She was a young woman of strong religious convictions. As she studied
science and philosophy, she was often perplexed to reduce her conclu-
sions in different lines to a system, or at least to find some analogy
which would make the coexistence of the fundamental conceptions of
faith and of science more thinkable. These questions have puzzled many
a more learned mind than hers, but never one more earnest.

Alice developed a fondness for mathematics and elected courses in
it. The professor in that department had lectured on n-dimensional
space, and Alice had read E. A. Abbott’s charming little book, Flat-
land; a Romance of Many Dimensions, by a Square, which had been
recommended to her by an instructor.

The big daisy-chain which was to be a feature of the approaching
class-day exercises was a frequent topic of conversation among the stu-
dents. It was uppermost in her mind one warm day as she went to her
room after a hearty luncheon and settled down in an easy chair to rest
and think.

“Why!” she said, half aloud, “I was about to make a daisy-chain
that hot day when I fell asleep on the bank of the brook and went to
Wonderland—so long ago. That was when I was a little girl. Wouldn’t
it be fun to have such a dream now? If I were a child again, I’d curl up
in this big chair and go to sleep this minute. ‘Let’s pretend.’ ”

So saying, and with the magic of this favorite phrase upon her, she
fell into a pleasant revery. Present surroundings faded out of conscious-
ness, and Alice was in Wonderland.

“What a long daisy-chain this is!” thought Alice. “I wonder if I’ll
ever come to the end of it. Maybe it hasn’t any end. Circles haven’t
ends, you know. Perhaps it’s like finding the end of a rainbow. Maybe
I’m going off along one of the infinite branches of a curve.”

Just then she saw an arbor-covered path leading off to one side.
She turned into it; and it led her into a room—a throne-room, for there

185
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a fairy or goddess sat in state. Alice thought this being must be one
of the divinities of classical mythology, but did not know which one.
Approaching the throne she bowed very low and simply said, “Goddess”;
whereat that personage turned graciously and said, “Welcome, Alice.”
It did not seem strange to Alice that such a being should know her
name.

“Would you like to go through Wonderland?”
“Oh! yes,” answered Alice eagerly.
“You should go with an attendant. I will send the court jester, who

will act as guide,” said the fairy, at the same time waving a wand.
Immediately there appeared—Alice could not tell how—a courtier

dressed in the fashion of the courts of the old English kings. He dropped
on one knee before the fairy; then, rising quickly, bowed to Alice, ad-
dressing her as, “Your Majesty.”

It seemed pleasant to be treated with such deference, but she
promptly answered, “You mistake; I am only Miss —”

Here the fairy interrupted: “Call her ‘Alice’. The name means
‘princess.’ ”

“And you may call me ‘Phool.’ ” said the courtier; “only you will
please spell it with a ph.”

“How can I spell it when I am only speaking it?” she asked.
“Think the ph.”
“Very well,” answered Alice rather doubtfully, “but who ever heard

of spelling ‘fool’ with ph?”
Then he smiled broadly as he replied: “I am an anti-spelling-

reformer. I desire to preserve the ph in words in place of f so that one
may recognize their foreign origin and derivation.”

“Y-e-s,” said Alice, “but what does phool come from?”
Again the fairy interrupted. Though always gracious, she seemed

to prefer brevity and directness. “You will need the magic wand.”
So saying, she handed it to the jester. The moment he had the

wand, the fairy vanished. And the girl and the courtier were alone in
the wonderful world, and they were not strangers. They were calling
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each other “Alice” and “Phool.” And he held the magic wand.
One flourish of that wand, and they seemed to be in a wholly differ-

ent country. There were many beings, having length, but no breadth
or thickness; or, rather, they were very thin in these two dimensions,
and uniformly so. They were moving only in one line.

“Oh! I know!” exclaimed Alice, “This is Lineland. I read about it.”

“Yes,” said Phool; “if you hadn’t read about it or thought about it,
I couldn’t have shown it to you.”

Alice looked questioningly at the wand in his hand.
“It has marvelous power, indeed,” he said. “To show you in this way

what you have thought about, that is magic; to show you what you had
never thought of, would be—”

Alice could not catch the last word. A little twitch of the wand
set them down at a different point in the line, where they could get a
better view of lineland. Alice thrust her hand across the line in front
of one of the inhabitants. He stopped short. She withdrew it. He was
amazed at the apparition: a body (or point) had suddenly appeared in
his world and as suddenly vanished. Alice was interested to see how a
linelander could be imprisoned between two points.

