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Vorwort.



   Die Kräftigung des räumlichen Vorstellungsvermögens und der räumlichen
Gestaltungskraft gehört unbestritten zu den wichtigsten Zielen eines jeden geometrischen
Unterrichts. Um sie zu erreichen, ist für den Lehrenden wie für den Lernenden — von
Modellen abgesehen — die Kunst guter zeichnerischer Darstellung unentbehrlich. So
selbstverständlich dies auch erscheinen mag, haben doch die mannigfachen Bemühungen
der Hochschullehrer, den Studierenden die leichte Ausübung dieser Kunst zu
vermitteln, noch keineswegs vollen und allgemeinen Erfolg gehabt. Sicherlich
muß der mathematische Unterricht an den höheren Schulen darunter leiden.
Ich habe den Wunsch, durch meine Schrift an der Beseitigung dieses Mangels
mitzuhelfen.

   Das Gebiet der wissenschaftlichen darstellenden Geometrie hat allmählich eine so
große Ausdehnung erfahren, daß jede Behandlung des Stoffes sich auf eine Auswahl zu
beschränken hat. Sie kann für den Vertreter des höheren Lehrfachs eine andere sein als
für den Techniker und Architekten. Diese Erwägung ist für die Abfassung dieser Schrift
maßgebend gewesen; ihr Inhalt ist bereits mehrfach in Vorlesungen und Übungen von mir
nicht ohne Nutzen behandelt worden. Es erschien mir zweckmäßig die Auswahl so zu
treffen, daß sie so knapp wie möglich ausfiel, und doch alles berücksichtigt, was für
das zu erreichende Ziel notwendig ist. Vor allem war es mein Streben, mich
nur der allerelementarsten Mittel zu bedienen und doch in dem Leser neben
der Kenntnis der Methoden die volle Überzeugung von ihrer Richtigkeit zu
erwecken. Ich hoffe, daß sie jeder, der über die einfachsten geometrischen und
stereometrischen Sätze verfügt, mit Nutzen und ohne erhebliche Mühe lesen
kann.

   Es gab eine Zeit, in der man an die Spitze geometrischer Bücher den Ausspruch
Steiners setzte „stereometrische Betrachtungen seien nur dann richtig aufgefaßt, wenn sie
rein, ohne alle Versinnlichungsmittel, durch die innere Vorstellung angeschaut werden“.
Befinden wir uns mit unseren heutigen Bestrebungen etwa in direktem Gegensatz zu
dieser Sentenz?—Ich glaube dies verneinen zu dürfen. Die Kräftigung des räumlichen
Vorstellungsvermögens ist auch in ihr mittelbar als Haupterfordernis enthalten, und als
letztes und höchstes Ziel geometrischer Ausbildung und Denkweise kann die Steinersche
Forderung auch heute noch bestehen bleiben. Die Frage ist nur, wie wir uns dem in ihr
gesteckten Ziel am besten annähern können. Ein Steiner, der als sechsjähriger Knabe
auf die Bemerkung des Lehrers, daß drei Ebenen eine Ecke bestimmen, sofort
ausrief: „es gibt ja acht“, mochte allerdings Figuren und Modelle entbehren
können; die glänzende räumliche Intuition, die er besaß, gab ihm einen Ersatz
dafür. Aber für das Genie gelten besondere Regeln. Wir andern müssen uns auf
andere Weise helfen und sollen füglich jedes wissenschaftliche Hilfsmittel erfassen
und benutzen, das uns zu nützen vermag. Je besser es gelingt, kompliziertere
räumliche Gebilde durch richtig konstruierte und wirksam gezeichnete Figuren zu
unterstützen, um so besser, um so schneller und sicherer wird Studium und Unterricht
auf die räumliche Gestaltungskraft einwirken können. Liegt doch dieser Weg
auch im Interesse der sogenannten Ökonomie des Denkens, die wir heute als
einen obersten Grundsatz jeder wissenschaftlichen Betätigung zu betrachten



pflegen.

   Ein letztes Wort widme ich den Figuren. Die meisten sind vom Herrn stud. math.
Bluhm im Anschluß an Übungen, die ich kürzlich gehalten habe, gezeichnet
worden. Sie sind von ungleicher Anlage und werden dadurch am besten erkennen
lassen, welche Zeichnungsart das Auge bevorzugt; es liebt starke Konturen und
kräftige Hervorhebung alles dessen, worauf es seine Aufmerksamkeit in erster Linie
zu lenken hat. Auch hängt die Anlage der Figur davon ab, ob sie einen guten
räumlichen Eindruck vermitteln soll, oder ob in ihr gewisse geometrische Tatsachen
in Evidenz treten sollen. Sicher sind die Figuren mehr oder weniger auch der
Vervollkommnung fähig; ich habe sie aber deshalb so gelassen wie sie sind, um dem
Leser durch ihren Vergleich ein eigenes Urteil über die beste Zeichnungsart zu
ermöglichen. So hoffe ich auch, den Hauptzweck jeder Schrift über die Gesetze der
zeichnerischen Darstellungsmethoden am besten zu erreichen, nämlich die Kunst, mit
wenigen geeigneten und geeignet ausgeführten Strichen freihändig ein gutes Bild
eines räumlichen Gebildes zu entwerfen. Gerade das ist es, was wir nötig haben
und was die sichere Beherrschung der zeichnerischen Gesetze uns gewähren
soll.

   Endlich sage ich Herrn Oberlehrer Dr. Nitz für die freundliche Unterstützung bei der
Korrektur, sowie dem Verlag für sein bekanntes auch diesmal stets bewiesenes
Entgegenkommen besten Dank.

   Königsberg i. Pr., im September 1908.

                                                                  A.
Schoenflies.







Inhaltsverzeichnis






		Vorwort

	§ 1	Die Grundgesetze

	§ 2	Die allgemeinen Gesetze für die zeichnerische Darstellung ebener Gebilde

	§ 3	Die praktischen Regeln der zeichnerischen Darstellung

	§ 4	Die Grundgesetze der Perspektiven Beziehung

	§ 5	Die parallelperspektive Lage

	§ 6	Die unendlichfernen Elemente

	§ 7	Anwendung auf einige zeichnerische Aufgaben

	§ 8	Die allgemeinen Gesetze der ebenen Darstellung räumlicher

	§ 9	Die zeichnerische Darstellung der räumlichen Figuren

	§ 10	Herstellung der Bilder aus Grundriß und Aufriß

	§ 11	Punkt, Gerade und Ebene in Grundriß und Aufriß

	§ 12	Metrische Verhältnisse im Grundriß und Aufriß

	§ 13	Die Einführung neuer Projektionsebenen

	§ 14	Die Axonometrie

	§ 15	Der scheinbare Umriß

	§ 16	Die stereographische Projektion

	§ 17	Die Relief- und Theaterperspektive

		Anhang



















§ 1. Die Grundgesetze.





   I. Das physiologische Grundgesetz.     Der Entstehung unserer
Gesichtswahrnehmungen liegt folgende Tatsache zugrunde. Das Auge besitzt
die Fähigkeit, die Richtung zu empfinden, aus der die auf der Netzhaut einen
Sehreiz auslösenden Lichtstrahlen kommen. Diese Fähigkeit ist die wesentlichste
Grundlage aller zeichnerischen Darstellung. Physiologisch ist sie folgendermaßen
bedingt.1

   




	Fig 1
	






   1.  Alle von einem Punkt P in das Auge eintretenden Lichtstrahlen vereinigen sich, nachdem
sie durch die lichtbrechenden Medien hindurchgegangen sind, in einem Punkt Pn der Netzhaut
(Fig. 1)2,
und zwar geht der Strahl PPn ungebrochen durch das Auge hindurch. Dieser Strahl kann
daher als geometrischer Repräsentant aller übrigen Strahlen gelten; seine Richtung ist es,
die das Auge empfindet. Man bezeichnet ihn auch als den von P kommenden
Sehstrahl.



   




	Fig 2
	






   2.  Alle Sehstrahlen, die von irgendwelchen Punkten P,Q,R... eines
Körpers Σ ins Auge gelangen, gehen durch einen festen Punkt K des
Auges, der auf seiner optischen Achse liegt und Knotenpunkt heißt (Fig. 2).
Sie bilden also einen Teil eines Strahlenbündels mit dem Mittelpunkt
K.3
Das auf der Netzhaut erzeugte, aus den Punkten Pn,Qn,Rn,... bestehende Netzhautbild
Σn des Körpers Σ ist daher geometrisch als Schnitt der Netzhaut mit den Strahlen dieses
Bündels zu bezeichnen.

   Hieraus ergibt sich bereits diejenige grundlegende geometrische Tatsache, der jede
zeichnerische oder räumliche Abbildung Σ' eines Gegenstandes Σ zu genügen hat, wenn
sie im Auge dasselbe Netzhautbild entstehen lassen soll, wie der Körper Σ selbst. Aus
1. folgt nämlich (Fig. 2), daß wenn P' ein lichtaussendender Punkt auf dem Sehstrahl
PPn ist, der zu P' gehörige Sehstrahl mit PPn identisch ist. Um also ein Abbild Σ'
herzustellen, das im Auge die gleichen Lichtempfindungen erzeugt, wie der Gegenstand Σ
selbst, würde es an sich genügen, jeden Punkt P von Σ durch irgend einen
Punkt P' des von P ausgehenden Sehstrahls PPn zu ersetzen. Handelt es sich
insbesondere um ein ebenes Bild, was hier zunächst allein in Frage kommt, so ist der
Bildpunkt P' als Schnittpunkt des Sehstrahles PPn mit der Bildebene zu wählen. Da
nun gemäß 2. alle Sehstrahlen einem Strahlenbündel mit dem Mittelpunkt K
angehören, so ist das in der Bildebene entstehende Abbild Σ' genauer als ihr
Schnitt mit den Strahlen des ebengenannten Strahlenbündels zu definieren. Also
folgt:

   I. Das Netzhautbild Σn und das ebene Bild Σ' sind als Schnitte eines und desselben
Strahlenbündels mit der Netzhaut und der Bildebene anzusehen; der Mittelpunkt dieses
Strahlenbündels liegt im Knotenpunkt des Auges.

   Die ebengenannten physiologischen Tatsachen stellen allerdings nur eine
Annäherung an den wirklichen Sachverhalt dar; überdies sind sie für die
Beurteilung und die richtige Deutung der Gesichtseindrücke nicht allein
maßgebend.4
Die zeichnerischen Abbilder werden daher nur solche Sinneswahrnehmungen auslösen
können, die den durch die Gegenstände selbst vermittelten mehr oder weniger nahe
kommen. Das Auge ist aber ein höchst akkommodationsfähiges Organ. Wenn es auch den
Unterschied zwischen Bild und Gegenstand jederzeit erkennt, ist doch seine Kunst, aus



einem Bild die wirklichen Eigenschaften des dargestellten Gegenstandes zu entnehmen,
erstaunlich.5
Andererseits ist das Auge für gewisse Dinge auch ein strenger Richter. Abweichungen
von der Symmetrie und der Gesetzmäßigkeit einfacher Formen wie Kreis, Ellipse usw.
wird es sofort störend empfinden. überhaupt soll man das Auge als den obersten Richter
für die Beurteilung eines Bildes ansehen, und Korrekturen, die von ihm verlangt werden,
auch dann ausführen, wenn man eine den geometrischen Vorschriften entsprechende
Zeichnung hergestellt hat.

   Das Auge stellt sich besonders leicht auf unendliche Sehweite ein, also so, als ob sich
der Gegenstand in unendlicher Entfernung befindet. Physiologisch beruht dies darauf,
daß diese Einstellung der Ruhelage des Auges entspricht. Andererseits nähern sich die
von einem Gegenstand Σ ausgehenden Lichtstrahlen um so mehr dem Parallelismus, je
weiter er vom Auge entfernt ist. Dies bewirkt, daß Bilder, die man auf Grund der
Annahme paralleler Sehstrahlen herstellt, vom Auge ebenfalls leicht aufgefaßt werden.
Diese Darstellung zeichnet sich überdies durch Einfachheit aus und ist daher von
besonderer Wichtigkeit.
   




	Fig 3
	






   II. Das geometrische Grundgesetz.     Wir nehmen jetzt an, daß auf einer
Ebene β, die wir uns vertikal denken wollen, auf die vorstehend genannte Art ein Bild
hergestellt werden soll. Wir haben dazu jeden Sehstrahl, der von einem Punkt P
des Körpers Σ ins Auge eintritt, mit der Bildebene β zum Schnitt zu bringen,
und wollen den so entstehenden Schnittpunkt wieder durch P' bezeichnen. Das
geometrische Grundgesetz besagt nun, daßjeder Geraden g des Gegenstandes Σ eine
Bildgerade g' des Bildes Σ' entspricht; genauer allen Punkten A,B,C... von Σ,
die auf einer Geraden g enthalten sind, solche Bildpunkte A',B',C'..., die auf
einer Geraden g' enthalten sind (Fig. 3). Die Sehstrahlen, die von den Punkten
A,B,C... der Geraden g ins Auge gelangen, liegen nämlich sämtlich in einer



Ebene, und zwar in derjenigen, die g mit dem Punkt K verbindet; ihr Schnitt
mit der Ebene β liefert die Bildgerade g'. Auf ihr liegen also auch die Punkte
A',B',C'....

   Wir treffen noch einige Festsetzungen. Zunächst kann die Tatsache außer
Betracht bleiben, daß wir es mit Sehstrahlen zu tun haben; wir fassen also diese
Strahlen in ihrer geometrischen Bedeutung als gerade Linien auf und stellen
sie uns überdies als unbegrenzt vor. Ebenso ersetzen wir auch die Bildebene β
für die Ableitung der weiteren geometrischen Gesetze durch eine unbegrenzte
Ebene. Den im Auge liegenden Knotenpunkt K, also den Scheitel unseres
Strahlenbündels, nennen wir von nun an S0, bezeichnen die auf der Ebene β
entstehende Figur Σ' auch als Projektion des Gegenstandes Σ auf β, und nennen den
Strahl PS0, der durch seinen Schnitt mit β die Projektion P' des Punktes P
liefert, den projizierenden Strahl des Punktes P. Der Punkt S0, durch den alle
projizierenden Strahlen gehen, heißt Zentrum der Projektion, und Σ' deshalb auch
Zentralprojektion.6

   Wird die Zeichnung insbesondere so angefertigt, als ob sich das Auge in unendlicher
Entfernung befindet, so daß also alle Sehstrahlen einander parallel werden, so sprechen
wir von einer Parallelprojektion. Sie heißt orthogonal, wenn die projizierenden Strahlen
auf der Bildebene senkrecht stehen, sonst schief.


   III. Das zeichnerische Grundgesetz.     Dieses Gesetz stellt eine Art
allgemeiner Vorschrift auf, nach der man das Bild eines Punktes oder einer Geraden von
Σ in der Ebene β herzustellen pflegt. Sie zerfällt in zwei Teile.


   1.  Das Bild einer Geraden g, die zwei Punkte A und B enthält, bestimmen wir so,
daß wir die Bildpunkte A' und B' zeichnen und die Gerade g' ziehen, die beide verbindet.

 2.  Analog bestimmen wir das Bild P' eines Punktes P in der Weise, daß wir uns durch
P zwei Geraden a und b legen und ihre Bildgeraden a' und b' zeichnen. Deren
Schnittpunkt ist der Bildpunkt P' von P.

   Wir bestimmen also die Gerade als Verbindungslinie zweier Punkte und den Punkt
als Schnittpunkt zweier Geraden.


   




	Fig 4
	




   Freilich liegt in der vorstehenden Vorschrift zunächst ein Zirkel. Praktisch schwindet
er dadurch, daß wir lernen werden, die Punkte A und B und die Geraden a und b in
bestimmter geeigneter Weise so anzunehmen, daß die Vorschrift ausführbar wird. Hier
beschränke ich mich auf folgende vorläufige Bemerkungen:

   Unter den Punkten, durch die wir eine Gerade g räumlich bestimmen
können, gibt es zwei, die sich am natürlichsten darbieten, und die wir deshalb
als ausgezeichnete Punkte ansehen können. Der eine ist der Punkt, in dem
sie die Bildebene durchdringt, der andere ist ihr sogenannter unendlichferner
Punkt7
(Fig. 4). Der erste Punkt wird auch Spur oder Spurpunkt der Geraden g genannt; wir
bezeichnen ihn durch G'. Offenbar fällt er mit seinem Bildpunkt zusammen. Man sieht
zugleich, daß hierin eine Eigenschaft aller Punkte der Bildebene zutage tritt. Es besteht
also der Satz:


   II. Jeder Punkt der Bildebene fällt mit seinem Bildpunkt zusammen.

   Um den Bildpunkt des unendlichfernen Punktes G∞ von g zu konstruieren, haben wir
zunächst die Gerade S0G∞ zu ziehen, also durch S0 eine Parallele zu g zu legen, und dann
ihren Schnitt mit der Bildebene β zu bestimmen. Dieser Schnittpunkt ist der Bildpunkt
G'∞. Wir wollen ihn kürzer durch G bezeichnen und ihn den Fluchtpunkt der Geraden g
nennen.8
Der Fluchtpunkt einer Geraden ist also derjenige Punkt der Bildebene β, der dem
unendlichfernen Punkt dieser Geraden entspricht. Auf seine zeichnerische Bestimmung
kommen wir noch näher zurück.

   Ich schließe mit einer Bemerkung, die die Herstellung der Figuren betrifft.

   Um die räumliche Wirkung zu erhöhen, zeichnet man die Bilder zweier windschiefer
Geraden am besten so, daß sie sich nicht schneiden. Vielmehr soll die hintere Gerade (vom
beschauenden Auge aus gedacht) an der Stelle des geometrischen Schnittpunktes etwas
unterbrochen sein. Gerade dies bewirkt, daß das Auge sie als eine zusammenhängende, aber
hinter der anderen liegende Gerade auffaßt. Diese Zeichnungsart trägt außerordentlich
zur körperlichen Wirkung der Bilder bei, wie man an den einzelnen Figuren
erkennt.9













§ 2. Die allgemeinen Gesetze für die zeichnerische Darstellung
ebener Gebilde.



   Wir behandeln zunächst die Herstellung der Bilder von ebenen Figuren. Insbesondere
wollen wir uns die gegebene Figur Σ in einer horizontalen Ebene γ liegend denken, die
wir zur Fixierung der Begriffe mit dem Fußboden zusammenfallen lassen und
Grundebene nennen. Die Bildebene, die wir uns, wie bereits erwähnt, vertikal denken,
heiße wieder β. Endlich denken wir uns das Auge S0 vor der Bildebene β befindlich; die
Figur Σ, von der auf β ein Bild zu zeichnen ist, befindet sich dann naturgemäß hinter der
Bildebene.

   Die Schnittlinie von γ und β soll Achse oder Grundlinie heißen; wir bezeichnen sie
durch a. Da sie eine Gerade von β ist, so fällt sie (§ 1, II) mit ihrer Bildgeraden Punkt
für Punkt zusammen.

   Wir beweisen nun zunächst den folgenden Satz:


   I. Die Fluchtpunkte aller Geraden von γ liegen auf einer zur Grundlinie parallelen
Geraden, dem sogenannten Horizont.
   




	Fig 5
	




   Zum Beweise ziehen wir in der Ebene γ irgendeine Gerade g und konstruieren ihren
Fluchtpunkt.10

Gemäß § 1 erhalten wir ihn, indem wir durch S0 die Parallele zu g legen und deren
Schnitt G mit der Bildebene β bestimmen. (Fig. 5) Diese Parallele liegt, welches auch
die Gerade g sein mag, in derjenigen Ebene η0 die durch S0 parallel zur Grundebene γ
geht, und die wir Augenebene nennen. Daher liegt G auf der Schnittlinie dieser Ebene η0
mit β, womit der Satz bewiesen ist.

   Die so bestimmte Gerade nennen wir den Horizont und bezeichnen ihn durch h.
Seiner Definition gemäß ist er Ort der Bildpunkte aller unendlichfernen Punkte von γ.
Deren Gesamtheit bezeichnet die Sprache als Horizont; als dessen Bildgerade heißt h
ebenfalls Horizont.