“He never thinks to go around one of the obstacles,” she said.
“The line is his world,” said Phool. “One never thinks of going out

of the world to get around an obstacle.”
“If I could communicate with him, could I teach him about a second

dimension?”
“He has no apperceiving mass,” said Phool laconically.
“Very good,” said Alice, laughing; “surely he has no mass. Then he

can get out of his narrow world only by accident?”
“Accident!” repeated Phool, affecting surprise, “I thought you were

a philosopher.”
“No,” replied Alice, “I am only a college girl.”
“But,” said Phool, “you are a lover of wisdom. Isn’t that what

‘philosopher’ means? You see I’m a stickler for etymologies.”
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“All right,” said Alice, “I am a philosopher then. But tell me how
that being can ever appreciate space outside of his world.”

“He might evolve a few dimensions.”
Alice stood puzzled for a minute, though she knew that Phool was

jesting. Then a serious look came into his face, and he continued:
“One-dimensional beings can learn of another dimension only by the

act of some being from without their world. But let us see something
of a broader world.”

So saying, he waved the wand, and they were in a country where
the inhabitants had length and breadth, but no appreciable thickness.

Alice was delighted. “This is Flatland,” she cried out. Then after
a minute she said, “I thought the Flatlanders were regular geometric
figures.”

Phool laughed at this with so much enjoyment that Alice laughed
too, though she saw nothing very funny about it.

Phool explained: “You are thinking of the Flatland where all lawyers
are square, and where acuteness is a characteristic of the lower classes
while obtuseness is a mark of nobility. That would, indeed, be very
flat; but we spell that with a capital F. This is flatland with a small f.”

Alice fell to studying the life of the two-dimension people and think-
ing how the world must seem to them. She reasoned that polygons, cir-
cles and all other plane figures are always seen by them as line-segments;
that they can not see an angle, but can infer it; that they may be impris-
oned within a quadrilateral or any other plane figure if it has a closed
perimeter which they may not cross; and that if a three-dimensional
being were to cross their world (surface) they could appreciate only the
section of him made by that surface, so that he would appear to them
to be two-dimensional but possessing miraculous powers of motion.

Alice was pleased, but curious to see more. “Let’s see other dimen-
sional worlds,” she said.

“Well, the three-dimensional world, you’re in all the time,” said
Phool, at the same time moving the wand a little and changing the
scene, “and now if you will show me how to wave this wand around



ALICE IN THE WONDERLAND OF MATHEMATICS. 189

through a fourth dimension, we’ll be in that world straightway.”
“Oh! I can’t,” said Alice.
“Neither can I,” said he.
“Can anybody?”
“They say that in four-dimensional space one can see the inside of a

closed box by looking into it from a fourth dimension just as you could
see the inside of a rectangle in flatland by looking down into it from
above; that a knot can not be tied in that space; and that a being com-
ing to our world from such a world would seem to us three-dimensional,
as all we could see of him would be a section made by our space, and
that section would be what we call a solid. He would appear to us—let
us say—as human. And he would be not less human than we, nor less
real, but more so; if ‘real’ has degrees of comparison. The flatlander
who crosses the linelander’s world (line) appears to the native to be
like the one-dimensional beings, but possessed of miraculous powers.
So also the solid in flatland: the cross-section of him is all that a flat-
lander is, and that is only a section, only a phase of his real self. The
ability of a being of more than three dimensions to appear and disap-
pear, as to enter or leave a room when all doors were shut, might make
him seem to us like a ghost, but he would be more real and substantial
than we are.”

He paused, and Alice took occasion to remark:
“That is all obtained by reason; I want to see a four-dimensional

world.”
Then, fearing that it might not seem courteous to her guide to

appear disappointed, she added:
“But I ought to have known that the wand couldn’t show us any-

thing we might wish to see; for then there would be no limit to our
intelligence.”

“Would unlimited intelligence mean the same thing as absolutely
infinite intelligence?” Phool asked.

“That sounds to me like a conundrum,” said Alice. “Is it a play on
words?”
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“There goes Calculus,” said Phool. “I’ll ask him.—Hello! Cal.”
Alice looked and saw a dignified old gentleman with flowing white

beard. He turned when his name was called.
While Calculus was approaching them, Phool said in a low tone

to Alice: “He’ll enjoy having an eager pupil like you. This will be a
carnival for Calculus.”

When that worthy joined them and was made acquainted with the
topic of conversation, he turned to Alice and began instruction so vig-
orously that Phool said, by way of caution:

“Lass! Handle with care.”
Alice did not like the implication that a girl could not stand as

much mathematics as any one. But then she thought, “That is only a
joke,” and she seemed vaguely to remember having heard it somewhere
before.

“If you mean,” said Calculus, “to ask whether a variable that in-
creases without limit is the same thing as absolute infinity, the answer
is clearly No. A variable increasing without limit is always nearer to
zero than to absolute infinity. For simplicity of illustration, compare it
with the variable of uniform change, time, and suppose the variable we
are considering doubles every second. Then, no matter how long it may
have been increasing at this rate, it is still nearer zero than infinity.”

“Please explain,” said Alice.
“Well,” continued Calculus, “consider its value at any moment. It

is only half what it will be one second hence, and only quarter what it
will be two seconds hence, when it will still be increasing. Therefore it
is now much nearer zero than infinity. But what is true of its value at
the moment under consideration is true of any, and therefore of every,
moment. An infinite is always nearer to zero than to infinity.”

“Is that the reason,” asked Alice, “why one must say ‘increases with-
out limit’ instead of ‘approaches infinity as a limit’?”

“Certainly,” said Calculus; “a variable can not approach infinity as
a limit. Students often have to be reminded of this.”

Alice had an uncomfortable feeling that the conversation was grow-
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ing too personal, and gladly turned it into more speculative channels
by remarking:

“I see that one could increase in wisdom forever, though that seems
miraculous.”

“What do you mean by miraculous?” asked Phool.
“Why—” began Alice, and hesitated.
“People who begin an answer with ‘Why’ are rarely able to give an

answer,” said Phool.
“I fear I shall not be able,” said Alice. “An etymologist” (this with a

sly look at Phool) “might say it means ‘wonderful’; and that is what I
meant when speaking about infinites. But usually one would call that
miraculous which is an exception to natural law.”

“We must take the young lady over to see the curve tracing,” said
Calculus to Phool.

“Yes, indeed!” he replied. Then, turning to Alice, “Do you enjoy
fireworks?”

“Yes, thank you,” said Alice, “but I can’t stay till dark.”
“No?” said Phool, with an interrogation. “Well, we’ll have them

very soon.”
“Fireworks in daytime?” she asked.
But at that moment Phool made a flourish with the wand, and it

was night—a clear night with no moon or star. It seemed so natural
for the magic wand to accomplish things that Alice was not very much
surprised at even this transformation. She asked:

“Did you say you were to show me curve tracing?”
“Yes,” said Phool. “Perhaps you don’t attend the races, but you

may enjoy seeing the traces.”
During this conversation the three had been walking, and they now

came to a place where there was what appeared to be an enormous
electric switchboard. A beautiful young woman was in charge.

As they approached, Calculus said to Alice, “That is Ana Lytic.
You are acquainted with her, I presume.”

“The name sounds familiar,” said Alice, “but I don’t remember to
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have ever seen her. I should like to meet her.”
On being presented, Alice greeted her new acquaintance as ‘Miss

Lytic’; but that person said, in a very gracious manner:
“Nobody ever addresses me in that way. I am always called ‘Ana

Lytic,’ except by college students. They usually call me ‘Ana Lyt.’ I
presume they shorten my name thus because they know me so well.”

In spite of the speaker’s winning manner, the last clause made Alice
somewhat self-conscious. Her cheeks felt very warm. She was relieved
when, at that moment, Calculus said:

“This young lady would like to see some of your work.”
“Some pyrotechnic curve tracing,” interrupted the talkative Phool.
Calculus continued: “Please let us have an algebraic curve with a

conjugate point.”
Ana Lytic touched a button, and across the world of darkness (as

it seemed to Alice) there flashed a sheet of light, dividing space by a
luminous plane. It quickly faded, but left two rays of light perpendicular
to each other, faint but apparently permanent.

“These are the axes of coordinates,” explained Ana Lytic.
Then she pressed another button, and Alice saw what looked like

a meteor. She watched it come from a great distance, cross the ray of
light that had been called one of the axes, and go off on the other side
as rapidly as it had come, always moving in the plane indicated by the
vanished sheet of light. She thought of a comet; but instead of having
merely a luminous tail, it left in its wake a permanent path of light.
Ana Lytic had come close to Alice, and the two girls stood looking at
the brilliant curve that stretched away across the darkness as far as the
eye could reach.

“Isn’t it beautiful!” exclaimed Alice.
Any attempt to represent on paper what she saw must be poor and

inadequate. Figure 58 is such an attempt.
Suddenly she exclaimed: “What is that point of light?” indicating

by gesture a bright point situated as shown in the figure by P.
“That is a point of the curve,” said Ana Lytic.
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Fig. 58.
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“But it is away from all the rest of it,” objected Alice.
Going over to her apparatus and taking something—Alice could not

see what—Ana Lytic began to write on what, in the darkness, might
surely be called a blackboard. The characters were of the usual size of
writing on school boards, but they were characters of light and could
be plainly read in the night. This is what she wrote:

y2 = (x− 2)2(x− 3).