   Aus der Definition des Fluchtpunktes folgt unmittelbar, daß alle parallelen
Geraden g,g1,g2... denselben Fluchtpunkt haben; für jede von ihnen ergibt er sich
als Schnittpunkt von β mit dem nämlichen durch S0 gezogenen Strahl. Also
folgt:


   II. Jeder Schar paralleler Geraden g,g1,g2... der Grundebene entsprechen in der
Bildebene Geraden g',g'1,g'2..., die durch einen und denselben Punkt des Horizontes
gehen.
   




	Fig 6
	




   Unter den Scharen paralleler Geraden von γ nehmen vier eine bevorzugte Stellung
ein; die zur Bildebene normalen Geraden, die beiden Scharen, die mit ihr einen Winkel
von 45o einschließen, und die zu ihr parallelen Geraden.

   Für die zu β normalen Geraden n erhalten wir den Fluchtpunkt, indem wir von S0
ein Lot auf β fällen. (Fig. 6) Der Fußpunkt N ist der Fluchtpunkt; er heißt
Augenpunkt.

   Die Fluchtpunkte der gegen β unter 45o geneigten Geraden l und r seien L und R.
Sie heißen Distanzpunkte. Ihrer Definition gemäß bilden nämlich S0L und S0R mit β je
einen Winkel von 45o, folglich ist

 
	
   
S0N  = NL  = NR.
	
	(1)





   




	Fig 7
	




Die beiden Punkte L und R bestimmen daher die Entfernung des Auges von der
Bildebene; hierauf beruht es, daß die Richtungen l und r praktisch wie theoretisch als
bevorzugte Richtungen aufzufassen sind.

   Ist endlich p eine Gerade von γ, die zur Bildebene, also auch zur Grundlinie a
parallel ist, so gilt dies auch für die Bildgerade p'. Für diese Geraden besteht deshalb
eine einfache metrische Eigenschaft, die sich in folgenden Sätzen ausdrückt
(Fig. 7).


   1.  Ist B der Halbierungspunkt der Strecke AC, so ist auch B' der Halbierungspunkt
von A'C'.


   2.  Sind A, B, C irgend drei Punkte von p, und A', B', C' deren Bildpunkte, so ist


 
	
   
AB : BC : CA = A'B' : B'C' : C'A'.
	
	(2)




   Beides folgt unmittelbar aus dem bekannten Satz, daß irgend drei durch denselben
Punkt gehende Geraden von zwei sie kreuzenden Parallelen nach demselben
Verhältnis geschnitten werden. Der Satz 1. ist übrigens nur ein Spezialfall von
2.

   Ist in der Bildebene außer den Distanzpunkten L und R auch die Grundlinie a
gegeben, so ist damit nicht allein die Entfernung des Auges von der Bildebene, sondern
auch seine Höhe über der Grundebene bestimmt, und zwar können a, L und R beliebig
angenommen werden. Damit ist alsdann die Lage des Auges im Raume durch
zeichnerische Bestimmungsstücke festgelegt.

   Um die Entfernung des Auges von der Bildebene zu bestimmen, kann man übrigens
statt L und R die Fluchtpunkte E und F irgend zweier Geraden e und f von bekannter
Richtung auf dem Horizont h beliebig annehmen. Zieht man nämlich in der
Augenebene η0 durch E die Parallele zu e und durch F die Parallele zu f, so gehen
beide Parallelen durch S0 und bestimmen damit wieder die Lage des Auges zur
Bildebene.11











§ 3. Die praktischen Regeln der zeichnerischen Darstellung.



   Eine Figur von γ, von der wir in β ein Bild herstellen sollen, muß geometrisch oder
zeichnerisch gegeben sein; am besten auf demjenigen Blatt, auf dem wir die Zeichnung
wirklich ausführen. Hierzu drehen wir die Ebene γ um die Grundlinie a als Achse so
lange, bis sie in die Ebene β hineinfällt, und zwar unter dasjenige Stück von β, auf dem
das Bild entstehen soll. Beide Ebenen sind so auf demselben Zeichnungsblatt
vereinigt.
   




	Fig 8
	




   Durch diesen Kunstgriff wird die zeichnerische Herstellung des Bildes außerordentlich
erleichtert. Um nämlich zu einem Punkt P von γ den Bildpunkt P' zu konstruieren, lege
man (Fig. 8) gemäß dem zeichnerischen Grundgesetz von § 1 durch P je eine Gerade l und
r12
,
und bestimme P' als den Schnittpunkt der Bildgeraden l' und r'. Diese beiden
Bildgeraden lassen sich unmittelbar zeichnen. Ist nämlich L' der Schnitt von l mit a, so
ist L' der Spurpunkt von l, seine Verbindung mit dem Fluchtpunkt L liefert also die
Bildgerade l'. Ebenso erhalten wir die Bildgerade r', wenn wir den Punkt R mit dem
Schnittpunkt R' von r und a verbinden.

   In dem Vorstehenden ist die Hauptregel des praktischen Zeichnens enthalten.



Hat man in γ insbesondere eine Figur, die irgendwie aus Punkten und deren
Verbindungslinien besteht, so wird man in der angegebenen Weise zunächst die
Bildpunkte zeichnen, und dann die Verbindungslinien ziehen. Im übrigen wird man jedes
Hilfsmittel, das eine Vereinfachung der Zeichnung gestattet, und jeden hierzu
führenden Kunstgriff gern benutzen. Ich mache besonders auf folgende Tatsachen
aufmerksam:


   1.  In erster Linie empfiehlt sich die Benutzung solcher Geraden von γ, die der
Grundlinie parallel sind; denn ihre Bildgeraden sind gemäß § 2 ebenfalls zur Grundlinie
parallel.


   2.  Enthält die Figur Σ eine Reihe paralleler Geraden g, g1, g2... (Fig. 5), so
wird man zunächst zu einer, z. B. zu g, die Bildgerade g' bestimmen; in ihrem
Schnittpunkt mit dem Horizont h hat man dann sofort den Fluchtpunkt G dieser
Geradenschar, und damit einen Punkt, durch den alle Bildgeraden g'1, g'2...
hindurchgehen.


   3.  Hat man es mit einer Figur Σ zu tun, die zwei ausgezeichnete Richtungen hat, die
übrigens beliebige Neigung gegen die Grundlinie a haben können, so vereinfacht man sich die
Zeichnung, indem man von vornherein deren Fluchtpunkte statt L und R auf A als gegeben
annimmt.13


   4.  Man beachte, daß die Wahl der Fluchtpunkte die Entfernung des Auges von der
Bildebene bestimmt. Da man einem Gegenstand, von dem man einen guten
Gesichtseindruck erhalten will, nicht zu nahe stehen darf, so wird man, um gute Bilder zu
erzielen, die Fluchtpunkte demgemäß annehmen müssen. Erfahrungsgemäß ist es
zweckmäßig, die Distanz L N gleich der doppelten Höhe oder Breite des Gegenstandes
anzunehmen.14


   5.  Um möglichst genaue Bilder zu erhalten, empfiehlt es sich, zeichnerische
Überbestimmungen zu benutzen. Um z. B. zu einem Punkt P den Bildpunkt
P' zu bestimmen, kann man P als gemeinsamen Punkt von drei durch ihn
gehenden Geraden betrachten und zu ihnen die Bildgeraden zeichnen; ist
die Zeichnung vollkommen, so werden sie alle drei durch einen Punkt
gehen.15


Die Genauigkeit der Zeichnung wird auch dadurch erhöht, daß man zunächst solche
Punkte bevorzugt, in denen eine Symmetrie oder eine sonstige Regelmäßigkeit der Figur
zum Ausdruck kommt, wie dies bereits in § 1 erörtert wurde.

   Nach den vorstehenden Regeln sind die folgenden Aufgaben behandelt worden, bei
denen wir außer a im allgemeinen L und R als gegeben angenommen haben.
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   1.  Den Fluchtpunkt einer Geraden g zu zeichnen. (Fig. 9) Ist P ein Punkt von g, so
lege man durch P die Geraden l und r, konstruiere ihre Bildgeraden l' und
r', und verbinde ihren Schnittpunkt P' mit dem Spurpunkt G', in dem g die
Achse a trifft. Diese Verbindungslinie schneidet den Horizont h im Fluchtpunkt
G.


   2.  Das Bild einer quadratischen Teilung zu zeichnen, deren Linien senkrecht und
parallel zur Achse verlaufen. (Fig. 10) Die Diagonalen unserer Teilung sind lauter
Linien l und r; jeder Teilungspunkt ist also ein Schnittpunkt je zweier solcher
Geraden. Damit sind die Bildpunkte unmittelbar bestimmbar, und ebenso deren
Verbindungslinien.
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   Hier kann man auch die zur Achse senkrechten Linien n und ihren Fluchtpunkt N
statt der Linien l oder r benutzen. Vor allem aber ist zu beachten, daß jeder zur Achse
parallelen Geraden der Grundebene eine zur Achse parallele Gerade der Bildebene
entspricht.


   3.  In γ ist eine reguläre sechseckige Teilung gegeben; man soll ihr Bild zeichnen.
(Fig. 11) Da die Sechseckteilung stets zwei bevorzugte Scharen paralleler Linien enthält,
die nicht zugleich der Achse parallel sind, wird man am besten tun, deren Fluchtpunkte
als gegeben anzunehmen, und mit ihnen zu operieren, wie es Figur 11 erkennen
läßt. Auch hier wird man von vornherein suchen, die Zeichnung öfters durch
Überbestimmung zu kontrollieren, zumal wenn die Teilung Parallelen zur Achse
enthält.


   4.  Analog kann man die Zeichnung anderer Figuren ausführen. Als Beispiele eignen
sich besonders quadratische oder rechteckige Teilungen, sowie irgendwelche mittels
regelmäßiger Teilungen hergestellte Muster.

   Ich schließe mit folgender Bemerkung. Bereits in § 1 wurde erwähnt, daß eine an der
Hand der geometrischen Vorschriften, ausgeführte Zeichnung erhebliche Ungenauigkeiten
aufweisen kann. Die Quelle solcher Ungenauigkeiten liegt zum Teil darin, daß die
zeichnerisch herzustellenden Punkte vielfach nur durch Vermittlung einer ganzen Reihe von
Linien (Geraden oder Kreisen) gewonnen werden. Dadurch können sich die Fehler addieren.
Sie können besonders dann sehr stark werden, wenn man Punkte als Schnittpunkte von
Geraden bestimmt, die einen kleinen Winkel einschließen. Dies ist daher stets zu
vermeiden.16
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§ 4. Die Grundgesetze der Perspektiven Beziehung.



   Wir stellen uns jetzt die Aufgabe, den allgemeinen geometrischen Inhalt der
vorstehenden Ausführungen in kürze zu entwickeln. Dazu lassen wir die Vorstellung
fallen, daß die eine Ebene Grundebene, die andere Ebene Bildebene war, betrachten
beide Ebenen als geometrisch gleichwertig und bezeichnen sie insofern durch ε und
ε'. Zu ihnen fügen wir wieder einen außerhalb von ihnen liegenden Punkt S0
(Fig. 12).
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   Ein durch den Punkt S0 gelegter Strahl p0 trifft die Ebenen. ε und ε' in zwei
Punkten, die wieder P und P' heißen sollen, ebenso wird eine durch S0 gelegte Ebene γ0
die Ebenen ε und ε' in je einer Geraden g und g' schneiden. Gemäß dem allgemeinen
Sprachgebrauch der Geometrie ordnen wir die Punkte P und P' und ebenso die Geraden
g und g' einander zu, nennen sie entsprechende Elemente beider Ebenen, und sagen, daß
die Ebenen ε und ε' perspektiv aufeinander bezogen sind; den Punkt S0 nennen wir das
Zentrum der perspektiven Beziehung.

   Die Schnittlinie der beiden Ebenen ε und ε' hat wieder die Eigenschaft, daß jeder



ihrer Punkte sich selbst entspricht; sie heißt Perspektivitätsachse und soll jetzt durch
s = s' bezeichnet werden.

   Aus unserer Definition ergibt sich gemäß den Erörterungen von § 1 unmittelbar die
Richtigkeit des folgenden Grundgesetzes der perspektiven Beziehung:


   I. Den Punkten A, B, C,... einer Geraden g entsprechen Punkte A', B', C',... der
entsprechenden Geraden g', und den Geraden g, h, k..., die durch einen Punkt P
gehen, entsprechen Geraden g', h', k'..., die durch den entsprechenden Punkt P'
gehen.

   Ferner ergibt sich, weiter für je zwei entsprechende Geraden g und g' das
Theorem:


   II. Zwei entsprechende Geraden g und g' beider Ebenen schneiden sich auf der
Perspektivitätsachse.

   Der Beweis folgt unmittelbar aus dem grundlegenden Satz, daß der Scheitel einer
dreiseitigen körperlichen Ecke zugleich Schnittpunkt ihrer drei Kanten ist. Ihn wenden
wir auf die Ecke an, die von ε, ε' und der Ebene γ0 gebildet wird, die g und g' enthält
und durch S0 geht. Die Kanten dieser Ecke sind die Schnittlinien von je zweien dieser
Ebenen, nämlich
   


s = (ε,ε'),
    g = (ε,γ0),
    g' = (ε' ,γ0)



 mithin gehen s, g, g' in der Tat durch einen Punkt.

   Auf derselben Tatsache beruht der Beweis eines weiteren Satzes, aus dem wir
zwar erst später Nutzen ziehen werden, der aber schon hier eine Stelle finden
möge.

   Wir betrachten dazu eine dreiseitige Ecke mit dem Scheitel
S0, und fassen ihre Schnitte mit den Ebenen ε und ε' ins Auge
(Fig. 13).17


   




Fig 13:




Diese Schnitte sind zwei Dreiecke; ihre Seiten, die
a, b, c und a', b', c' heißen sollen, bilden je ein Paar entsprechender Geraden von ε und
ε'. Nach Satz II schneiden sich also je zwei entsprechende von ihnen in einem Punkte von
s. Die drei Punkte
   


A''
=  (a,a'),    B''
= (b,b'),    C''
= (c,c')



 liegen daher auf der Geraden s. Dies ist unser Satz. Also folgt:


   III. Satz des Desargues18
:
Werden aus einer dreiseitigen Ecke durch zwei Ebenen ε und ε' zwei Dreiecke
ausgeschnitten, so treffen sich die entsprechenden Seiten dieser Dreiecke in
Punkten, die auf einer Geraden liegen, und zwar auf der Schnittlinie von ε und
ε'.

   Der Satz und sein Beweis bleiben gültig, wenn der Punkt S0 ins Unendliche rückt,
also die Ecke in ein dreiseitiges Prisma übergeht. Dies folgt unmittelbar daraus, daß die
Lage von S0 für den Beweis in keiner Weise benutzt wird.

   Für besondere durch den Punkt S0 gehende Ebenen bestehen wieder Gesetze einfacher
Art.19


Ich führe zunächst die folgenden an:


   1.  Eine zur Achse s senkrechte Ebene ν0 schneidet die Ebenen ε und ε' in zwei
ebenfalls zur Achse s senkrechten Geraden n und n'.


   2.  Eine zur Achse s parallele Ebene π0 schneidet die Ebenen ε und ε' in zwei
zueinander und zu s parallelen Geraden p und p'.





   3.  Für drei Punkte A, B, C einer solchen Geraden p und die entsprechenden Punkte
A', B', C' von p' besteht die Relation
   
	
  

AB : BC : CA = A'
B' : B'
C' : C'
A'

	(1)



was sich ebenso ergibt wie die analoge Tatsache in § 2. Dem Halbierungspunkt einer
Strecke von p entspricht also wieder der Halbierungspunkt.

   Ein besonderer Fall der perspektiven Lage tritt dann ein, wenn die Ebenen ε und ε'
parallel sind. Dann sind je zwei entsprechende Geraden parallel, und je zwei
entsprechende Figuren einander ähnlich. Ebenen dieser Art heißen ähnlich aufeinander
bezogen.













§ 5. Die parallelperspektive Lage.



   Rückt das Perspektivitätszentrum S0 ins Unendliche, so werden alle projizierenden
Strahlen einander parallel, und die Figuren der einen Ebene werden Parallelprojektionen
von denen der anderen. In diesem Fall nennen wir die Ebenen ε und ε' parallelperspektiv
aufeinander bezogen. Für diese Lage bestehen gewisse einfachere Beziehungen, die uns
später nützlich sind, und die ich hier zunächst im Zusammenhang folgen lasse. Sie
ergeben sich meist als unmittelbare Folgen bekannter Satze über parallele Linien und
Ebenen.


   1. Parallelen Geraden der einen Ebene entsprechen parallele
Geraden der anderen; einem Parallelogramm entspricht also wieder ein
Parallelogramm.20



   2.  Die Relation 1) des vorigen Paragraphen gilt jetzt für je zwei entsprechende
Geraden g und g' beider Ebenen; sind also A, B, C drei Punkte einer Geraden g, und A',
B', C' ihre entsprechenden Punkte in ε', so ist stets
   
	
   

AB : BC : CA = A'
B' : B'C' : C'
A'
 
	(1)



Man kann diese Relation auch in die Form

   
	
   


	
A'B'
	=	
B'C'
	=	
C'A'
	= ρ

	
	
	


	AB	BC	CA	



 
	(2)



setzen; sie sagt dann aus, daß jede Strecke von g' das ρ fache der entsprechenden Strecke
von g ist. Je nach dem Wert von ρ erscheinen also die Strecken einer jeden Geraden von ε
in ε' nach einem konstanten Verhältnis vergrößert oder verkleinert. Wir nennen ρ den
zugehörigen Proportionalitätsfaktor.


   3.  Der Proportionalitätsfaktor ρ ist für die einzelnen Geraden im allgemeinen
verschieden; für alle zueinander parallelen Geraden hat er den gleichen Wert.
Sind nämlich g und f zwei parallele Geraden, von ε, und werden auf ihnen
(Fig. 14)21
die Punktepaare AB und CD so angenommen, daß ABCD ein Parallelogramm
ist, so ist auch A'B'C'D' ein Parallelogramm, also A'B' = C'D', und daher
auch
   



	
A'B'
	=	
C'D'


	
	
	


	AB	CD
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   4.  Da in der Schnittlinie s von ε und ε' je zwei entsprechende Punkte vereinigt
liegen, so hat der Proportionalitätsfaktor für s den Wert ρ = 1. Nach 3. gilt dies also
auch für jede zu s parallele Gerade.


   5.  Die Gesamtheit aller Strahlen, die durch zwei entsprechende Punkte P und
P' gehen, nennen wir entsprechende Strahlenbüschel. Sind a, a' und b, b' zwei
Paare entsprechender Strahlen, so werden die von ihnen gebildeten Winkel (ab)
und (a'b') im allgemeinen voneinander verschieden sein. Es liegt aber nahe zu
fragen, ob diese Winkel für gewisse Strahlenpaare einander gleich sein können.
Dies soll zu einem Teile beantwortet werden, und zwar beweisen wir folgenden
Satz:


   I. In zwei entsprechenden Strahlenbüscheln der beiden Ebenen ε und ε' gibt es stets
ein Paar entsprechender rechtwinkliger Strahlen.

   Dies ist zunächst für den Fall unmittelbar evident, daß die Richtung der
projizierenden Strahlen auf einer der beiden Ebenen, z. B. auf ε' senkrecht
steht, daß es sich also um eine Orthogonalprojektion (§ 1, II) handelt. In diesem
Fall entsprechen sich nämlich sowohl die beiden Strahlen, die durch P und P'
parallel zur Achse s laufen, wie auch diejenigen, die auf ihnen senkrecht stehen.
Dies gilt auch dann noch, wenn die Richtung der projizierenden Strahlen in
eine zu s senkrechte Ebene fällt, sonst aber beliebig ist. Immer sind in diesen
Fällen die Geraden, die parallel und senkrecht zu s durch P und P' gehen,
entsprechende Geraden beider Ebenen und bilden daher entsprechende rechte
Winkel.22


   




	Fig 15
	




   Wir haben den Beweis also nur noch für den Fall zu führen, daß die von P und P'
auf s gefällten Lote keine entsprechenden Geraden sind. Dazu erinnere man sich, daß sich
je zwei entsprechende Strahlen a und a' gemäß § 4, II auf der Achse s schneiden. Sind
also (uv) und (u'v') entsprechende rechte Winkel, so schneiden sich u und u' in einem
Punkt U von s, und v und v' in einem Punkt V , und es sind UPV und UP'V rechte
Winkel. Man drehe nun (Fig. 15) die Ebene ε' um die Achse s in die Ebene ε hinein, so
werden unserer obigen Annahme gemäß P und P' nicht auf einer zu s senkrechten
Geraden liegen. Andererseits liegen P und P' auf dem Kreis mit dem Durchmesser UV .
Damit sind aber U und V konstruierbar, nämlich als Schnittpunkte von s mit
demjenigen eindeutig bestimmten Kreis, dessen Mittelpunkt M zugleich auf s und
auf dem zu PP' gehörigen Mittellot liegt. Es folgt noch, daß wenn P' nicht
auf P fällt, es nur ein solches Punktepaar U und V , also auch nur ein Paar
entsprechender rechter Winkel mit P und P' als Scheiteln geben kann. Damit ist der Satz
bewiesen.23



   6.  Um zwei gegebene Ebenen ε und ε' parallelperspektiv, aufeinander zu beziehen,
genügt es, einem beliebigen Punkt der einen Ebene einen beliebigen Punkt der anderen
als entsprechend zuzuweisen; denn diese Punkte P und P' bestimmen durch ihre
Verbindungslinie die Richtung der projizierenden Strahlen und damit die perspektive
Beziehung. Damit ist zu jedem Punkt Q der Ebene ε der Bildpunkt Q' von ε'
unmittelbar bestimmt und ebenso umgekehrt.


   7.  Wir wollen uns nun vorstellen, daß wir die Ebenen ε und ε' in andere Lagen
bringen, aber das durch die perspektive Beziehung vermittelte Entsprechen der Punkte
und Geraden bestehen lassen. Dann ist klar, daß die unter 1. bis 5. genannten
Eigenschaften, da sie nur die in ε und ε' vorhandenen Strecken und Winkel betreffen,
unverändert bestehen bleiben Dagegen wird die ebengenannte Möglichkeit, zu einem
Punkt Q der Ebene ε den Bildpunkt Q' von ε' zu konstruieren, hinfällig. Ihr Ersatz
besteht in folgendem Theorem:


   II. Zu einem Punkt P der Ebene ε kann man den Bildpunkt P' zeichnerisch
bestimmen, sobald drei Paare entsprechender Punkte A, B, C und A', B', C' bekannt



sind.

   Zieht man nämlich (Fig. 16 und 17) durch P je eine Parallele zu den Seiten AB und
AC, sind B1 und C1 ihre Schnittpunkte mit diesen Seiten, und B' und C' wieder deren
Bildpunkte in ε', so hat man

   


	
AB1 :  B1B = A'B1' :  B1'B',

	
AC1 :  C1C = A'C1' :  C1'C',











	



	






	Fig 16
	Fig 17









   Damit sind die Punkte B1' und C1' konstruktiv bestimmt. Man hat daher nur noch durch
B1' und C1' je eine Parallele zu A'C' und A'B' zu ziehen, und erhält in ihrem Schnittpunkt den
Punkt P'.24



   8.  Wichtig ist endlich noch, daß man zwei Ebenen ε und ε' in parallelperspektive
Lage bringen kann, wenn man weiß, daß die unter 1. bis 5. genannten Eigenschaften für
sie erfüllt sind; es reicht sogar schon die Kenntnis eines Teiles dieser Eigenschaften hin.
Es besteht nämlich der Satz:


   III. Sind zwei Ebenen so aufeinander bezogen, daß für sie die unter 1. und 2.
genannten Eigenschaften bestehen, und daß in ihnen mindestens ein Paar entsprechender
Geraden existiert, für das der Proportionalitätsfaktor den Wert ρ = 1 hat, so können sie
in parallelperspektive Lage gebracht werden.




   Ist nämlich s und s' ein Geradenpaar, für das ρ = 1 ist, so daß also für drei Paare
seiner Punkte A, B, C und A', B', C' die Gleichungen
   


AB = A'B',    
BC = B'C',    
CA = C'A'



 bestehen, so bringe man ε und ε' irgendwie in eine solche Lage (Fig. 18), daß s' auf s
fällt, und A', B', C' auf A, B, C, was möglich ist. Dann ist, wie sich zeigen
wird, die parallelperspektive Lage bereits hergestellt. Ist nämlich a eine Gerade
von ε, die durch den Punkt A von s geht, und sind A1, A2, A3... irgendwelche
Punkte auf ihr, so geht auch a' durch A, und man hat überdies gemäß 2. die
Relation
   


AA1 : A1A2 : A2A3 ... = AA1' : A1'A2' : A2'A3' ...




Daher bilden die Verbindungslinien 
A
1
A
1
'
, 
A
2
A
2
'
, 
A
3
A
3
'
 ...
 ein Büschel paralleler
Strahlen.
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   Denkt man sich nun die beiden Ebenen ε und ε' durch Strahlen der so bestimmten
Richtung parallelperspektiv aufeinander bezogen, und bezeichnet den so zu einem jeden
Punkt P zugeordneten Punkt zunächst durch P'', so ist nur noch zu zeigen, daß P'' mit P'
identisch ist. Dazu verbinde man P mit einem Punkt B von s und einem Punkt An von a
so, daß PBAAn ein Parallelogramm ist, dann ist nach Voraussetzung auch P'BAA'n ein
Parallelogramm, und ebenso ist gemäß 1. P''BAA''n ein Parallelogramm. Da nun An'



mit An'' identisch ist, so gilt dies auch für P' und P'', womit der Beweis erbracht
ist.25



   9.  Hieraus folgern wir endlich noch, daß zwei Ebenen, denen die im Satz III
vorausgesetzten Eigenschaften zukommen, auch alle übrigen in diesem Paragraphen
genannten Eigenschaften besitzen.













§ 6. Die unendlichfernen Elemente.



   Die Theorie der sogenannten unendlichfernen Elemente hat sich im Anschluß an die
Lehre von der perspektiven Beziehung entwickelt. Wir werden daher ebenfalls diesen Weg
einschlagen und gehen zu der in § 4 erörterten perspektiven Beziehung zurück.
Naturgemäß soll es sich hier in erster Linie um eine systematische Darlegung
handeln.

   Sei p0 ein zur Ebene ε paralleler Strahl des Strahlenbündels S0,
so ist er zu ε' nicht parallel und wird daher ε' in einem Punkt P'
schneiden, während ein eigentlicher Schnittpunkt mit ε nicht vorhanden
ist.26 Die in § 4 dargelegte Grundlage der perspektiven Beziehung, die jedem Punkt der
einen Ebene einen Punkt der anderen zuordnet, erleidet also für den Strahl p0
zunächst eine Ausnahme. Wir beseitigen sie, indem wir auch zwei parallelen
Geraden einen und nur einen gemeinsamen Punkt beilegen; wir nennen ihn ihren
unendlichfernen Punkt. Die Bedeutung und die Tragweite dieser Festsetzung erhellt aus
folgendem.

   Zunächst folgern wir, daß allen einander parallelen Geraden derselbe unendlichferne
Punkt beizulegen ist. Ist nämlich G∞ der gemeinsame Punkt zweier parallelen Geraden g
und g1 und ist auch g2 zu g parallel, so haben unserer Festsetzung gemäß auch g und g2
ihren unendlichfernen Punkt gemein, und da es für jede Gerade nur einen geben soll, so
geht sowohl g1 als auch g2 durch G∞ hindurch.

   Nun denke man sich in der Ebene ε irgendeine Gerade p gezogen, die zu dem oben
angenommenen Strahl p0 parallel ist, so haben auch diese beiden Geraden ihren
unendlichfernen Punkt gemein; es geht also p0 durch den unendlichfernen Punkt P∞ von
p hindurch. Die obenerwähnte Ausnahmestellung des Strahles p0 ist damit beseitigt; er
hat jetzt mit ε und ε' je einen Punkt gemein, nämlich P' und P∞ und ordnet auch diese
Punkte einander zu.

   Übrigens ist, was zu bemerken ist, der zu P' so zugeordnete Punkt P∞ davon
unabhängig, welche zu p0 parallele Gerade von ε wir zu seiner Definition benutzen; in der
Tat gehen alle diese Geraden durch denselben Punkt P∞ hindurch.
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   Sei nun wieder (Fig. 19) η0 diejenige durch S0 gehende Ebene, die zu ε parallel ist,
so wird sie ε' in einer Geraden h' schneiden, während eine Schnittlinie mit ε zunächst
fehlt. Um diese Ausnahme zu beseitigen, legen wir auch den Ebenen ε und η0 eine ihnen
gemeinsame Gerade bei, die wir ihre unendlichferne Gerade nennen und durch h∞
bezeichnen. Wie oben, folgern wir zunächst wieder, daß alle zueinander parallelen
Ebenen dieselbe unendlichferne Gerade enthalten.

   Wesentlich ist weiter, daß die so eingeführte unendlichferne Gerade h∞ die
allgemeine Eigenschaft besitzt, die einer Schnittlinie zweier Ebenen zukommt,
daß sie nämlich Ort aller in ε enthaltenen unendlichfernen Punkte ist. Falls
nämlich wieder p irgendeine Gerade von ε ist, und p0 der durch S0 gehende zu p
parallele Strahl, so liegt p0 in η0, und daher gehört der Punkt P∞, den p0 mit ε
gemein hat, zu den Punkten, die η0 mit ε gemein hat; er ist also in der Tat ein
Punkt von h∞. Der Schnittpunkt P' von p0 mit ε' liegt aus demselben Grund
auf h'. In Übereinstimmung mit § 2 bezeichnen wir h' als die Fluchtlinie von
ε'.

   Ebenso kann man in der Ebene ε' eine unendlichferne Gerade k∞' definieren; sie
entspricht der Geraden k von ε, in der ε von der zu ε' parallelen durch S0 laufenden
Ebene geschnitten wird, und die die Fluchtlinie von ε darstellt.

   Man folgert endlich noch unmittelbar den folgenden Satz:


   I. Bei parallelperspektiver Beziehung zweier Ebenen ε und ε' entspricht dem
unendlichfernen Punkt einer Geraden g von ε der unendlichferne Punkt ihrer
Bildgeraden in ε', und der unendlichfernen Geraden von ε die unendlichferne Gerade von
ε'.

   Die so eingeführten unendlichfernen Punkte und Geraden bezeichnet man auch als
uneigentliche Elemente.

   Ihre allgemeine Bedeutung ist die, daß sie für die Geometrie eine ähnliche Rolle
spielen, wie die irrationalen oder komplexen Zahlen für die Arithmetik. Sie verbürgen die
Ausnahmslosigkeit der Grundgesetze und bewirken dadurch die Abgeschlossenheit
des Lehrgebäudes. Ich will dies für die einfacheren grundlegenden Sätze hier
ausführen.27


   Beschränken wir uns auf eine Ebene, so gelten jetzt für sie ausnahmslos die folgenden
Sätze:


   1.  Zwei Geraden bestimmen einen Punkt, nämlich ihren Schnittpunkt, und 
 2.  zwei
Punkte bestimmen eine Gerade, nämlich ihre Verbindungsgerade.

   Sind nämlich im ersten Fall beide Geraden eigentliche Geraden, so haben sie
entweder einen endlichen oder einen unendlichen Punkt gemein; ist aber eine der beiden
Geraden uneigentlich, so hat sie mit der eigentlichen Geraden deren unendlichfernen
Punkt gemein.

   Sind zweitens von den Punkten beide eigentlich, so bestimmen sie eine eigentliche
Gerade, und ebenso erhellt, daß zwei uneigentliche Punkte die unendlichferne Gerade als
Verbindungslinie bestimmen. Ist endlich der eine Punkt ein eigentlicher Punkt P, und
der andere ein uneigentlicher Punkt Q∞, so ist dieser seiner Definition gemäß der
unendlichferne Punkt einer Geraden q bestimmter Richtung, und die durch P zu q
gezogene Parallele ist die Verbindungslinie beider Punkte. Die Grundgesetze
bleiben also in der Tat für die uneigentlichen Punkte und Geraden in Kraft.
Hiermit ist zugleich die Berechtigung ihrer Einführung nachgewiesen. Zugleich
erfährt so das in § 1 aufgestellte zeichnerische Grundgesetz eine nachträgliche
Motivierung.

   In ähnlicher Weise kann man auch für den Raum uneigentliche Elemente definieren
und die Permanenz der Grundgesetze für sie darlegen. Ich beschränke mich auf die
Angabe der grundlegenden Festsetzungen. Diese sind:


   1.  Alle zueinander parallelen Geraden haben einen und denselben uneigentlichen
Punkt miteinander gemein, nämlich ihren unendlichfernen.


   2.  Alle zueinander parallelen Ebenen haben eine und dieselbe uneigentliche Gerade
miteinander gemein, nämlich ihre unendlichferne.


   3.  Alle zu einer Geraden parallelen Ebenen enthalten den unendlichfernen Punkt
dieser Geraden.


   4.  Alle die Geraden und Ebenen, die gemäß den Sätzen 1. und 3. durch einen
unendlichfernen Punkt hindurchgehen, hat man als die sämtlichen Strahlen und Ebenen
eines Strahlenbündels anzusehen, dessen Scheitel S0 sich ins Unendliche entfernt hat. Die
Parallelperspektive erscheint also auch bei dieser Betrachtung als derjenige
Spezialfall der allgemeinen Perspektive, bei dem der Scheitel ins Unendliche gerückt
ist.





   5.  Die Gesamtheit aller unendlichfernen Punkte und Geraden
des Raumes hat man als die unendlichferne Ebene des Raumes
einzuführen.28










§ 7. Anwendung auf einige zeichnerische Aufgaben.



   Für die folgenden Zwecke denken wir uns die Ebene ε wieder horizontal und ε'
vertikal, und fassen zunächst die Achse, die Fluchtlinien und die unendlichfernen
Geraden ins Auge. Sie bilden drei Paare entsprechender Geraden, nämlich (Fig. 20)
   


1. h∞, h',    
2. s = s'   und  
3. k, k∞'



 Diese Geraden teilen die Ebenen ε und ε' in drei entsprechende Teile, die wir
durch I, II, III und I', II', III', bezeichnen wollen. Wir denken uns nun, daß
eine Figur Σ' sich in der Ebene ε' bewegt, und betrachten die Bewegung der
entsprechenden Figur Σ in ε. Sobald die Figur Σ' die Fluchtlinie h' erreicht, wird sich die
entsprechende Figur Σ in ε zunächst bis ins Unendliche dehnen, und wenn Σ' die
Fluchtlinie h' überschreitet, also aus dem Teil I' in den Teil III' übertritt, wird Σ
das Unendliche durchsetzen und ebenfalls teils zu I teils zu II gehören, also
scheinbar in zwei getrennte Stücke zerfallen. Die Permanenz der Gesetze, die wir für
beide Ebenen zugrunde legen, führt uns aber dazu, auch die Figur der Ebene ε
durch das Unendliche hindurch als zusammenhängend zu betrachten. Dies ist
nichts anderes als was wir in § 6 für die Gerade g einführten; auch sie soll im
Punkte G∞ ebenso zusammenhängen, wie die Bildgerade g' im Fluchtpunkt
G29
.
Hiervon wollen wir nun einige Anwendungen machen.



   




	Fig 20
	




   Sei zunächst K' ein im Gebiet II' von ε' enthaltener Kreis, so wird ihm in der Ebene
ε eine im Gebiet II enthaltene Ellipse entsprechen; die sämtlichen Strahlen, die den
Punkt S0 mit den Punkten von K' verbinden, bilden nämlich einen Kegel zweiter
Ordnung, und sein Schnitt mit der Ebene ε stellt die ebengenannte Ellipse
dar30
.
Wenn wir jetzt den Kreis K' so annehmen, daß er die Fluchtlinie h' berührt, so wird die
in ε gelegene Ellipse in eine Parabel übergehen, und wenn K' die Fluchtlinie h' kreuzt, so
erhalten wir in ε eine Hyperbel. Wir haben uns also vorzustellen, daß auch Parabel und
Hyperbel geschlossene Kurven sind, daß die Parabel von der unendlich fernen
Geraden berührt wird, und daß die beiden Äste der Hyperbel im Unendlichen
zusammenhängen. Die Einheitlichkeit der Auffassung wird hierdurch außerordentlich
gesteigert. Überhaupt besteht der allgemeine Nutzen der perspektiven Betrachtung
darin, daß wir lernen, in den verschiedenen Einzelfällen das Gleichbleibende
und Unveränderliche zu erkennen und die Einzelfälle zu einer höheren Einheit
zusammenzufassen.

   Es leuchtet ohne weiteres ein, daß wir die vorstehenden Tatsachen benutzen können,
um analog zu § 3 Ellipsen, Parabeln und Hyperbeln zeichnerisch herzustellen; nur tritt
für die praktische Ausführung eine kleine Modifikation ein. Wir wollen nämlich,
wie eben geschehen ist, den gegebenen Gegenstand in der Ebene ε' liegend
annehmen, und in ε die ihm entsprechende Figur herstellen. Dabei gehen wir wieder
so zu Werke, daß wir die Ebene ε um die Achse s in die Zeichnungsebene ε'
hineingedreht denken, haben aber nun, um zu einem Punkt P' von ε' den ihm
entsprechenden Punkt P von ε zu finden, die in § 3 angegebene Vorschrift in
umgekehrter Reihenfolge auszuführen. Sind also jetzt (Figur 8, S. 14) P', L und R
gegeben, so ziehen wir zunächst l' = LP' und r' = LR', bestimmen die Schnittpunkte
mit s, und ziehen durch sie unter 45o die Geraden l und r, die in ihrem Schnittpunkt
den Punkt P liefern. In dieser Weise sind die folgenden Figuren gezeichnet
worden.






	



	



	






	Fig 21
	Fig 22
	Fig 23









   Die Figuren 21, 22 und 23 enthalten die dem Dreiecke A'B'C'
entsprechenden Dreiecke ABC der Ebene ε. Sie entstehen unmittelbar,
indem man zu A'B'C' in der ebengenannten Art die Bildpunkte
konstruiert31
.
In Fig. 22 liegt eine seiner Ecken im Unendlichen, in Fig. 23 zieht sich die Dreiecksfläche
mit der Spitze C durch das Unendliche hindurch; man zeichnet es am besten so,
daß man auf A'C' und B'C' je einen Punkt D' und E' beliebig auswählt und
deren Bilder D und E konstruiert. Damit sind die Richtungen von AG und BC
bestimmt.

   




	Fig 24
	







   Ich schließe mit einigen Winken, die die Zeichnung von Ellipse, Parabel und
Hyperbel betreffen. Die Zeichnung kann zunächst in der Weise erfolgen, daß man zu einer
Reihe von Punkten des Kreises die ihnen in ε entsprechenden Punkte konstruiert,
und die diese Punkte verbindende Kurvenlinie annäherungsweise herstellt. Um
ein möglichst gutes Kurvenbild zu erhalten, können folgende Hinweise dienen
(Fig. 24):




   1.  Den beiden zur Achse parallelen Tangenten p' und p1' des Kreises entsprechen
zwei zur Achse parallele Tangenten p und p1 des Kegelschnitts; sollte der Kreis die
Fluchtlinie h' berühren, so daß der Kegelschnitt eine Parabel ist, so ist eine dieser
Kegelschnitttangenten die unendlichferne Gerade.


   2.  Dem Kreisdurchmesser d', der die Berührungspunkte der ebengenannten
Tangenten enthält, entspricht deshalb ein Durchmesser d des Kegelschnitts.


   3.  Einer Sehne A'B' des Kreises, die auf diesem Durchmesser d senkrecht steht,
entspricht gemäß § 4 eine Sehne AB des Kegelschnitts, die durch den Durchmesser d
halbiert wird.