Stepping back, she said: “That is the equation of the curve.”
Alice expressed her admiration at seeing the equation before her

and its graph stretching across the world in a line of light.
“I never imagined coordinate geometry could be so beautiful,” she

said.
“This is throwing light on the subject for you,” said Phool.
“The point about which you asked,” said Ana Lytic to Alice, “is the

point (2, 0). You see that it satisfies the equation. It is a point of the
graph.”

Alice now noticed that units of length were marked off on the dimly
seen axes by slightly more brilliant points of light. Thus she easily read
the coordinates of the point.

“Yes,” she said, “I see that; but it seems strange that it should be
off away from the rest.”

“Yes,” said Calculus, who had been listening all the time. “One ex-
pects the curve to be continuous. Continuity is the message of modern
scientific thought. This point seems to break that law—to be ‘mirac-
ulous,’ as you defined the term a few minutes ago. If all observed
instances but one have some visible connection, we are inclined to call
that one miraculous and the rest natural. As only that seems wonder-
ful which is unusual, the miraculous in mathematics would be only an
isolated case.”

“I thank you,” said Alice warmly. “That is the way I should like to
have been able to say it. An isolated case is perplexing to me. I like to
think that there is a universal reign of law.”
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“Evidently,” said Phool, “here is an exception. It is obvious that
there are several alternatives, such as, for example, that the point is
not on the graph, that the graph has an isolated point, and so forth.”

Calculus, Ana Lytic and Phool all laughed at this. To Alice’s in-
quiry, Phool explained:

“We often say ‘evidently’ or ‘obviously’ when we can’t give a reason,
and we conclude a list with ‘and so forth’ when we can’t think of another
item.”

Alice felt the remark might have been aimed at her. Still she had
not used either of these expressions in this conversation, and Phool had
made the remark in a general way as if he were satirizing the foibles
of the entire human race. Moreover, if she felt inclined to resent it as
an impertinent criticism from a self-constituted teacher, she remem-
bered that it was only the jest of a jester and treated it merely as an
interruption.

“Tell me about the isolated point,” she said to Calculus.
He proceeded in a teacher-like way, which seemed appropriate in

him.
Calculus. For x = 2 in this equation, y = 0. For any other value

of x less than 3, what would y be?
Alice. An imaginary.
Calculus. And what is the geometric representation of an imaginary

number?
Alice. A line whose length is given by the absolute, or arithmetic,

value of the imaginary and whose direction is perpendicular to that
which represents positives and negatives.

Calculus. Good. Then—
Alice (bounding with delight at the discovery). Oh! I see! I see!

There must be points of the graph outside of the plane.
Calculus. Yes, there are imaginary branches, and perhaps Ana Lytic

will be good enough to show you now.
The dotted line QPQ, if revolved 90◦ about XX′ as axis, remaining in

that position in plane perpendicular to paper, would be the “imaginary part”
of the graph.
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Fig. 59.

The dot-and-dash line SRPRS represents the projection on the plane of
the paper of the two “complex parts.” At P each branch is in the plane of
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the paper, at each point R one branch is about 0.7 from the plane each side
of the paper, at S each branch is 1.5 from the plane, etc.

That young lady touched something on her magic switchboard, and
another brilliant curve stretched across the heavens. The plane deter-
mined by it was perpendicular to the plane previously shown. (The
dotted line in Fig. 59 represents in a prosaic way what Alice saw.)

“O, I see!” exclaimed Alice. “That point is not isolated. It is the
point in which this ‘imaginary’ branch, which is as real as any, pierces
the plane of the two axes.”

“Now,” said Calculus, “if instead of substituting real values for x and
solving the equation for y, you were to substitute real numbers for y
and solve for x, you would, in general, obtain for each value of y one
real and two complex numbers as the values of x. The curve through
all the points with complex abscissas is neither in the plane of the axes
nor in a plane perpendicular to it. But you shall see.”

(The dot-and-dash line in Fig. 59 represents these branches.)
When Ana Lytic made the proper connection at the switchboard,

these branches of the curve also stood out in lines of light.
Alice was more deeply moved than ever. There was a note of deep

satisfaction in her voice as she said:
“The point that troubled me because of its isolation is a point com-

mon to several branches of the curve.”
“The supernatural is more natural than anything else,” said Phool.
“The miraculous,” thought Alice, “is only a special case of a higher

law. We fail to understand things because they are connected with that
which is out of our plane.”