   4.  Ist der Kegelschnitt eine Ellipse, so erhält man den zu d konjugierten
Durchmesser d1 und die zu d parallelen Tangenten t und t1 der Ellipse wie folgt. Da t
und t1 unter sich und mit d parallel sind, so schneiden sich die entsprechenden Tangenten
t' und t1' des Kreises auf der Fluchtlinie h' und gehen insbesondere durch den Schnitt
von h' und d'. Diese beiden Kreistangenten sind aber in ε' leicht konstruierbar. Man hat
daher nur die ihnen in ε entsprechenden Geraden zu bestimmen, und auf ihnen noch die
Punkte P und Q, die den Berührungspunkten P' und Q' der Kreistangenten
entsprechen.


   5.  Ist der Kegelschnitt eine Hyperbel, und sind E' und F' die Punkte, in denen der
Kreis K' die Fluchtlinie kreuzt, so entsprechen den Kreistangenten in E' und F' die
Asymptoten der Hyperbel.

   Eine zweite Methode besteht darin, die Kurven als Enveloppen ihrer Tangenten
aufzufassen, und zu einer Reihe von Kreistangenten die Bildgeraden zu zeichnen.
In allen Fällen wird man übrigens auf die Symmetrie der Figuren in erster
Linie bedacht sein und alle Vorteile benutzen, die aus ihr fließen (vgl. § 3,
5).32











§ 8. Die allgemeinen Gesetze der ebenen Darstellung räumlicher
Figuren.



   Die allgemeinen Gesetze und Vorschriften von § 1 gelten ihrer Ableitung nach auch,
für die zeichnerische Darstellung beliebiger räumlicher Figuren. Wir werden daher auch
im Baum Punkte und Geraden als die einfachsten Gebilde betrachten, mit denen wir
zeichnerisch operieren, stellen den Punkt wieder als Schnitt zweier durch ihn
gehender Geraden und die Gerade als Verbindungslinie zweier ihrer Punkte,
insbesondere von Spur und Fluchtpunkt dar, und suchen zunächst wieder solche
Geraden, denen besonders einfache zeichnerische Eigenschaften zukommen.
Die Bildebene β denken wir uns nach wie vor vertikal.Unter den horizontalen
Ebenen des Raumes wählen wir eine aus, die den Fußboden darstellen soll, und
die wir die Grundebene γ nennen; ihre Schnittlinie mit der Bildebene heiße
wieder Grundlinie und werde durch a bezeichnet. Die Gerade von β, die die
Fluchtpunkte aller in der Grundebene liegenden Geraden enthält, nennen wir
wieder den Horizont h; er hat die gleiche allgemeine Bedeutung wie in § 2.
Insbesondere behalten auch die Punkte N, L, R ihre in § 2 dargelegte theoretische und
praktische Bedeutung. Zusammen mit der Grundlinie a sind sie diejenigen
in der Zeichnungsebene β enthaltenen geometrischen Elemente, die die Lage
des Auges zum Bild und zur Grundebene festlegen, und zwar ebenso wie in
§ 2.

   Als zeichnerisch ausgezeichnete Geraden können wir — abgesehen
von den Geraden l und r — solche betrachten, die zu einer der beiden
Ebenen β und γ parallel oder senkrecht verlaufen. Über sie gilt
folgendes33
:


   1.  Der Fluchtpunkt einer zu γ parallelen Geraden g liegt auf dem Horizont h.
Denn in γ gibt es eine zu g parallele Gerade g1, und gemäß § 6 haben alle
zueinander parallelen Geraden denselben unendlichfernen Punkt, also auch denselben
Fluchtpunkt.


   2.  Ist p eine Gerade, die zu β parallel ist, so ist die Bildgerade p' zu p parallel.
Dies folgt unmittelbar daraus, daß p und p' in einer durch S0 gehenden Ebene



π0 liegen, und ihr gemeinsamer Punkt auch gemeinsamer Punkt von β und p
ist.

   Für zwei solche Geraden p und p' gelten daher auch die Sätze 1. und 2. von § 2; sie
bestehen ja für je zwei entsprechende parallele Geraden. Für solche Geraden geht also der
Halbierungspunkt wieder in den Halbierungspunkt über.

   Ist p insbesondere horizontal, so ist auch p' horizontal; horizontale Linien, die zur
Bildebene parallel sind, bleiben also auch im Bilde horizontal.


   3.  Sei v eine Gerade, die auf γ senkrecht steht. Eine solche Gerade ist zu β parallel,
und damit steht gemäß 2. auch die Bildgerade v' auf γ senkrecht. Dies ist aber, da v' in
β liegt, nur so möglich, daß v' auf der Grundlinie a' senkrecht steht. Jeder Geraden v
entspricht also eine zu a senkrechte Gerade v'; vertikale Linien bleiben also
auch im Bilde vertikal. In der Tat erscheint alles Vertikale dem Auge ebenfalls
vertikal.


   4.  Sei endlich n eine zu β senkrechte Gerade. Sie ist alsdann zu γ parallel und eine
Gerade der ersten Gattung, hat aber noch einige besondere Eigenschaften. Zunächst ist
ihr Fluchtpunkt der Augenpunkt N. Ihr Spurpunkt N' spielt ebenfalls die Rolle eines
ausgezeichneten Punktes; sein Abstand von der Grundlinie bestimmt nämlich unmittelbar
die Höhe der Geraden n über der Grundebene (Fig. 25); er liegt also über, auf oder unter
dem Horizont h, je nachdem die Gerade n über, auf oder unter der Augenebene η0
liegt34
.
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   5.  Eine besondere Rolle spielen endlich auch diejenigen Geraden des Raumes, die
durch S0 gehen. Allen ihren Punkten entspricht auf β derselbe Punkt, nämlich ihr
Durchdringungspunkt mit β. Fragt man nun, was diese Geraden zeichnerisch bedeuten, so
ist die Antwort sehr leicht. Sie sind sozusagen verbotene Gebilde. Man wird sich bei der



Betrachtung eines Körpers kaum so stellen, daß Geraden des Körpers als Punkte erscheinen;
man wird daher auch für die Zeichnung die Stellung des Auges nicht so wählen, daß dies
eintritt.35


   Liegt der Punkt S0 im Unendlichen, haben wir es also mit einer Parallelprojektion
zu tun, so kommen noch einige weitere einfache Eigenschaften hinzu.

   Erstens besteht jetzt für je drei Punkte A, B, C einer jeden Geraden und ihre
Bildpunkte die Relation 2) von § 2, also
   


AB  : BC  : CA  = A'B' :  B'C' : C'A',



 und es geht der Halbierungspunkt in den Halbierungspunkt über; handelt es sich
insbesondere um eine zur Bildebene parallele Gerade p, so geht die Proportionalität in
Gleichheit über. Jede zu β parallele Strecke ist also ihrem Bilde gleich.

   Sind zweitens g und g1 parallele Geraden, so sind auch ihre Bildgeraden in β
einander parallel, was eines Beweises nicht bedarf.

   Auf diesen Tatsachen beruht die leichtere Herstellbarkeit und damit auch die
Bevorzugung der Bilder, die nach den Methoden der Parallelprojektion, hergestellt
werden. Ihre zeichnerische Zweckmäßigkeit liegt, wie in § 1 erwähnt wurde, darin, daß es
dem Auge besonders leicht wird, sich auf unendliche Sehweite einzustellen. Es ist sehr zu
empfehlen, bei der Betrachtung der Parallelprojektionen dem Auge diese Einstellung zu
geben; man wird dann leicht den Eindruck der Körperlichkeit erhalten. (Vgl. auch
S. 125 Anm. 64.)













§ 9. Die zeichnerische Darstellung der räumlichen Figuren.



   Um das ebene Bild einer räumlichen Figur Σ zeichnerisch herzustellen, denken wir
uns zunächst wieder die Bildebene β durch Drehung um die Achse in die Grundebene
γ hineingedreht, in derselben Weise wie in § 3; auch nehmen wir wieder die
Grundlinie a, sowie die Distanzpunkte L und R als gegeben an. Alle in § 2 und 3
abgeleiteten Regeln und Sätze bleiben dann unmittelbar für denjenigen Teil der
Figur Σ bestehen, der in der Grundebene γ enthalten ist. Also folgt als erstes
Resultat:


   I. Diejenige Teilfigur von Σ, die in der Grundebene enthalten ist, ist nach den
Vorschriften von § 3 zeichnerisch bestimmbar.

   Da die Grundebene γ in § 8 beliebig gewählt werden konnte, überträgt sich dies
sofort auf jede horizontale Ebene, vorausgesetzt, daß man mit ihr ebenso operiert, wie
mit der Grundebene γ. Dazu ist offenbar notwendig und hinreichend, daß die Schnittlinie
dieser Ebene mit β (und selbstverständlich die in ihr enthaltene Teilfigur) bekannt ist.
Nennen wir sie ihre Spur, so folgt:


   II. Jede in einer horizontalen Ebene liegende Teilfigur von Σ kann gemäß § 3
gezeichnet werden, sobald ihre Spur in β bekannt ist.



   




	Fig 26
	




   Diese Spur ist eine horizontale Gerade; sie ist daher bestimmt, sobald man einen
ihrer Punkte kennt. Einen solchen Punkt stellt z. B. der Durchdringungspunkt einer in
ihr liegenden Geraden mit der Bildebene β dar.

   Beachten wir noch, daß jede Vertikale des Gegenstandes Σ gemäß § 8 im Bilde
vertikal bleibt, so können wir bereits einfachere Beispiele erledigen. Ein solches bilden
die nebenstehend gezeichneten Würfel (Fig. 26), von denen zwei bis an die
Bildebene heranreichen. Die in der Bildebene liegenden Flächen ABCD und
BCFE stellen sich daher in ihrer natürlichen Größe dar. Die Ecken S, T, U,
V des oberen Würfels sollen in die Mitten der Quadrate fallen, auf denen er
steht.

   In Anlehnung an § 3 (Fig. 10) können wir die Zeichnung in diesem
Fall sogar direkt ausführen, ohne die in der Grundebene und den andern
Horizontalebenen vorhandenen Teilfiguren zu benutzen. Wir zeichnen zunächst
das der Grundebene entsprechende Bild in der gleichen Weise wie bei
Figur 10.36
 Gemäß Satz II verfahren wir dann ebenso mit der Ebene, die die Bildebene in der
Geraden DCF schneidet. Wir verbinden also die Punkte C, D, F mit L, N und R,
ziehen durch die Schnittpunkte die Parallelen zur Achse, und erhalten so das Bild der
oberen vier Würfelflächen; übrigens kann man für ihre Zeichnung auch den Umstand
benutzen, daß je zwei Punkte der oberen und der unteren Flächen auf einer Vertikalen
liegen.37
 Da die Mitten S, T, U, V dieser Würfelflächen zugleich vier Ecken des obersten Würfels
sind, hat man nur noch dessen obere Fläche WXY Z zu zeichnen. Deren Ecken liegen
zunächst wieder auf den durch S, T, U, V gehenden Vertikalen. Wir bestimmen nun
noch die Bildgeraden der in dieser Fläche enthaltenen Diagonalen WY und XZ, deren
Fluchtpunkte R und L sind. Dazu sind nur ihre Spuren P und Q zu ermitteln; wir
erhalten sie unmittelbar, indem wir die Kanten AD und EF um sich selbst



bis P und Q verlängern. Die so bestimmten Geraden liefern in ihrem Schnitt
mit den eben genannten Vertikalen bereits die Punkte W, X, Z und Y . Eine
Überbestimmung liegt darin, daß W, X und Z, Y auf je einer Parallelen zur Achse
liegen.

   Ähnlich kann man auch eine Reihe von Würfeln zeichnen, die so hinter einander
liegen, daß ihre Grundflächen ein Rechteck bilden.


   Wir erörtern nun die allgemeine Frage, wie wir das Bild P' eines gegebenen
Raumpunktes P in β zu zeichnen haben. Dies kann offenbar auf verschiedene Art
geschehen, je nach der Wahl der Geraden, als deren Schnitt wir ihn betrachten. Drei
Fälle wollen wir besonders hervorheben:

   

	Fig 27 	




   1.  Zunächst betrachten wir ihn als Schnittpunkt einer zu γ senkrechten Geraden v
und einer zu β senkrechten Geraden n (Fig. 27). Sei P1 der Schnitt von v mit γ, P2 der
von n mit β, und P1P0 das von P1 auf die Grundlinie gefällte Lot, so bilden die vier
Punkte PP1P0P2 ein Rechteck, und es ist
   
	
   
PP1 = P2P0.

	(1)



Diese einfache Tatsache läßt uns leicht erkennen, daß wir die Bildgeraden v' und n' und
damit auch den Bildpunkt P' von P zeichnen können, sobald uns seine Projektion P1
und die Höhe PP1 gegeben sind (Fig. 28).
   

 
Fig 28

  Die Bildgerade v' ist nämlich, erstens
senkrecht zur Grundlinie a (nach § 8) und zweitens geht sie durch den Bildpunkt P1'
von P1, der gemäß I bestimmbar ist; sie ist also selbst zeichnerisch bestimmt. Ferner
geht die Gerade n' erstens durch den Augenpunkt N und zweitens durch den Punkt P2,
der ihr Durchdringungspunkt mit β ist, und infolge der Relation 1) ebenfalls zeichnerisch
bestimmt ist. Damit ist die Behauptung bewiesen. Wir erhalten also folgende
Konstruktionsvorschrift.


   III. Um das Bild eines Punktes P zu zeichnen, dessen Projektion P1 in der
Grundebene und dessen Höhe PP1 über der Grundebene bekannt sind, zeichne man
gemäß § 3 den Bildpunkt P1' von P1 ziehe durch P1' die Gerade v' senkrecht
zur Grundlinie, bestimme auf dem von P1 auf die Grundlinie gefällten Lot
P1P0 den Punkt P2, so daß P0P2 = PP1 ist, und verbinde endlich P2 mit dem
Augenpunkt N, so schneidet diese Verbindungslinie n' die Gerade v' im Bildpunkt



P'.
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   Ein Beispiel einfachster Art ist das folgende. Eine quadratische Säule von gegebener
Höhe zu zeichnen, deren Grundfläche in der Grundebene liegt (Fig. 29). Sei
ABCD die untere und EFGH die obere Fläche unserer Säule; wir wollen sie so
annehmen, daß AB der Achse parallel laufe. Wir zeichnen dann gemäß § 3 das
Bild A'B'C'D', errichten in A' eine Vertikale v', fällen von A das Lot AA0 auf
die Achse, verlängern es um die gegebene Höhe bis A2, verbinden A2 mit dem
Augenpunkt N, und erhalten im Schnitt dieser Verbindungslinie mit v' den
Bildpunkt E'. Ebenso kann man die Punkte F', G' und H' zeichnen. Man beachte
zugleich, daß E'F' und G'H' zur Achse parallel sind; man kann also G' und H'
einfacher als Schnitt dieser Parallelen mit den in C' und D' errichteten Vertikalen
finden38
.
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   2.  Enthält die Figur Σ Scharen von parallelen horizontalen Geraden, die nicht auf
der Bildebene β senkrecht stehen, so liegt es nahe, sie in der gleichen Weise zu
benutzen, wie die Geraden n; analog zu dem, was wir am Schluß von § 2 ausgeführt
haben. In der Tat läßt sich die obige Regel ohne weiteres auf alle Richtungen
verallgemeinern, die zur Grundebene parallel sind. Man betrachte also jetzt (Fig. 30) den
Punkt P als Schnittpunkt einer Geraden v mit einer zur Grundebene parallelen
Geraden f; P1 sei wieder der Schnitt von v mit γ, und F2 derjenige von f
mit β. Zieht man nun in γ durch P1 eine zu f parallele Gerade f1 und nennt
ihren Schnitt mit der Grundlinie F0, so ist PP1F0F2 wieder ein Rechteck, also
PP1 = F2F0. Alles übrige ergibt sich wie oben. Mithin ergibt sich folgende Regel
(Fig. 31).
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   IV. Ist der Fluchtpunkt F einer zur Grundebene parallelen Geraden f bekannt, so
kann man das Bild eines Punktes P, dessen Projektion P1 in der Grundebene und dessen
Höhe PP1 über der Grundebene bekannt sind, wie folgt konstruieren. Man zeichne gemäß
§ 3 den Bildpunkt P1' von P1 ziehe durch P1' die Gerade v' senkrecht zur Grundlinie
und durch P1 eine zu f parallele Gerade f1, errichte in ihrem Schnittpunkt
F0 mit der Grundlinie ein Lot F0F3 gleich P1P, und verbinde F3 mit dem
Fluchtpunkt F von f, so schneidet diese Verbindungslinie die Gerade v' im Bildpunkte
P'.


   3.  Eine dritte oft brauchbare Regel erhalten wir folgendermaßen. Sei e eine zweite
horizontale Gerade, deren Fluchtpunkt E bekannt ist, so gilt das vorstehende auch für
sie. Die beiden zu f und e zugehörigen Punkte F2 und E2 liegen daher auf einer zur
Grundlinie parallelen Geraden, und zwar stellt diese Gerade den Durchschnitt von β mit
der Ebene dar, die durch P parallel zur Grundebene verläuft. Daraus folgt sofort
(Fig. 32):
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   V. Kennt man die Spur d einer zur Grundebene parallelen Ebene δ mit der Bildebene
β, sowie die Fluchtpunkte E und F zweier horizontalen Richtungen e und f, so kann
man das Bild eines Punktes P von δ, dessen Projektion P1 in der Grundebene bekannt
ist, folgendermaßen zeichnen. Man ziehe durch P1 je eine zu e und f parallele Gerade,
bestimme ihre Schnittpunkte E0 und F0 mit der Grundlinie, errichte in ihnen die
Lote E0E3 und F0F9 bis zum Schnitt mit der Spur d, verbinde E2 mit E und
F2 mit F, und erhält im Schnittpunkt dieser Verbindungslinien den Bildpunkt
P'.

   Diesen Satz wird man besonders dann mit Vorteil anwenden, wenn es sich um die
Zeichnung einer in der Ebene δ enthaltenen Teilfigur von Σ handelt. Man sieht leicht,
daß die Art, in der wir die Figur 26 herstellten, bereits der in ihm enthaltenen Regel
entspricht. Übrigens dienen die verschiedenen Möglichkeiten, die den Sätzen I, II, III
entsprechen, der stets notwendigen zeichnerischen Überbestimmung.

   In dieser Weise wollen wir folgende Aufgaben behandeln.


   1.  Einen parallelepipedischen Kasten darzustellen, dessen Grundfläche ABCD in
der Grundebene enthalten ist; A1B1C1D1 sei die obere zu ABCD kongruente Fläche.
(Figur 33.)



   



 	Fig 33 	







   Man nehme die Fluchtpunkte E und F der Geraden AB = e und AC = f willkürlich
an, und zeichne mit ihnen zunächst wieder das Bild A'B'C'D' von ABCD. Dann errichte
man in den Punkten, in denen die Seiten von ABCD die Grundlinie schneiden,
Vertikalen gleicher Länge (die die Kastenhöhe darstellt), und verbinde ihre Endpunkte
mit den Fluchtpunkten E und F, so ergibt sich unmittelbar das Bild der oberen Fläche
A1B1C1D1 des Kastens. Eine Überbestimmung besteht darin, daß die Kanten A'A1',
B'B1', C'C1' und D'D1, vertikal sind.





	Fig 34
	






   Wird nun noch innerhalb ABCD das Rechteck RSTU gezeichnet, so kann man in
gleicher Weise das Bild R1'S1'T1'U1' der oberen Fläche und die von ihm nach unten
gehenden inneren Kanten zeichnen.

   2.  Einen auf der Grundfläche stehenden Tisch zu zeichnen. Auch hier wird am
einfachsten mit den Fluchtpunkten der Tischkanten operiert; die Ausführung selbst ist
aus der Figur unmittelbar zu entnehmen (Fig. 34).


   3.  Ähnlich zeichnet man auch einige nebeneinanderstehende sechseckige Säulen
gegebener Höhe. Hier können zunächst die Fluchtpunkte zweier Sechseckseiten
willkürlich gewählt werden.

   Für alle diese Figuren hat man die in § 3 angegebenen Bemerkungen über die Kontrolle der Zeichnung
zu beachten.39











§ 10. Herstellung der Bilder aus Grundriß und Aufriß.



   Zur Darstellung weniger einfacher Raumfiguren reichen die vorstehenden Methoden
nicht mehr aus; hierzu bedürfen wir neuer Hilfsmittel. Zu diesem Zweck müssen wir der
Frage näher treten, wie man überhaupt eine Raumfigur Σ durch zeichnerische Daten, die
in der Zeichnungsebene enthalten sind, in ihrer räumlichen Lage und Gestalt bestimmen
kann; denn andere als zeichnerische Bestimmungsarten kommen für uns nicht in
Frage.

   Dies geschieht durch Grundriß und Aufriß. Ähnlich wie in der analytischen
Geometrie gehen wir von zwei zueinander senkrechten Koordinatenebenen aus, auf die
wir alle Punkte des Raumes der Lage nach beziehen. Sind P1 und P2 die Projektionen
von P in diesen Ebenen (vgl. Fig. 27, S. 59), so ist P eindeutig bestimmt, wenn die
Lage von P1 und P2 gegeben ist, und zwar als Schnittpunkt der beiden in P1 und P2 auf
diesen Ebenen errichteten Lote. Die Ebenen sollen Projektionsebenen heißen und durch
π1 und π2 bezeichnet werden. Die eine denken wir uns wieder horizontal und nennen sie
Grundrißebene oder erste Projektionsebene, die andere, die vertikal ist, nennen wir
Aufrißebene oder zweite Projektionsebene. Ihre Schnittlinie nennen wir wieder Achse
und bezeichnen sie durch a. Wird jeder Punkt und jede Gerade einer Raumfigur Σ auf
diese beiden Ebenen orthogonal projiziert, so entsteht in der Grundrißebene der
Grundriß oder die Grundrißprojektion, in der Aufrißebene der Aufriß oder die
Aufrißprojektion. Die Grundebene γ und die Bildebene β stellen ein Paar solcher Ebenen
dar.
   




	Fig 35
	




   Da Grundriß und Aufriß Parallelprojektionen sind, so gelten für sie alle Sätze, die



wir am Schluß von § 8 für solche Projektionen abgeleitet haben. Sie können daher auch
selbst als geometrische Bilder räumlicher Objekte gelten, und kommen auch vielmals als
solche in Betracht. Hier soll jedoch wesentlich nur ihre Verwendung für die
zeichnerische Herstellung des perspektivischen Bildes in der Bildebene β erörtert
werden.

   Wir denken uns dazu in gewohnter Weise die Grundrißebene um. die Achse in die
Aufrißebene umgelegt, und leiten zunächst eine elementare, aber grundlegende
Eigenschaft für die so entstehende Figur ab. Sie beruht darauf, daß die Ebene der drei
Punkte PP1P2 auf der Achse a senkrecht steht; ist also P0 ihr Schnitt mit a, so ist
PP1P0P2 ein Rechteck. Bei der Umlegung der Grundrißebene bleibt daher P0P2 zur
Achse senkrecht, und es fallen deshalb P1, P0, P2 nach erfolgter Umlegung in eine
Gerade (Fig. 35); d. h.:


   I. Die Verbindungslinie der beiden Projektionen P1 und P2 schneidet die Achse a
senkrecht.40


   Liegt P insbesondere in der Grundrißebene, so ist P mit P1 identisch, während P2
auf P0 fällt; ebenso fällt P1 in P0, falls P in der Aufrißebene liegt, also mit P2 identisch
ist.41


   In den einfachsten Fällen kann die Herstellung von Grundriß und Aufriß ohne
weiteres ausgeführt werden. Dies zeigen folgende Beispiele:


   1.  Grundriß und Aufriß einer quadratischen Pyramide zu zeichnen, deren
Grundfläche in der Grundebene steht. Der Grundriß besteht (Fig. 36) aus dem Quadrat
A1B1C1D1 und seinen sich in O1 schneidenden Diagonalen, die die ersten Projektionen
der Kanten darstellen. Im Aufriß fallen A2, B2, C2, D2 in die Achse, während die
Spitze O2 auf der durch O1, gehenden Vertikalen beliebig angenommen werden
kann.
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   2.  Grundriß und Aufriß eines regulären Oktaeders so zu zeichnen (Fig. 37), daß eine
Hauptdiagonale auf der Grundrißebene senkrecht steht. Sei ABCDEF das Oktaeder und
AF diese Hauptdiagonale.

   Wir können das Oktaeder als eine Doppelpyraramide mit der Grundfläche BCDE
und der Höhe AF betrachten und erkennen sofort, daß der Grundriß aus dem zu BCDE
kongruenten Quadrat B1C1D1E1 und seinen Diagonalen besteht; im Mittelpunkt des
Quadrates fallen A1 und F1 zusammen. Die Lage von B1C1D1E1 in der Grundebene
wählen wir beliebig.

   Um die Aufrißprojektion zu zeichnen, wollen wir zunächst festsetzen,
daß der Punkt A in der Grundebene enthalten ist; dann fällt A2 auf die
Achse a. Da die Höhe AF zur Aufrißebene parallel ist, so ist A2F2 = AF;
damit ist auch der Punkt F2 bestimmt. Endlich fallen die Projektionen
B2, C2, D2, E2 sämtlich in eine zur Achse a parallele Gerade, die A2F2
halbiert.42



   3.  Ein Parallelepipedon beliebiger Stellung in Grundriß und Aufriß zu
zeichnen.

   Wir haben zunächst zu überlegen, wie man die räumliche Lage eines Parallelepipedons
überhaupt festlegt. Man kann dazu einen Punkt A des Raumes und drei von ihm
ausgehende Kanten AB, AC, AD beliebig annehmen; aus ihnen entsteht das
Parallelepipedon durch bloßes Ziehen von Parallelen. Handelt es sich also nur darum,
irgendein Parallelepipedon zu zeichnen — und dies soll hier der Fall sein — so kann man
(Fig. 38) die Projektionen A1, B1, C1, D1 und A2, B2, C2, D2 beliebig wählen
(naturgemäß in Übereinstimmung mit Satz I); die Projektionen der übrigen Punkte
ergeben sich aus ihnen durch Ziehen der noch fehlenden Parallelen, wie die Figur es
erkennen läßt.
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   Um nun aus Grundriß und Aufriß in der Ebene β das Bild Σ' einer Raumfigur Σ zu
zeichnen, treffen wir zunächst die naheliegende Festsetzung, daß die Bildebene β zugleich
als Aufrißebene und die Grundebene γ als Grundrißebene betrachtet werden sollen.
Grundlinie, Horizont und Distanzpunkte betrachten wir wieder als gegeben. Ferner
genügt es, die Herstellung des Bildpunktes P' für einen beliebigen Punkt P zu leisten,
und zwar naturgemäß wieder unter der Voraussetzung, daß wir die Grundrißebene in
die Aufrißebene hineingedreht haben. Die Aufgabe, die zu lösen ist, ist also
die, aus dem in der Zeichnungsebene gegebenen Grundrißpunkt P1 und dem
ebenso gegebenen Aufrißpunkt P2 den Bildpunkt P' zu finden. Hierzu hat man
sich aber nur zu vergegenwärtigen, daß die Lote PP1 und PP2 eine Gerade v
und eine Gerade n im Sinne von § 9 darstellen (Fig. 26), und daß die hier
benutzten Punkte P1 und P2 mit den dort eingeführten identisch sind. Infolgedessen
überträgt sich auch die dort unter III gegebene Regel auf den vorliegenden Fall; sie
vereinfacht sich noch dadurch, daß hier der Punkt P2 bereits bekannt ist. Also folgt
(Fig. 27).


   II. Um aus der Grundrißprojektion P1 und der Aufrißprojektion P2 eines Punktes P
den in der Aufrißebene liegenden Bildpunkt P' zu erhalten, zeichne man zunächst
gemäß § 3 den Bildpunkt P1' von P1 ziehe durch ihn eine Vertikale und verbinde
P2 mit dem Augenpunkt N, so ist der Schnittpunkt beider Geraden der Punkt
P'.

   Einen zweiten nützlichen Satz erhalten wir, indem wir an den Satz V von § 9
anknüpfen. Er betrifft die Zeichnung einer Figur PQ..., die in einer zur Grundebene
parallelen Ebene γ' enthalten ist, und fließt unmittelbar aus der Erwägung, daß die dort
benutzte Spur d der Ebene γ' diejenige Gerade ist, auf der die Aufrißprojektionen P2,
Q2... liegen. Sind also wieder E und F die Fluchtpunkte zweier horizontalen
Richtungen e und f, so folgt für die Konstruktion der Bilder solcher Punkte folgende
Regel:


   III. Durch die Grundrißprojektionen P1, Q1... der Punkte P, Q... lege man je eine
Gerade e und f, wie in § 9, übertrage deren Schnittpunkte mit der Achse a lotrecht auf
die Gerade, die die Aufrißprojektionen P2, Q2... enthält, und verbinde die so
entstehenden Punkte mit den Fluchtpunkten E und F, so liefern diese Geraden in ihren
bezüglichen Schnittpunkten die Bildpunkte P', Q'...

   Als Beispiel behandeln wir die Zeichnung einer geraden Pyramide mit quadratischer
Grundfläche und quadratischem Sockel; die Grundfläche falle in die Grundrißebene
γ.
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   Sei ABCD die Grundfläche und EFGH die obere Fläche des Sockels, UV WZ die
untere Fläche der Pyramide und O ihre Spitze. Dann besteht der Grundriß (Fig. 39) aus
den beiden ineinander liegenden Quadraten A1B1C1D1 und U1V 1W1Z1, und den
Diagonalen des inneren, und zwar ist A1B1C1D1 zugleich die Grundrißprojektion des
Quadrats EFGH. Die Lage dieser Quadrate in der Grundrißebene haben wir
beliebig gewählt; man beachte aber, daß damit die Stellung der Pyramide zur
Bildebene festgelegt ist. Der Aufriß ergibt sich unmittelbar auf Grund davon,
daß die zweiten Projektionen der Quadrate in je eine zur Achse a parallele
Gerade fallen; die Höhe des Sockels und der Pyramide haben wir beliebig
angenommen43
.

   Um nun das Bild der Pyramide in der Bildebene β zu zeichnen, nehme
man den Horizont h und die Fluchtpunkte E und F der Quadratseiten beliebig
an44
,
und konstruiere zunächst das Bild A'B'C'D' der Grundfläche ABCD gemäß § 3. Dann
zeichne man gemäß dem vorstehenden Satz II die Punkte E', F', G', H' und ebenso die
Punkte U', V ', W', Z'. Den Punkt O' haben wir jedoch mittels des Augenpunktes N
gemäß Satz I konstruiert. Diesen müssen wir aber erst bestimmen. Wir erhalten ihn
z. B. als Fluchtpunkt der Geraden B1B2, indem wir also B2B' mit dem Horizont h
zum Schnitt bringen. Die von ihm ausgehende Gerade NF2 liefert für ihn eine
überbestimmung.45


   Analog hat man zu verfahren, wenn man das perspektivische Bild zu den Figuren 37 und 38
zeichnen will.46
 Im Fall des Parallelepipedons kann man die Konstruktion auch dadurch etwas kürzen,
daß man zunächst die Bilder zweier parallelen Geraden, z. B. diejenigen von AB
und CE, bestimmt; man erhält dann ihren Fluchtpunkt und kann ihn für die
Zeichnung der anderen ihnen parallelen Geraden benutzen. Ist z. B. das Bild D' des
Punktes D gefunden, und soll der Bildpunkt F' gezeichnet werden, so hat man nur
den Bildpunkt F1' von F1 gemäß § 3 zu zeichnen, in ihm eine Vertikale zu
errichten und dann den Punkt D' mit dem genannten Fluchtpunkt zu verbinden,
so stellt der Schnitt der Vertikalen mit dieser Verbindungslinie den Punkt F'
dar.47


   Ich schließe mit einigen zeichnerischen Bemerkungen.


   1.  Erstens kann man fragen, welche der obigen Zeichnungsvorschriften in den
einzelnen Fällen am besten anzuwenden ist. Hierauf kann, wie auch sonst in der Kunst,
eine allgemeine Antwort nicht gegeben werden. Jeder wird so zeichnen, wie es ihm am
bequemsten scheint und am geläufigsten ist; auch wird man zweckmäßig mit
überbestimmungen operieren.


   2.  In den Figuren 36, 37 und 38 sind einige Linien stark, einige nur gestrichelt oder
überhaupt nicht gezeichnet. Die ersten sollen den Kanten entsprechen, die man sieht, die
anderen denen, die durch die Körper selbst verdeckt sind, vorausgesetzt, daß man sie als
undurchsichtig betrachtet. Dies geschieht, damit man die räumliche Stellung der
dargestellten Gegenstände möglichst leicht und sicher beurteilen kann. Welche Linien
stark oder gestrichelt zu zeichnen sind, hängt davon ab, wo sich der Gegenstand Σ und
das Auge des Beschauers befinden.

   Da sich der Punkt S0, für den das in der Aufrißebene entstehende perspektivische
Bild hergestellt wird, vor der Aufrißebene befindet, und der Gegenstand
Σ hinter der Aufrißebene, so wird man von S0 aus diejenigen Punkte des
Gegenstandes Σ sehen können, die der Aufrißebene am nächsten liegen; dies sind
diejenigen, deren Grundrißprojektionen von der Achse den kleinsten Abstand
haben.48
 Sie sollen auch im Aufriß stark gezeichnet werden. Alle Teile des Gegenstandes, die für
das perspektivische Bild sichtbar sind, sind daher aus dem Aufriß unmittelbar zu
entnehmen.49


   Dies ist an den einzelnen Figuren leicht zu erkennen. Beispielsweise ist in Fig. 38
der Punkt A derjenige, dessen Grundrißprojektion den kleinsten Wert hat;



er liegt deshalb der Aufrißebene am nächsten, und die von ihm ausgehenden
Kanten AB, AC, AD nebst den durch sie bestimmten Flächen sind von S0
aus sichtbar. Sie sind daher stark gezeichnet. Dagegen ist der Punkt H
nebst den von ihm ausgehenden Kanten durch den Körper verdeckt. Ebenso
ist in Fig. 37 C die Ecke, die man von S0 aus sieht, während E verdeckt
ist.50


   Was den Grundriß betrifft, so zeichnen wir ihn immer so, daß wir den Gegenstand
von oben betrachten; es sind also diejenigen Teile des Gegenstandes sichtbar, die am
weitesten von der Grundrißebene entfernt sind, deren Aufrißprojektionen also den
größten Abstand von der Achse haben. In Fig. 38 sind dies die von dem Punkt F
ausgehenden Kanten und die durch sie bestimmten Flächen.













§ 11. Punkt, Gerade und Ebene in Grundriß und Aufriß.
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   Die Eigenschaften von Grundriß und Aufriß, die hier zu erörtern sind, betreffen
wesentlich die in der Zeichnungsebene vorhandene Gesamtfigur, die sich durch Umlegen
der einen Ebene in die andere ergibt. Sie sind dadurch bedingt, daß Grundriß und
Aufriß als Projektionen einer und derselben Raumfigur Σ nicht unabhängig
voneinander sind. Sie sind durchaus elementarer Natur. Nur insofern haftet ihnen eine
gewisse Schwierigkeit an, als man genötigt ist, bald die tatsächliche Lage der
Figur Σ zu den Projektionsebenen, bald die in der Zeichnungsebene vorhandene
Gesamtfigur in Betracht zu ziehen und miteinander zu vergleichen; vielfach
hat man von der einen zur anderen überzugehen und von den Eigenschaften
der einen auf die der anderen zu schließen. Es ist dringend zu empfehlen, sich
neben dem zeichnerischen Bilde stets auch die Lage der zugehörigen Figur Σ
vorzustellen, bis man den übergang von dem einem zum anderen leicht ausführen
kann.

   Ich beginne mit Punkt, Gerade und Ebene und ihren gegenseitigen Beziehungen.
Zweierlei kommt hier in Betracht. Erstens sind die Eigenschaften der einzelnen Figuren
zu entwickeln; zweitens kann es sich darum handeln, Zeichnungen und Konstruktionen
für gegebene geometrische Gebilde herzustellen.


   1.  Die Gerade. Das erste unmittelbar ersichtliche Resultat lautet, daß zwei beliebig



in den Projektionsebenen π1 und π2 angenommene Geraden g1 und g2 stets die
Projektionen einer eindeutig bestimmten Raumgeraden g darstellen (Fig. 40). Sie ist
Schnittlinie der beiden Ebenen, die man durch g1 und g2 senkrecht zu π1 und π2
konstruiert. Diese beiden Ebenen heißen auch projizierende Ebenen der Geraden g; wir
werden sie durch γ1 und γ2 bezeichnen.
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   Jede Gerade g ist durch zwei Punkte bestimmt; man kann hierzu insbesondere
ihre Schnitte mit den Projektionsebenen wählen, die wir wieder ihre Spuren
nennen und jetzt durch G1 und G2 bezeichnen wollen (Fig. 41). Da G1 in
π1 liegt, so fällt die zweite Projektion von G1 auf die Achse a; sie möge G10
heißen.51
 Ebenso fällt die erste Projektion von G2 auf die Achse (Fig. 42); sie heiße G20. Daher
sind G1G20 und G2G10 die Projektionen der Geraden.

   Hieraus ergibt sich unmittelbar die Lösung der Aufgabe, die Spuren einer gegebenen
Geraden zu zeichnen, deren Projektionen g1 und g2 gegeben sind. Man hat nur ihre
Schnittpunkte mit der Achse zu konstruieren und in ihnen die Lote zu errichten; sie
schneiden g1 und g2 in den Spurpunkten.

   Wir betrachten endlich die Projektionen einiger Geraden ausgezeichneter Lage. Man
erkennt unmittelbar die Richtigkeit folgender Tatsachen:

   Ist g zur Achse parallel, so sind auch g1 und g2 zur Achse parallel.

   Ist g zur Grundrißebene π1 parallel, so ist g1 zu g parallel, während g2 zur Achse
parallel ist; analog ist es, wenn g zu π2 parallel ist.

   Die Grundrißprojektion einer Vertikalen v reduziert sich auf einen Punkt, nämlich
auf ihre Spur in π1, während v2 zur Achse senkrecht ist. Analog steht die erste
Projektion einer auf π2 senkrechten Geraden n auf der Achse senkrecht, während sich n2
auf die Spur von n in π2 reduziert.


   2.  Die Ebene. Eine Ebene kann entweder als begrenztes Flächenstück oder
aber als unbegrenztes Raumgebilde in Frage kommen. Im ersten Fall sind die
Projektionen des Flächenstücks durch die Projektionen seiner Begrenzung unmittelbar
gegeben.






	



	






	Fig 43
	Fig 44









   Um im zweiten Fall die Ebene ε zeichnerisch zu bestimmen, genügt
es, ihre Schnittlinien mit den Projektionsebenen zu kennen (Fig. 43
und 44). Wir nennen sie ihre Spuren und bezeichnen sie durch E1 und
E252
.
Es ist klar, daß sie sich auf der Achse schneiden, und zwar in dem Punkt, der
zugleich Schnittpunkt der drei Ebenen π1, π2, und ε ist. Wir bezeichnen ihn durch
E0. Auch ist ersichtlich, daß zwei beliebige, sich auf der Achse schneidende
Geraden E1 und E2 stets Spuren einer eindeutig durch sie bestimmten Ebene
sind.

   Als ausgezeichnete Lagen einer Ebene haben wir solche zu betrachten, die zu einer
Projektionsebene oder zur Achse parallel oder senkrecht liegen; über sie ergibt sich leicht
das Folgende:

   Ist die Ebene ε zur Grundrißebene γ parallel, so verschwindet E1 ins Unendliche,
und E2 ist zur Achse a parallel. Analog ist es, wenn ε zur Ebene β parallel
ist.

   Steht ε auf der Grundrißebene senkrecht, so ist E2 auf der Achse senkrecht, und
die Gerade E1 liefert mit der Achse den Neigungswinkel von ε und β (Fig. 45
und 46).
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   Ist ε zur Aufrißebene senkrecht, so ist E1 auf a senkrecht, während E2 mit a den
Neigungswinkel von ε und β bestimmt.

   Steht ε auf der Achse a senkrecht, so sind E1 und E2 auf a senkrecht, beide
Schnittlinien liegen also in einer Geraden.