She added aloud: “This I should call the miracle curve.”
“Yet there is nothing exceptional about this curve,” said Calculus.

“Any algebraic curve with a conjugate point has similar properties.”
Then Calculus said something to Ana Lytic—Alice could not hear

what—and Ana Lytic was just touching something on the switchboard
when there was a crash of thunder. Alice gave a start and awoke to find
herself in her own room at midday, and to realize that the slamming of
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a door in the corridor had been the thunder that terminated her dream.
She sat up in the big chair and, with the motion that had been

characteristic of her as a little girl, gave “that queer little toss of her
head, to keep back the wandering hair that would always get into her
eyes,” and said to herself:

“There aren’t any curves of light across the sky at all! And worlds
of one or two dimensions exist only in the mind. They are abstractions.
But at least they are thinkable. I’m glad I had the dream. Imagination
is a magic wand.—The future life will be a real wonderland, and—”

Then the ringing of a bell reminded her that it was time to start
for an afternoon lecture, and she heard some of her classmates in the
corridor calling to her, “Come, Alice.”



BIBLIOGRAPHIC NOTES.

Mathematical recreations. The Ahmes papyrus, oldest mathemati-
cal work in existence, has a problem which Cantor interprets as one
proposed for amusement. At which Cajori remarks:∗ “If the above in-
terpretations are correct, it looks as if ‘mathematical recreations’ were
indulged in by scholars forty centuries ago.”

The collection of “Problems for Quickening the Mind” Cantor thinks
was by Alcuin (735–804). Cajori’s interesting comment† is: “It has been
remarked that the proneness to propound jocular questions is truly
Anglo-Saxon, and that Alcuin was particularly noted in this respect.
Of interest is the title which the collection bears: ‘Problems for Quick-
ening the Mind.’ Do not these words bear testimony to the fact that
even in the darkness of the Middle Ages the mind-developing power of
mathematics was recognized?”

Later many collections of mathematical recreations were published,
and many arithmetics contained some of the recreations. Their pop-
ularity is noticeable in England and Germany in the seventeenth and
eighteenth centuries.‡

A good bibliography of mathematical recreations is given by Lucas.§
There are 16 titles from the sixteenth century, 33 from the seventeenth,
38 from the eighteenth, and 100 from the nineteenth century, the latest

∗Hist. of Elem. Math., p. 24.
†Id., p. 113–4.
‡A book entitled Rara Arithmetica by Prof. David Eugene Smith, is to be pub-

lished by Ginn & Co. the coming summer or fall (1907). It will contain six or seven
hundred pages and have three hundred illustrations, presenting graphically the most
interesting facts in the history of arithmetic. Its author’s reputation in this field
insures the book an immediate place among the classics of mathematical history.

§I:237–248. Extensive as his list is, it is professedly restricted in scope. He says,
Nous donnons ci-après, suivant l’ordre chronologique, l’indication des principaux
livres, mémoires, extraits de correspondance, qui ont été publiés sur l’Arithmétique
de position et sur la Géométrie de situation. Nous avons surtout choisi les docu-
ments qui se rapportent aux sujets que nous avons traités ou que nous traiterons
ultérieurement.
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date being 1890. Young (p. 173–4) gives a list of 20 titles, mostly recent,
in no case duplicating those of Lucas’s list (except where mentioning
a later edition). This gives a total of over two hundred titles. Now
turn to two other collections, and we find the list greatly extended.
Ahrens’ Mathematische Unterhaltungen (1900) has a bibliography of
330 titles, including nearly all those given by Lucas. Fourrey’s Cu-
riositées Géométriques (1907) has the most recent bibliography. It is
extensive in itself and mostly supplementary to the lists by Lucas and
Ahrens.

In all the vast number of published mathematical recreations, the
present writer does not know of a book covering the subject in general
which was written and published in America. We seem to have taken
our mathematics very seriously on this side of the Atlantic.

Publications of foregoing sections in periodicals. The sections of this
book which have been printed in magazines are as follows. The month
and year in each case are those of the magazine, and the page is the
page of this book at which the section begins.

The Open Court, January 1907, p. 184; February, p. 179; March,
p. 54, 57; April, p. 90; May, p. 122, 131, 167, 103; June, p. 62, 64; July,
p. 142, 143.

The Monist, January 1907, p. 1, 4.
New York Education (now American Education), January 1899,

p. 177.
American Education, September 1906, p. 41; March 1907, p. 35.
Some of the articles have been altered slightly since their publication

in periodical form.
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