   Ist endlich ε zur Achse parallel, so sind auch E1 und E2 zur Achse a parallel.


   3.  Punkt und Gerade. Liegt ein Punkt P auf der Geraden g, so liegt die Projektion
P1 auf g1 und ebenso P2 auf g2 was der Vollständigkeit halber erwähnt werden
möge.

   Wird P1 auf g1, aber P2 nicht auf g2 angenommen, so heißt dies nur, daß P in der
projizierenden Ebene γ1 enthalten ist, die durch g1 geht und auf der ersten
Projektionsebene π1 senkrecht steht (Fig. 40). Analog ist es, wenn P2 auf g2, aber P1
nicht auf g1 liegt.
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   4.  Zwei sich schneidende Geraden. Ist P Schnittpunkt zweier Geraden g und f, so
müssen sich (Fig. 47) die ersten Projektionen g1 und f1 in P1 schneiden, ebenso g2 und
f2 in P2. Die Verbindungslinie der Schnittpunkte (g1,f1) und (g2,f2) kreuzt daher
die Achse senkrecht. Hierauf ist Bedacht zu nehmen, wenn die Projektionen
zweier sich schneidender Geraden gezeichnet werden sollen. Beispielsweise können
g1,f1 und g2 beliebig gewählt werden; damit ist P1 = (g1,f1) bestimmt, also
auch der Punkt P2 auf g2 und durch ihn kann f2 noch beliebig gezeichnet
werden53
.


   Ein besonderer Fall ist der, daß die beiden Geraden in eine Ebene fallen, die auf
einer Projektionsebene senkrecht steht. Ist dies z. B. die Grundrißebene, so
sind g1 und f1 identisch. Die Projektionen g2 und f2 liefern dann in ihrem
Schnittpunkt (g2, f2) die Projektion P2, woraus sich weiter P1 auf g1 = f1
ergibt.
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   Sei endlich ε die durch g und f bestimmte Ebene. Ein sie darstellendes Flächenstück
(Viereck) ergibt sich unmittelbar, indem man auf g und f die Punkte G', G'' und F', F''
beliebig annimmt. Um ferner die Spur von ε zu zeichnen, beachte man, daß wenn eine
Gerade g in einer Ebene ε liegt, die Spuren von g auf den Spuren von ε (Fig. 48)
liegen.

   Man erhält daher in den Geraden F1G1 und F2G2 die gesuchten Spuren E1 und
E2.
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   5.  Zwei sich schneidende Ebenen. Schneiden sich die Ebenen ε und δ in der Geraden



g, so sind (Fig. 49) die Spuren G1 und G2 von g mit den Punkten identisch, in denen
die Spuren E1, D1 und die Spuren E2, D2 einander schneiden. Sind also ε und δ durch
ihre Spuren gegeben, so können die Projektionen ihrer Schnittlinie g gemäß § 8
unmittelbar gezeichnet werden. Man hat von den Schnittpunkten (E1, D1) und (E2,
D2) die Lote auf die Achse zu fällen und deren Fußpunkte mit den Spuren zu
verbinden.


   6.  Eine Gerade in einer Ebene. Um die Projektionen einer Geraden g zu zeichnen,
die in einer Ebene ε liegt, kann eine dieser beiden Projektionen beliebig angenommen
werden; die andere ist bestimmt. Wird nämlich g1 beliebig gewählt, so wird damit
festgesetzt, daß g in der durch g1 gehenden projizierenden Ebene γ1 liegt (Fig. 40), also
Schnitt von γ1 und ε ist. Durch g1 ist also g und damit auch g2 bestimmt. Analog ist es,
wenn man g2 beliebig wählt.
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   Um die zweite Projektion g2 zu zeichnen, haben wir wieder zu unterscheiden, ob die
Ebene ε durch ihre Spuren oder als begrenztes Flächenstück gegeben ist. Im ersten Fall
kann man folgendermaßen verfahren (Fig. 50). Da, wie oben erwähnt, die Spuren von g
auf den Spuren von ε liegen, erhält man im Schnitt von g1 mit E1 die Spur G1 von g;
errichtet man dann im Schnitt von g1 mit der Achse das Lot, so erhält man in seinem
Schnitt mit der Spur E2 die Spur G2 von g und damit auch g2. Wenn dagegen die Ebene
als begrenztes Flächenstück Φ gegeben ist, und Φ1 und Φ2 dessen Projektionen sind, so
zeichne man wieder (Fig. 51) g1 in π1 beliebig, und hat sofort in den Schnittpunkten A1
und B1 von g1 mit Φ1 die ersten Projektionen der Schnittpunkte von g mit Φ
und daraus in bekannter Weise die zweiten Projektionen, also auch die Gerade
g2.54



   7.  Ein Punkt in einer Ebene. Soll ein in einer Ebene ε liegender Punkt gezeichnet
werden, so kann wieder eine Projektion beliebig angenommen werden; es sei P1. Um P2
zu zeichnen, benutzt man am besten eine in ε liegende Gerade g, die durch P
geht. Man nehme also (Fig. 52) die Projektion g1 so an, daß sie durch P1 geht,
konstruiere gemäß 6. die Projektion g2 und erhält auf ihr gemäß 3. die Projektion
P2.55

   




	Fig 52
	









   8.  Kreuzungspunkt einer Geraden mit einer Ebene. Die Bestimmung des
Kreuzungspunktes K einer gegebenen Geraden g mit einer gegebenen Ebene ε ist die
wichtigste Aufgabe, die hier zu erörtern ist. Wir lösen sie, indem wir sie auf die
Aufgabe 4. zurückführen, also eine zweite durch den Punkt K gehende Gerade zu Hilfe
nehmen. Wir wählen dazu am besten die Schnittlinie f von ε mit der projizierenden
Ebene γ1; die auf π1 längs g1 senkrecht steht. Für sie ist gemäß 4. f1 = g1; es
handelt sich also nur noch darum, die zweiten Projektionen dieser Geraden f zu
konstruieren.

   Wir betrachten zunächst den Fall, daß ε als begrenztes Flächenstück Φ gegeben ist.
Da f1 = g1 ist, hat man in den Schnittpunkten von g1 mit Φ1 zugleich die ersten
Projektionen der Schnittpunkte von f mit Φ, und da ihre zweiten Projektionen auf Φ2
liegen, so ist damit auch f2 zeichnerisch bestimmt.

   Ist z. B. Φ ein Parallelogramm ABCD, so hat man (Fig. 53) die Schnittpunkte
P1 und Q1 von g1 mit A1B1C1D1 zu zeichnen, sodann auf A2B2C2D2 die
zweiten Projektionen P2 und Q2, und dann den Schnittpunkt K2 von g2 mit
P2Q2 = f2. Aus ihm erhält man endlich gemäß 3. auch den Punkt K1 auf
g1.
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   Ist dagegen die Ebene ε durch ihre Spuren gegeben, so konstruiere man (Fig. 54)
zunächst die Spuren von γ1; ihre erste Spur C1 ist gemäß 4. ebenfalls mit g1 identisch,
ihre zweite C2 ist zur Achse a senkrecht. Die Projektion f2 ergibt sich nunmehr gemäß
5., indem man f als Schnitt von ε und γ1 ansieht; es ist also F1 = (C1,E1) und
F2 = (C2,E2).
   




	Fig 55
	





   Übrigens wird man es meist nur mit dem ersten Fall zu tun haben. Um z. B. ein
Parallelepipedon zu zeichnen, das von einer Geraden gekreuzt wird, können wir
folgendermaßen verfahren. Die beiden Flächen, in denen die Kreuzung erfolgen soll,
wählen wir beliebig aus, es seien (Fig. 55) ABCE und ABDF. Wir zeichnen dann am
einfachsten in A1B1D1F1 irgendeine Gerade, z. B. die Diagonale B1D1, nehmen auf ihr
K1 beliebig an und zeichnen K2 auf B2D2. Ebenso verfährt man mit den Projektionen
A1B1C1E1 und A2B2C2E2. Damit hat man auch g1 und g2 als Verbindungslinien der
Kreuzungspunkte.













§ 12. Metrische Verhältnisse im Grundriß und Aufriß.



   Die Aufgaben, die hier zu erörtern sind, betreffen hauptsächlich die zeichnerische
Darstellung von Strecken und Winkeln gegebener Größe.

   In den einfachsten Fällen kommen wir ohne Kenntnis besonderer Methoden zum
Ziel, wie das folgende Beispiel zeigt:

   Grundriß und Aufriß eines Würfels von gegebener Kantenlänge herzustellen, wenn
eine Hauptdiagonale auf der Grundebene π1 senkrecht steht.
   




	Fig 56
	




   Die eine Ecke A des Würfels denken wir uns der Einfachheit halber in der
Grundebene liegend; die zur Grundebene senkrechte Hauptdiagonale sei AH. Sind dann
AB, AC, AD, HE, HF, HG die von A und H ausgehenden Würfelkanten, so bilden die
Punkte B, C, D und E, F, G je ein gleichseitiges Dreieck; die Ebenen dieser Dreiecke
liegen zur Grundebene parallel und teilen die Hauptdiagonale in drei gleiche Teile.
Daraus folgt, daß die Kante s des Würfels, die Flächendiagonale d und die
Hauptdiagonale h in der Weise ein rechtwinkliges Dreieck ABH bilden (Fig. 56), daß der
Höhenfußpunkt U die Hypotenuse im Verhältnis 1: 2 teilt. Damit ist h zeichnerisch
bestimmt.



   




	Fig 57
	




   Wir zeichnen nun zunächst den Grundriß (Fig. 57). Aus der Symmetrie des Würfels folgt,
daß alle Kanten gegen die die Diagonale AH und damit auch gegen die Grundrißebene gleich
geneigt sind.56
 Der Grundriß besteht daher aus den Seiten und Diagonalen eines regelmäßigen
Sechsecks, dessen Ecken die Projektionen der Punkte B, C, D, E, F, G sind, während
die Projektionen A1 und H1 in seinen Mittelpunkt fallen. Überdies stellt in Fig. 56
offenbar BU die Länge der Grundrißprojektion von AB und zugleich den Radius des dem
Sechseck umgeschriebenen Kreises dar. Damit ist, so lange die Stellung des
Würfels zur Aufrißebene beliebig bleibt, was hier geschehen soll, der Grundriß
bestimmt.

   Für den Aufriß erhalten wir zunächst den Punkt H2, indem wir A2H2 = AH
machen. Wir haben dann nur noch A2H2 in drei gleiche Teile zu teilen, durch die
Teilpunkte Parallelen zur Achse zu ziehen und zu beachten, daß die Projektionen B2, C2,
D2 auf der unteren und E2, F2, G2 auf der oberen Parallele liegen; endlich sind noch die
Verbindungslinien zu zeichnen, die den Kanten entsprechen.

   Um andere Aufgaben in einfacher Weise zu behandeln, bedürfen wir neuer
methodischer Hilfsmittel. Ein erstes bildet das Verfahren der Umlegung. Es
besteht darin, eine Ebene ε um ihren Schnitt mit einer Projektionsebene so lange
zu drehen, bis sie in die Projektionsebene hineinfällt. Alle in ε vorhandenen
Figuren fallen dann in ihrer natürlichen Größe in die Projektionsebene. Ist
also die durch Umlegung entstehende Figur zeichnerisch bestimmbar, so sind
damit auch die in der Ebene ε vorhandenen Strecken und Winkel bekannt und
umgekehrt.57

   




	Fig 58
	




   Dies Verfahren kommt besonders für zwei Aufgaben in Betracht. Diese
sind:


   1.  die Neigungswinkel einer durch ihre Spuren gegebenen Ebene ε gegen
die Projektionsebenen zu bestimmen, und umgekehrt die zweite Spur einer
Ebene zu zeichnen, deren Neigung gegen eine Projektionsebene gegeben ist,
und


   2.  für ein gegebenes Dreieck ABC, dessen Grundlinie BC in eine Projektionsebene
fällt, Grundriß und Aufriß herzustellen, wenn seine Neigung gegen die Projektionsebene
bekannt ist.
   




	Fig 59
	




   Es genüge, beidemal die Grundrißebene π1 ins Auge zu fassen. Seien wieder
(Fig. 58) E1, und E2 die Spuren der Ebene ε. Wir nehmen irgendeine Ebene δ an,
die auf der Spur E1 senkrecht steht; sie schneidet die Ebenen π1, π2 und ε in
einem rechtwinkligen Dreieck E2E1D0, in dem der Winkel E1 der gesuchte
Neigungswinkel ist. Da die Seiten E1D0 und E2D0 bekannt sind, so ist das Dreieck
zeichnerisch bestimmt. Dieses Dreieck denken wir uns nun in die Ebene π1
umgelegt, so daß es in die Lage E1D0E' komme, alsdann können wir aus ihm den
Neigungswinkel entnehmen. In der Zeichnungsebene konstruiert man also so, daß man
(Fig. 59) irgendeine Gerade E1D0 senkrecht zur Spur E1 legt, in D0 die Vertikale
D0E3 errichtet, und nun das Dreieck E1D0E' so zeichnet, daß D0E' = D0E2



ist.

   Ist umgekehrt die Spur E1 und der Neigungswinkel α von ε gegen π1 gegeben, und
E2 zu finden, so entnimmt man dem durch E1D0 und α bestimmten Dreieck E1D0E' die
Länge der Seite D0E', macht D0E2 = D0E', und hat damit die Spur E2, von ε in
π2.
   




	Fig 60
	




   Auch die zweite Aufgabe behandeln wir so, daß wir die Grundrißebene als
Projektionsebene wählen. Sei AD die Höhe des Dreiecks, und w das in der
Grundrißebene π1 auf BC in D errichtete Lot (Fig. 60), so enthält die durch AD und w
bestimmte Ebene δ wieder den Neigungswinkel. Wird nun ABC um BC in die Ebene π1
umgelegt, so beschreibt A einen Kreis in der Ebene δ und fällt deshalb in einen Punkt A'
der Geraden w. Andererseits liegt auch die Projektion A1 auf w. Dies soll zunächst als
Satz ausgesprochen werden:


   I. Wird ein Dreieck ABC, dessen Grundlinie BC in eine Projektionsebene π1 fällt,
um BC in die Projektionsebene umgelegt, und gelangt dabei A in den Punkt A', so liegt
die Projektion A1 von A auf dem Lot, das von A' auf die Grundlinie BC gefällt
wird.

   In dem rechtwinkligen Dreieck ADA1 ist AD und der Winkel D bekannt, es ist also
zeichnerisch bestimmt. Zugleich gibt AA1 die Länge der Aufrißprojektion des Punktes A.
Benutzen wir nun die Umlegungsmethode noch einmal in der Weise, daß wir das Dreieck
ADA1 um DA1 in die Ebene π1 umlegen, und ist A''DA1 seine neue Lage, so entnehmen
wir ihm unmittelbar den Punkt A1; zugleich liefert uns A''A1, wie eben erwähnt, die
Länge der zweiten Projektion A2A0 des Punktes A. Damit ist die Aufgabe
erledigt.



   




	Fig 61
	




   Die Ausführung der Zeichnung gestaltet sich folgendermaßen (Fig. 61): Man
konstruiere A1B1C1 ~= ABC, fälle das Lot A'D1, konstruiere das Dreieck A1D1A'' so,
daß D1A'' = D1A' und D1 der gegebene Winkel ist, und zeichne zu A1 die zweite
Projektion A2 in der Weise, daß A2A0 = A''A1 ist.

   Es ist klar, daß man das vorstehende Verfahren auch benutzen kann, um den
Neigungswinkel des Dreiecks ABC gegen die Grundrißebene zu ermitteln, wenn seine
Projektionen gegeben sind. Man hat nur in umgekehrter Reihenfolge vorzugehen. Ich
gehe jedoch hierauf nicht näher ein, weil in dieser Schrift immer die Herstellung der
Zeichnungen in erster Linie in Frage kommt.
   




	Fig 62
	




   Beispiel 
 1.  Einen Kasten mit rechtwinkliger Grundfläche zu zeichnen, dessen
Dachflächen unter gleichen Winkeln gegen die Wände geneigt sind. Die Grundfläche
ABCD befinde sich in der Grundebene, EFGH sei die obere Rechteckfläche und ST die
Dachkante. (Fig. 62).




   Man kann so verfahren, daß man je eine Ebene zu Hilfe nimmt, die auf der
Grundfläche und auf zwei parallelen Seiten des Rechtecks ABCD senkrecht steht, und sie
in die Grundebene umlegt; zunächst eine für die größeren Seiten AD und BC. Der
Durchschnitt ist zeichnerisch bestimmt; sein höchster Punkt U ist ein Punkt der Dachkante
ST.58
 Mittels der Umlegung dieser Ebene ergeben sich also die Projektionen U1 und U2;
übrigens genügt es den Teil des Durchschnitts zu zeichnen, der dem Dach angehört und
durch A1B1U' dargestellt ist. Dann benutzt man zweitens eine Ebene, die durch den
Punkt U geht, und auf den Seiten AC und BD senkrecht steht. Ihre Durchschnittsfigur
ist jetzt ebenfalls zeichnerisch bestimmt; durch ihre Umlegung ergeben sich also auch die
Projektionen S2 und T2. Auch hier genügt es den Teil umzulegen, der dem Dach selbst
angehört.


   2.  Grundriß und Aufriß eines regulären Dodekaeders zu zeichnen, von dem eine
Fläche ABCDE in die Grundebene fällt (Fig. 63 u. 64).

   Folgende Eigenschaften, die die Gestalt des Dodekaeders betreffen, kommen hier in
Betracht, Seine 20 Ecken verteilen sich auf vier zur Grundebene parallele Ebenen,
so daß sie in jeder ein regelmäßiges Fünfeck bilden. Diese Fünfecke seien der
Reihe nach ABCDE, A'B'C'D'E', A''B''C''D''E'', A'''B'''C'''D'''E'''. Von
ihnen sind das erste und vierte kongruent, und ebenso das zweite und dritte. Sie
liegen so zueinander, daß ihre Grundrißprojektionen zwei regelmäßige Zehnecke
bilden.
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   Um den Grundriß herzustellen, kann man die Lage der Grundfläche ABCDE, also
auch das Zehneck, dem seine Ecken angehören, beliebig annehmen; das von
den Projektionen der beiden anderen Fünfecke gebildete Zehneck ist jedoch zu
konstruieren. Ist BB' die von B ausgehende Kante des Dodekaeders, so muß ihre
Grundrißprojektion aus Symmetriegründen in die Gerade fallen, die mit AB und
BC gleiche Winkel bildet; auf dieser Geraden liegt also der Punkt B'. Denkt
man sich nun die an BC anstoßende Fläche in die Grundrißebene umgelegt, so
fällt B' auf A; gemäß I. liegt daher B'1 auch auf dem Lot, das man von A1
auf B1C1 fallen kann. Damit ist B'1 bestimmt, also auch das zweite Zehneck.
Man zieht noch diejenigen Verbindungslinien, die den Kanten des Dodekaeders
entsprechen.

   Im Aufriß fallen die Projektionen von ABCDE in die Achse, und die Projektionen
der drei anderen Fünfecke in je eine Gerade, die zur Achse parallel ist. Der Aufriß ist
daher bestimmt, sobald wir je einen Punkt dieser drei Parallelen kennen. Ihre
Konstruktion hängt davon ab, welche Lage zur Achse wir dem Fünfeck ABCDE in der
Grundfläche geben. Am einfachsten ist es, eine Seite des Fünfecks senkrecht zur Achse zu
wählen. Ist dies AB, so ist die Kante DD' der Aufrißebene parallel, und das gleiche gilt
für die durch D'' gebende Mittellinie des an AB angrenzenden Fünfecks; ihre
Aufrißprojektionen sind ihnen daher gleich. Damit sind die Projektionen D'2 und D''2
zeichnerisch bestimmt, also auch die beiden Parallelen, auf denen sie liegen. Die
oberste Parallele erhält man am einfachsten durch die Erwägung, daß die Kanten
D''D''' und DD' einander parallel sind; daher sind es auch ihre Projektionen.
Damit ist auch D'''2 bestimmt. Man hat nun noch die Projektionen aller Ecken
des Dodekaeders, sowie diejenigen Verbindungslinien zu zeichnen, die Kanten
entsprechen.





	






	Fig 65










   Die so gezeichnete Figur hat allerdings den Mangel, daß sich einige
Dodekaederflächen im Aufriß in eine Gerade projizieren. Nachdem aber die
Aufrißprojektion für die besondere hier vorausgesetzte Lage des Dodekaeders konstruiert
ist, kann sie für jede Lage ausgeführt werden, bei der eine Grundfläche in die
Grundrißebene fallt, die also entsteht, wenn man das Dodekaeder um eine zur
Grundrißebene senkrechte Achse dreht. Bei dieser Drehung bleibt nämlich jeder
Punkt in einer Ebene, die zur Grundrißebene parallel ist; daher verteilen sich die
Aufrißprojektionen der Dodekaederpunkte auf die nämlichen Parallelen, wie
für die erste Lage. Denken wir uns also das Dodekaeder in der Weise gedreht,
wie es Fig. 63 entspricht, so können wir, nachdem der Grundriß hergestellt
ist, den Aufrißso zeichnen, daß wir uns zunächst die Lage der Aufrißparallelen
herstellen und dann auf ihnen die zweiten Projektionen, wie es Figur 62 erkennen
läßt.

   Ich schließe damit, auf Grund der Figur 64 noch das perspektivische Bild des
Dodekaeders zu zeichnen, unter Annahme des Augenpunktes N und der Distanzpunkte.
(Fig. 65) Die Zeichnung schließt sich direkt an Satz V von § 9 an; wir konstruieren
der Reihe nach die Bilder der vier Fünfecke, indem wir beachten, daß sie in je
einer Horizontalebene enthalten sind, und zwar mittels der Fluchtpunkte L und
R.













§ 13. Die Einführung neuer Projektionsebenen.



   Eine zweite allgemeine Methode, zu der wir jetzt übergehen, besteht in der
Einführung neuer Projektionsebenen. Sie läuft der Einführung neuer Koordinatenebenen
in der analytischen Geometrie parallel; doch gehen wir hier so vor, daß wir schrittweise
immer nur je eine neue Projektionsebene annehmen, und zwar so, daß die neue Ebene
auf einer der vorhandenen senkrecht steht. Ein zweiter wichtiger Gesichtspunkt ist der,
daß wir die neuen Projektionsebenen möglichst den darzustellenden Strecken und
Winkeln parallel wählen; ist dies erreicht, so stellen sich deren Projektionen in ihrer
natürlichen Größe dar.
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   Wie man in der analytischen Geometrie zuvörderst die Formeln für die
Transformation der Koordinaten zu behandeln hat, entsteht hier zunächst die Aufgabe,
die Projektionen in den neuen Projektionsebenen aus den alten herzustellen. Wir gehen
dazu von Grundriß und Aufriß aus, und denken uns eine Projektionsebene π3, die auf der
Grundrißebene π1 senkrecht steht, während sie mit π2 einen beliebigen Winkel bilde.
(Fig. 66). Es sind dann auch π1 und π3 zwei Ebenen, die als Grundriß- und Aufrißebene
benutzt werden können, und wir haben, wenn P3 die Projektion eines Punktes P in π3
ist, P3 aus P1 und P2 abzuleiten.

   Sei dazu O der Schnitt der drei Ebenen, sei jetzt a12 die Achse für π1 und π2, und
a13 diejenige für π1 und π3 so daß O zugleich Schnitt von a12 und a13 ist. Wir
denken uns nun auch die Ebene π3 in die Ebene π1 umgelegt (Fig. 67), und zwar
durch Drehung um a13, so besteht auch für die Projektionen P1 und P3 der
Satz I von § 10; und man hat, wenn jetzt die Schnittpunkte von P1P2 und



P1P3 mit den Achsen durch P12 und P13 bezeichnet werden, unmittelbar die
Gleichung
   
	
   

 PP1 = P2P12 = P3P13.

	(1)



Diese einfache Gleichung ist die einzige Tatsache, die hier in Frage
kommt59
.
Wir schließen aus ihr sofort, daß die Projektion P3 aus P1 und P2 zeichnerisch
bestimmbar ist; man hat nur von P1 auf a13 das Lot P1P13 zu fällen, und
auf ihm P3 so zu bestimmen, daß P3P13 = P2P12 ist. Dies pflegt man so
auszuführen, daß man (Fig. 67) in O auf a12 und a13 je ein Lot n2 und n3
errichtet, zu a12 durch P2 eine Parallele bis n2 zieht, dann den bis n3 reichenden
Kreisbogen schlägt, und durch seinen Endpunkt wieder die Parallele zu a13
zieht60.
Wir sprechen das gefundene Resultat folgendermaßen als Satz aus:


   I. Wählt man die Projektionsebene π3 senkrecht auf π1, so ergibt sich die Projektion
P3 aus P1 und P2 in der Weise, daß man von P1 auf die Achse a13 der Ebenen π1 und
π3 ein Lot P1A13 fällt und auf ihm die Strecke A13P3 gleich A12P2 abträgt, wenn A12
Schnitt der Achse a12 mit P1P2 ist.

   Die Einführung einer dritten Projektionsebene π3 kann zunächst den Zweck haben,
zu bewirken, daß die Raumfigur Σ eine vorgegebene Lage zu den Projektionsebenen
besitzt. Dies wollen wir zunächst an einigen einfachen Beispielen ausführen.





   1.  Die Projektion des in Fig. 37 gezeichneten Oktaeders auf einer zur Aufrißebene
senkrechten Ebene π3 herzustellen. Die Ausführung erfolgt unmittelbar nach dem
eben gegebenen Konstruktionsschema und bedarf keiner weiteren Erläuterung
(Fig. 68).


   2.  Die zweite oben gegebene Darstellungsart des Dodekaeders so
vorzunehmen, daß man die Ebene π3 auf π1, senkrecht wählt. Auch diese
Aufgabe ist unmittelbar nach dem angegebenen Schema zu behandeln
(Fig. 69)61.
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   Die Einführung neuer Projektionsebenen laßt sich wiederholen; man kann eine Ebene
π4 einführen, die auf einer der Ebenen π1 oder π3 senkrecht steht, und kann dies beliebig
lange fortsetzen. Man erhält dadurch Grundriß- und Aufriß- projektionen für immer neue
Stellungen einer Figur zu den Projektionsebenen. Dabei ist zweierlei zu bemerken.
Erstens bedarf es nur zweier Schritte, um eine gegebene Ebene ε zur Projektionsebene zu
machen. Ist nämlich E1 die Spur von ε in π, so wähle man π3 senkrecht auf E1, und
kann nun, da π3 auf ε senkrecht steht, ε als Ebene π4 einführen. Zweitens beachte man,
daß bei der Einführung von π4 ein praktischer Fortschritt nur so entsteht, daß man
π4 senkrecht zu π3 annimmt, so daß π3 und π4 die neue Grundrißebene und
Aufrißebene darstellen. Würde man nämlich π4 senkrecht auf π1 wählen, so ist π3
überflüssig; man hätte von vornherein π4 statt π3 als neue Ebene benutzen
können.

   Welche Ebenen man in den einzelnen Fällen einführt, hängt ganz von der Natur der
Aufgabe und von dem Zweck ab, den man erreichen will. Ihre Wahl muß getroffen sein,
ehe man an die zeichnerische Darstellung geht; die Vorstellung der Figur mit
allen ihren Projektionsebenen und die richtige Auswahl dieser Ebenen ist das
Problem, das in jedem einzelnen Fall zu lösen ist; die Herstellung der neuen
Projektionen ist ein mechanisches Verfahren, das immer in der gleichen Weise
erfolgt.
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   Ich erörtere schließlich noch kurz den Fall, daß man eine neue Projektionsebene
einführt, die zu einer vorhandenen parallel ist. An dem Satz I wird dann nichts geändert.
Sei z. B. π3  || π2 (Fig. 70), so daß a12 und a13 parallel sind, so besteht immer noch die
Gleichung 1); die einzige Modifikation die auftritt, ist die, daß P1P2 und P1P3 in
dieselbe Gerade fallen. Man erhält also auch hier P3 so, daß man P13P3 = P12P2 macht
(Fig. 71).62


   Ich schließe mit folgender Bemerkung. Wie in der analytischen Geometrie können
auch hier für die Behandlung der einzelnen Probleme zwei grundverschiedene
Gesichtspunkte maßgebend sein. Man kann die Koordinatenebenen und die
Projektionsebenen so einfach wie möglich, man kann sie aber auch so allgemein
wie möglich wählen. Beides hat seine Berechtigung; das zweite dient mehr den
theoretischen, das erste mehr den praktischen Zwecken. An dieser Stelle steht
jedoch der praktische Zweck im Vordergrund; die Aufgabe, die sich in so engem



Rahmen allein behandeln läßt, kann nur dahin gehen, auf die einfachste Weise
zum Entwerfen richtiger Bilder zu gelangen. Demgemäß haben wir die Lage
der Gegenstände zu den Projektionsebenen stets so angenommen, daß ihre
zeichnerische Herstellung so leicht wie möglich ausfällt, haben uns überdies auf
Aufgaben einfacherer Art beschränkt, und die übrigen Probleme nur in aller Kürze
gestreift.













§ 14. Die Axonometrie.



   Die Figuren der räumlichen analytischen Geometrie pflegt man folgendermaßen zu
zeichnen. Man nimmt die drei Richtungen, die die Koordinatenachsen darstellen sollen,
beliebig an, und zeichnet die Koordinaten eines jeden Punktes so, daß sie diesen drei
Geraden parallel sind. Das allgemeine Prinzip, das hierin zum Ausdruck kommt, bildet
den sogenannten Grundsatz der Axonometrie; es steht im Mittelpunkt aller
zeichnerischen Methoden. Sein Inhalt und seine Begründung bedarf ausführlicher
Erörterung.

   Da die Koordinaten eines jeden Punktes durch Parallelen zu den drei Koordinatenachsen
dargestellt werden, so ist das so hergestellte Bild eine Parallelprojektion. Damit ist jedoch
der Inhalt unseres Satzes noch nicht erschöpft. In präziser Formulierung lautet er
folgendermaßen:


   I. Werden in einer Ebene ε' drei von einem Punkt O' ausgehende
Strecken O'A', O'B', O'C' so angenommen, daß ihre Endpunkte ein
Dreieck A'B'C' bilden, so können sie stets als Parallelprojektion eines
rechtwinkligen gleichseitigen räumlichen Dreikants OABC auf ε' betrachtet
werden.63
   




	Fig 72
	




   Wir betrachten zunächst denjenigen besonders einfachen Fall, der der gewöhnlichen
Koordinatendarstellung entspricht. Das Dreikant liegt dann so, daß eine seiner Ebenen
(die xz-Ebene) zu ε' parallel ist. Die zur Ebene ε' parallelen Kanten OA und OC
erscheinen alsdann in der Projektionsfigur in ε' in ihrer natürlichen Länge, während die



dritte Kante OB (die der y-Achse entspricht) eine Verkürzung erfährt. Für
diesen Fall ist der Satz geradezu evident; geht man nämlich von zwei zueinander
gleichen rechtwinkligen Strecken O'A' und O'C' aus (Fig. 72), während O'B'
mit ihnen einen beliebigen Winkel bildet, so kann diese Figur in der Tat als
Projektion eines so gelegenen Dreikants OABC aufgefaßt werden. Die zugehörige
Richtung der projizierenden Strahlen ergibt sich unmittelbar in der Weise, daß
man auf der Zeichnungsebene ein Lot O'B'' = OB errichtet, und B'' mit B'
verbindet. Man bezeichnet diese Art der Darstellung auch als schiefe Projektion.
Übrigens bleibt das Vorstehende auch dann noch in Kraft, wenn O'B' mit einer der
Geraden O'A' oder O'C' zusammenfällt; dies bedeutet nämlich nur, daß die
projizierenden Strahlen zu der Seitenfläche OAB oder OBC des Dreikants parallel
sind.64


   Dem Beweis des allgemeinen Satzes schicke ich einen Hilfssatz voraus, der in seiner
einfachsten Formulierung ein Satz über ein gerades dreiseitiges Prisma ist und
folgendermaßen ausgesprochen werden kann:


   II. Jedes gerade dreiseitige Prisma kann durch eine Ebene ε so geschnitten werden,
daß die Schnittfigur einem gegebenen Dreieck ähnlich ist.
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   Ist A'B'C' die Grundfläche des Prismas (Fig. 73), und ABC die in ε entstehende
Schnittfigur, so ist zu zeigen, daß bei geeigneter Lage von ε das Dreieck ABC einem
gegebenen Dreieck A0B0C0 ähnlich ist. Zweierlei schicke ich voraus. Erstens ist klar,
daß, wenn eine Ebene ε dem Satze genügt, auch jede zu ihr parallele Ebene



dies tut; zweitens können wir A0B0C0 durch irgendein ihm ähnliches Dreieck
ersetzen; wir dürfen es deshalb auch so wählen, daß A0B0 = A'B' ist. Dies wird
im folgenden geschehen. Die Ebene, die die Grundfläche A'B'C' enthält, sei
ε'.

   Der Beweis geht so vor, daß er direkt die Lage der Ebene ε bestimmt; dazu ist
erstens ihre Schnittlinie mit ε' und zweitens die Neigung beider Ebenen zu ermitteln.
Wir stützen ihn auf die in § 5 enthaltenen Sätze über Parallelperspektive. Wir können
nämlich ε' und ε durch Strahlen, die auf ε' senkrecht stehen, parallelperspektiv
so aufeinander beziehen, daß A'B'C' und ABC einander entsprechen. Nun
gibt es in den so bezogenen Ebenen gemäß § 5, I durch C und C' je ein Paar
entsprechender rechtwinkliger Strahlen u, v und u', v'; und da es sich um eine
orthogonale Projektion handelt, so läuft der eine von ihnen der Schnittlinie s beider
Ebenen parallel, während der andere auf ihr senkrecht steht. Man folgert also
umgekehrt, daß s einem dieser Strahlen parallel sein muß; um die Richtung von s
zu ermitteln, haben wir daher zunächst die ebengenannten Strahlenpaare zu
bestimmen.
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   Dazu denken wir uns eine besondere Ebene ε0, die das Dreieck A0B0C0 enthalten
soll, und beziehen sie in der Weise ähnlich (§ 4) auf ε, daß ABC und A0B0C0 einander
entsprechen. Dann bestehen die in § 5, 1 und 2 genannten Eigenschaften sowohl für ε
und ε', als auch, für ε und ε0, sie bestehen also auch für ε0 und ε', und da nach
Annahme A'B' = A0A0 ist, so gibt es in ε' und ε0 auch ein Geradenpaar, dessen
Proportionalitätsfaktor ρ = 1 ist. Gemäß § 5, 8 u. 9 gelten also für ε0 und ε' alle dort
abgeleiteten Sätze.

   Seien nun u0 und v0 die Geraden durch C0, die in ε0 den Geraden u und v von ε
entsprechen, so bilden auch sie einen rechten Winkel. Daher sind u0, v0 und u', v' auch
für ε0 und ε' die den Punkten C0 und C' zugehörigen rechten Winkel. Um sie zu



bestimmen, hat man gemäß § 5 in der Ebene ε' das Dreieck A0B0C0 so zu zeichnen
(Fig. 74), daß A0B0 auf A'B' fällt, dann den Kreis zu schlagen, der durch C0 und C'
geht, und dessen Mittelpunkt auf A'B' liegt, und die Punkte U' und V ', in denen er A'B'
schneidet, mit C' zu verbinden. Damit ist die Lage der Strahlen u' und v' bereits
bekannt.

   Es fragt sich nun noch, welcher dieser beiden Strahlen derjenige ist, dem die
Schnittlinie s beider Ebenen parallel läuft. Um die Begriffe zu fixieren, bezeichnen
wir diesen durch u'; es ist also sowohl u' als auch u zu s parallel, während v'
auf s senkrecht steht. Wir gehen nun wieder zu den Ebenen ε und ε' zurück,
und denken uns die Ebene ε so in die Ebene ε' um die Achse s umgelegt
(Fig. 74), daß die Dreiecke ABC und A'B'C' auf verschiedenen Seiten von s
liegen.65
 Dann wird, da ε' eine Orthogonalprojektion von ε ist, die Verbindungslinie von je zwei
entsprechenden Punkten P und P' beider Ebenen die Achse s senkrecht schneiden; sei S
der Punkt, in dem sich die Geraden c' = A'B' und c = AB auf der Achse s schneiden,
und W der Schnitt von s mit V V '. Dann ist
   
	
   
V'W : SW = V'C' : U'C'
,
 
	(1)



und ebenso folgt, wenn wir noch beachten, daß ε0 und ε ähnliche Ebenen sind,
   
	
   
VW : SW = VC : UC = V0C0 : U0C0
.
 
	(2)



Nun ist aber V 'W die Projektion von V W, folglich ist
   
	
   

VW > V'W
. 
	(3)




   Die linke Seite von 2) ist daher größer als die linke Seite von 1); zwischen ihren
rechten Seiten muß daher dasselbe Größenverhältnis bestehen. Da nun gemäß
unserer Konstruktion U0 mit U' und V 0 mit V ' identisch ist, so ergibt sich
schließlich
   
	
   
V'C0 : U'C0 > V'C' : U'C'
.
 
	(4)



Durch diese Ungleichung werden die beiden Punkte U' und V ', also auch die
Strahlen u' und v' voneinander getrennt. Damit ist der Strahl u', dem s parallel



läuft, eindeutig bestimmt. Die Richtung der Geraden s in ε' ergibt sich also
eindeutig.

   Es ist also nur noch die Neigung von ε gegen ε' zu ermitteln. Sie ist bekannt, sobald
man die Länge von V 'W kennt. Diese ergibt sich aber wieder aus 1), denn SW, V 'C'
und U'C' sind Strecken von ε', die zeichnerisch bestimmbar sind. Die Neigung
von ε gegen ε' ist daher ebenfalls eindeutig bestimmt; ihr entsprechen jedoch
zwei verschiedene Ebenen, die symmetrisch gegen die Ebene ε' liegen. Damit
ist unser Satz bewiesen. Wir finden sogar zwei Scharen von Ebenen, die ihm
genügen.

   Die Konstruktion gestaltet sich demnach folgendermaßen. In der Ebene ε' zeichne
man A'B'C1 ähnlich zu dem gegebenen Dreieck A0B0C0, schlage den durch C0 und C1
gehenden Kreis, dessen Zentrum auf A'B' liegt, und benenne seine Schnittpunkte U' und
V ' mit A'B' gemäß der Proportion 4). Man zeichne dann die Gerade WS senkrecht zu
U'C', und bestimme V 'W gemäß Proportion 1), so ist damit sowohl die Schnittlinie der
Ebene ε' mit ε als auch ihre Neigung gegen ε und damit ihre Lage im Raume
festgelegt.

   Wir gehen nun zum Beweis des Satzes I über, dem wir noch dadurch einen
allgemeineren Inhalt geben können, daß wir das rechtwinklige gleichseitige Dreikant
durch ein beliebiges Dreikant ersetzen. So gelangen wir zu folgendem, als Satz von Pohlke
bezeichneten Theorem:


   III. Ist ein Dreikant OABC und ein ebenes Viereck O0A0B0C0 beliebig gegeben, so
kann man eine Ebene ε' und eine Projektionsrichtung so bestimmen, daß die in ε'
entstehende Parallelprojektion O'A'B'C' des Dreikants dem Viereck O0A0B0C0 ähnlich
ist.
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   Wir nehmen zunächst wieder an, daß eine Ebene ε' und eine Projektionsrichtnng,
wie sie der Satz verlangt, vorhanden ist. Ferner sei ε die durch das Dreieck ABC
bestimmte Ebene, und O1 (Fig. 75) derjenige Punkt, in dem sie von dem durch O
gehenden projizierenden Strahl getroffen wird, so ist klar, daß die Projektionsrichtung
bekannt ist, sobald man den Punkt O1 kennt. Nun befinden sich ε und ε' in der
Weise in parallelperspektiver Lage, daß ABCO1 und A'B'C'O' entsprechende
Punkte sind, und außerdem sind O'A'B'C' und O0A0B0C0 ähnliche Figuren.
Wir können daher wieder, wie beim Beweis des Hilfssatzes, die das Viereck
O0A0B0C0 enthaltende Ebene ε0 ähnlich so auf ε' beziehen, daß O0A0B0C0
und O'A'B'C' einander entsprechen, und schließen wieder genau wie oben,
daß nun auch die Ebenen ε und ε0 in der in § 5 erörterten Beziehung stehen;
und zwar sind O1ABC und O0A0B0C0 entsprechende Punkte. Gemäß § 5, 7
können wir daher den Punkt O1 mit Hilfe der gegebenen Punkte ABC und
A0B0C0 konstruieren. Damit ist die Richtung der projizierenden Strahlen bereits
bestimmt.

   Nun sei ε2 irgendeine zu dieser Richtung senkrechte Ebene, und A2, B2, C2 ihre
Schnittpunkte mit den durch A, B, C gehenden projizierenden Strahlen. Dann kann man
A2B2C2 als die Grundfläche eines geraden Prismas auffassen, das von der Ebene ε' so
geschnitten werden soll, daß die Schnittfigur A'B'C' zu A0B0C0 ähnlich ist. Unserem
Hilfssatz gemäß kann daher die Ebene ε' dieser Bedingung gemäßbestimmt
werden.66
 Man sieht auch noch, daß nicht bloß A'B'C' ~ A0B0C0 ist, sondern auch O1A'B'C'
ähnlich zu O0A0B0C0, denn die zwischen unseren Ebenen festgesetzten Beziehungen
betreffen stets die ganzen Ebenen, d. h. also die sämtlichen in ihnen enthaltenen
einander entsprechenden Figuren. Damit ist der Beweis geliefert.
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   Gemäß dem so bewiesenen Grundsatz kann man also die Richtungen und
Längen dreier von einem Punkt ausgehender Geraden stets als axonometrische
Bilder der drei Kanten eines räumlichen Dreikants auffassen, insbesondere auch
eines orthogonalen gleichseitigen. Für diesen Fall bevorzugt man meist die
oben genannte schiefe Projektion, besonders die Falle, daß die y-Achse einen
Winkel von 45o oder 30o mit der x-Achse bildet (Kavalierperspektive). Die
anschaulichsten Bilder erhält man vielfach so, daß man auch die x-Achse nicht senkrecht
gegen die z-Achse annimmt. Die z-Achse nimmt man im allgemeinen vertikal
an.

   Als Beispiele können zunächst alle Figuren dienen, die im vorstehenden dem
axonometrischen Grundsatz gemäß gezeichnet worden sind; eine Reihe anderer möge hier
folgen.


   1.  Eine sechseckige reguläre Säule so zu zeichnen, daß ihre Kanten vertikal werden
(Fig. 76). Beliebig wählbar sind die beiden Geraden, die zwei Seiten der Grundfläche
entsprechen; sie mögen durch AB und AF dargestellt werden. Zieht man nun durch B eine
Parallele zu AF, und durch F eine Parallele zu AB, so hat man in ihrem Schnittpunkt
M das Bild des Mittelpunktes des dem Sechseck umschriebenen Kreises. Durch
Verlängerung von AM, BM, FM über M um sich selbst erhält man daher die Punkte D, E,
G. Gleichlange Vertikalen in A, B, C, D, E, F liefern endlich die Punkte der oberen
Grundfläche.67


   




	Fig 77
	






   2.  Die acht Ecken eines Würfels lassen sich in zwei Gruppen von je vieren
zerlegen, die je ein reguläres Tetraeder bilden; jedes Tetraeder enthält sechs
Flächendiagonalen als Kanten. In Fig. 77 sind AEFG und HBCD zwei solche
Tetraeder.68
 Man soll ihre Durchdringungsfigur zeichnen.

   Man zeichne zunächst den Würfel selbst in irgend einer axonometrischen
Darstellung. Man beachte nun, daß jeder Mittelpunkt einer Würfelfläche Schnittpunkt
zweier Flächendiagonalen ist, also der Durchdringungsfigur beider Tetraeder angehört.
Damit sind die Durchdringungsgeraden beider Tetraeder bestimmt; sie bilden das
Oktaeder, dessen Ecken in die Mitten der Würfelflächen fallen. Nur vier von ihnen
sind sichtbar; nämlich diejenigen, die von der Mitte der vorderen Würfelfläche
ausgehen.
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   3.  Ein reguläres Rhombendodekaeder zu zeichnen. Eine Ebene, die durch die Mitte
eines Würfels geht und zwei Kanten enthält, werde als Diagonalebene bezeichnet. Dann
entsteht das Rhombendodekaeder so aus dem Würfel, daß man durch jede der zwölf



Würfelkanten eine Ebene legt, die auf der hindurchgehenden Diagonalebene senkrecht
steht. Diese Ebenen sind die 12 Begrenzungsflächen des Rhombendodekaeders; aus der
Symmetrie des Würfels folgt, daß die in ihnen entstehenden Begrenzungspolygone
kongruente Rhomben sind. Je vier, die durch die vier Kanten einer Würfelfläche gehen,
bilden überdies eine quadratische Pyramide mit dieser Würfelfläche als Grundfläche, und
zwar ist leicht ersichtlich, daß ihre Höhe gleich der halben Würfelkante ist. Die Ecken des
Rhombendodekaeders bestehen also aus den sechs Spitzen dieser Pyramide und den acht
Würfelecken.

   Man erhält es daher am einfachsten, indem man vom Würfel ausgeht, auf seine
Flächen vom Mittelpunkt M die Lote fällt, und diese um sich selbst verlängert
(Fig. 78).69


   4.  Einen vierseitigen Pyramidenstumpf zu zeichnen (Fig. 79). Wir gehen von einer
dreiseitigen Pyramide aus, deren Spitze O, deren Grundfläche ABC = γ und deren
Kanten a, b, c seien; eine gewisse, noch unbestimmt bleibende Ebene γ1 möge sie in dem
Dreieck A1B1C1 schneiden. Aus dem Pohlkeschen Satz folgt zunächst, daß die
axonometrischen Bilder von O', A', B', C' und damit auch die Bilder a', b', c'4
beliebig wählbar sind. Ebenso können wir aber auch die Bildpunkte A'1, B'1, C'1
auf a', b', c' beliebig annehmen; ihnen entsprechen stets gewisse Raumpunkte
A1, B1, C1 so daß durch die Wahl von A'1, B'1, C'1 die Ebene γ1 festgelegt
ist.70
 Die Punkte D und D1, die von γ und γ1 auf einer vierten durch O gehenden Kante
bestimmt werden, sind jedoch nicht mehr beide willkürlich; vielmehr ergibt sich alles
weitere auf Grund des in § 4 abgeleiteten Satzes von Desargues. Aus ihm folgt zunächst,
daß die drei Schnittpunkte
   


A0
 = (B'C'
, B1'C1'
),
    
B0
 = (C'A'
, C1'A1'
), 
    
C0
 = (A'B'
, A1'B1'
)



 auf einer Geraden s0 liegen, die das axonometrische Bild der Schnittlinie von γ und γ1
ist.71
 Auf ihr können wir nun einen Punkt D0 beliebig annehmen und festsetzen, daß er
Schnittpunkt von s0 mit der durch O gehenden Ebene (ad) = δ sein soll, und können
außerdem auch die Bildkante d' beliebig zeichnen; sie muß notwendig Bild einer gewissen
in δ liegenden Kante d sein. Um endlich D' und D1' zu finden, haben wir wieder D0 mit
A' und A1' zu verbinden und die Schnittpunkte dieser Geraden mit d' zu bestimmen. Sie
liefern uns die Punkte D' und D1'. Übrigens schneiden sich auch die Geraden B'D' und
B1'D1', sowie C'D' und C1'D1' auf s0, was zeichnerische Überbestimmungen
liefert.
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   Ebenso kann man mit jeder weiteren durch O' angenommenen Kante verfahren und
den zugehörigen Stumpf leicht konstruieren.

   In gleicher Weise kann man auch den Schnitt eines geraden
Zylinders oder geraden Kegels mit einer Ebene punktweise
konstruieren.72
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   5.  Ein reguläres Kubooktaeder zu zeichnen (Fig. 80). Ein Kubooktaeder entsteht so aus
einem Oktaeder, daß man die sechs Ecken des Oktaeders mittels eines ihm konzentrischen
und koaxialen regulären Würfels abschneidet. Man erhält es also am einfachsten, indem
man an jeder Oktaederecke auf den vier von ihr ausgehenden Kanten die nämliche
Strecke abschneidet. Die auf den Oktaederflächen entstehenden Begrenzungspolygone
sind im allgemeinen Sechsecke; bei besonderer Wahl des Würfels werden sie
Quadrate.73
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   6.  Einen Kugeloktanten in schiefer Projektion zu zeichnen (Fig. 81). Seien OA, OB,



OC die drei aufeinander senkrechten Radien, die den Oktanten bestimmen, und OA,
OB', OC ihre axometrischen Bilder, so handelt es sich um die Herstellung der Bilder der
in den Ebenen OBC und OAC liegenden Kreisbogen. Sie sind Teile von Ellipsen, die
punktweise konstruiert werden müssen. Sie ergeben sich leicht auf Grund der
Tatsache, daß bei der axonometrischen Darstellung alle zueinander parallelen
Ordinaten eines Kreises gemäß § 5, 3 in demselben Maße verkürzt werden. Zur
Ausführung der Zeichnung können wir jeden Kreisbogen benutzen, der dazu
tauglich ist. Um z. B. den Ellipsenbogen \widehat(AB') zu erhalten, gehen wir von dem
Kreisquadranten OAC aus, errichten in einem beliebigen Punkt Q von OA das Lot
QP und konstruieren P’ so, daß QP' || OB' und PP' || B'C ist, und machen
dies für so viele Punkte, als nötig ist. Analog erhält man den Ellipsenbogen
B'C.74

   Wichtig ist, daß die Tangenten dieser Ellipsenbogen in den Endpunkten nicht gegen
die ihnen zukommende Richtung verstoßen (§ 1, III). Sie sind Projektionen der
bezüglichen Kreistangenten; daher müssen die Tangenten des Bogens \widehat(AB') in A und B'
den Geraden OB' und OA parallel sein, und die des Bogens B'C in B' und C parallel zu
OC und OB' (vgl. Fig. 83).


   7.  Die Durchdringungsfigur zweier kongruenten Kreiszylinder zu zeichnen, deren
Grundflächen so in zwei zueinander senkrechten Ebenen liegen, daß ihre Mittelpunkte
zusammenfallen (Fig. 82).
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   Wir beschränken uns auf einen Oktanten und konstruieren zunächst gemäß 6. den
Ellipsenbogen B'A, der dem Kreisbogen der Ebene OAB entspricht. Zieht man nun in
einem Punkt Q von OA die Geraden QP || OC und QP' || OB', und bestimmt den Punkt
R so, daß PR || QP' und P'R || QP ist, so ist R ein Punkt der Durchdringungskurve. Sie
ist offenbar eine Ellipse.





   8.  Die Durchdringung einer Kugel mit einem Kreiszylinder zu zeichnen, dessen
Grundkreis k den halben Kugelradius als Radius hat, und von dem eine Erzeugende l
durch den Mittelpunkt der Kugel geht (Fig. 83).

   Wir beschränken uns wieder auf einen Oktanten, wählen die Erzeugende l
als z-Achse und den Grundkreis k des Zylinders als xy-Ebene, und zeichnen
zunächst wieder die dem Kugeloktanten entsprechenden Ellipsenbogen OAB'
und OCB', wie auch die dem Grundkreis k entsprechende Ellipse. Ist S' ein
Punkt dieser Ellipse, so kann man das innerhalb des Kugeloktanten liegende
Stück S'P' der durch S' gehenden Zylinderkante so zeichnen, daß man sich
durch S eine zu OAC parallele Ebene gelegt denkt. Sie schneidet die Kugel
in einem Kreis, der den Punkt P enthält, und dessen axonometrisches Bild
ebenfalls ein Kreis ist; man hat also nur den Radius dieses Kreises zu finden. Zieht
man nun durch S die Gerade TU || OA, und durch T die Gerade TV || OC, so
ist TU = TV dieser Radius. Er ergibt sich wieder in der unter 6. genannten
Art.


   9.  Endlich ist noch die Herstellung der axonometrischen Bilder aus den
Koordinatenwerten oder aus Grundriß und Aufrißzu erörtern.
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   Man wird diese Methode immer dann wählen müssen, wenn die zu zeichnenden
Gegenstände nur durch ihre Koordinaten gegeben sind; man verfährt dann in üblicher
Weise so, daß wenn x, y, z die Koordinaten sind, man einen Streckenzug OPQR
konstruiert, dessen Seiten den Achsen parallel sind, und deren Länge sich so ergibt, daß
man die gegebenen Koordinatenwerte mit den ihnen entsprechenden Verkürzungsfaktoren
multipliziert. (Fig. 84). Beispielsweise kann man auf diese Weise den Mittelpunkt des
Kugeloktanten im letzten Beispiel finden. Für ihn hat man x = y = z = 1/√3
, und kann
daher den Streckenzug leicht herstellen.

   Ebenso kann man verfahren, wenn ein Gegenstand durch Grundriß und Aufriß
gegeben ist. Durch sie sind freilich nur zwei Koordinaten bestimmt. Nimmt man aber
eine zur Achse senkrechte Gerade beliebig an, so kann man sie als Spur einer dritten zur



Grundriß- und Aufrißebene senkrechten Ebene betrachten, und erhält in den Abständen
von ihr die dritten Koordinaten. Auf Beispiele dieser Art kommen wir in § 15
zurück.

   Die wesentlichste Aufgabe des Zeichners besteht auch hier in der überlegung, wie
man am einfachsten zu den Bildfiguren gelangt. Will man z. B. in Aufgabe 6. noch die
Kreise zeichnen, die die Winkel des Oktanten halbieren, so wird man am besten jeden
mittels eines solchen Kreises herstellen, der in der Zeichnungsebene liegt, was möglich
ist.













§ 15. Der scheinbare Umriß.



   Wir wenden uns zu einem letzten Gesetz allgemeiner Art, das für jede ebene
Perspektive Abbildung in gleicher Weise erfüllt ist, und schicken einige einfache
Tatsachen voraus.

   Eine Kugel, die wir betrachten, erscheint uns stets unter dem Bild einer Kreisfläche.
Jede auf der Kugel verlaufende Kurve muß daher im Bilde ganz innerhalb dieser Fläche
liegen. Der die Kreisfläche umrandende Kreis heißt deshalb scheinbarer Umriß der
Kugel. Hierin ist ein allgemeines Gesetz enthalten, zu dessen Erörterung wir nun
übergehen.75
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   1.  Ist P ein Punkt einer krummen Fläche Ω, so existiert in ihm eine Tangentialebene
τ, die folgendermaßen definiert ist: Wird durch den Punkt P auf der Fläche Ω eine Kurve
c gezogen, und im Punkte P ihre Tangente t konstruiert, so fällt diese, welches auch die
Kurve c sein mag, in die Ebene τ (Fig. 85). Enthält also die Fläche insbesondere eine
durch P gehende Gerade, so ist diese als ihre eigene Tangente zu betrachten und muß
daher ganz in τ enthalten sein.


   2.  Die Ebene, die eine Kegelfläche Φ in einem Punkte P einer ihrer Kanten k
berührt, enthält diese Kante und ist zugleich Tangentialebene der Kegelfläche in
jedem anderen Punkt dieser Kante k. Sie geht überdies durch den Scheitel des
Kegels.


   3.  Auf dem Kegel Φ denke man sich nun eine durch den Punkt P gehende Kurve c



und schneide aus dem Kegel durch eine Ebene ε', die nicht durch seine Spitze S gehen
soll, die Kurve c' aus, so kann man sie als Projektion der Kurve c von S auf ε' auffassen.
Sei P' wieder der Punkt von ε', der dem Punkt P der Kurve c entspricht. Dann besteht
der Satz:


   I. Die Tangente der ebenen Kurve c' im Punkt P' ist die Projektion der Tangente t,
die die Kurve c im Punkte P berührt.

   Die Tangentialebene τ, die den Kegel in P berührt und die Tangente t enthält, geht
nämlich gemäß 2. durch den Scheitel S des Kegels; mithin ist die Projektion von t in ε'
die Schnittlinie von ε' mit τ. Andererseits ist die Tangente der ebenen Kurve c' in P'
gemäß 2. ebenfalls in τ enthalten, und da sie auch in ε' liegen muß, so ist sie gleichfalls
Schnittlinie von ε' mit τ. Damit ist der Satz bewiesen. Man kann ihn kurz so
aussprechen, daß die Tangente der Projektion gleich der Projektion der Tangente
ist.


   4.  Der vorstehende Satz kann allerdings eine Ausnahme erleiden, nämlich dann,
wenn die Tangente t der Kurve c in die Kegelkante k fällt. Die Projektion von t
reduziert sich dann auf den Punkt P' selbst. Die Gestalt der Kurve c' im Punkt P'
hängt alsdann davon ab, ob die Kegelkante k für die Kurve c eine gewöhnliche
oder eine Wendetangente ist. Im ersten Fall hat c' offenbar im Punkte P' eine
Spitze.


   5.  Sei nun Ω die Oberfläche eines Körpers Σ, der ebenflächig oder krummflächig
begrenzt sein kann, und sei wieder S0 das im Auge liegende perspektivische Zentrum.
Dann lassen sich alle durch S0 gehenden Strahlen in zwei Gattungen teilen, je nachdem
sie mit Σ mindestens einen oder keinen Punkt gemein haben. Die ersten erfüllen einen
gewissen Raumteil V des Bündels S0, dessen Oberfläche eine kegelartige Fläche Φ mit
dem Scheitel S0 ist, und zwar enthält jede Kegelkante mindestens einen Punkt der
Oberfläche Ω von Σ. Sie kann unter Umständen auch mehr als einen Punkt von Σ
enthalten.76
 Ist Ω insbesondere eine krumme Fläche, so ist der Kegel Φ nichts anderes als der von S0
an die Fläche gelegte Tangentialkegel, und jede Tangentialebene dieses Kegels ist zugleich
eine Tangentialebene der Fläche Ω.


   6.  Die Gesamtheit aller Punkte der Oberfläche Ω, die zugleich dem Kegel Φ
angehören, wollen wir durch u bezeichnen. Da dieser Kegel seine Spitze in S0 hat, so



liefert uns sein Schnitt mit der Bildebene β die Bildkurve u' von u. Wir bezeichnen sie
als den scheinbaren Umriß oder als Umrißkurve; offenbar schließt sie dasjenige
Flächenstück der Bildebene β ein, in dem die Bildpunkte der sämtlichen Punkte von Σ
enthalten sind.


   7.  Ist Ω eine krumme Fläche, was wir von nun an ausschließlich
annehmen, so ist u die Kurve, längs deren der Tangentialkegel Φ die Fläche Ω
berührt.77
 Beide Flächen haben daher in jedem Punkt P dieser Kurve dieselbe Tangentialebene; mit
anderen Worten, die Tangentialebene τ der Fläche Ω in einem Punkt P von u geht stets
durch den Scheitel S0.


   8.  Sei nun c irgendeine auf der Fläche Ω verlaufende Kurve, die ebenfalls durch P
geht, und c' ihre Bildkurve in β, so wird c' jedenfalls durch den Punkt P' gehen. Es läßt
sich aber auch zeigen, daß sich die beiden Kurven c' und u' im allgemeinen in P'
berühren. Sind nämlich tc und tu die Tangenten der Kurven c und u im Punkte P, so
liegen sie gemäß 1. beide in der Tangentialebene τ. Diese Tangentialebene geht aber, wie
wir eben sahen, durch S0 hindurch, und das heißt nichts anderes, als daß τ die Ebene
ist, deren Schnitt mit β sowohl das Bild tc' von tc als auch das Bild tu' von
tu ergibt. Daher sind tc' und tu' identisch, womit der Satz bewiesen ist. Also
folgt:


   II. Die auf der Oberfläche Ω von Σ verlaufenden Kurven c haben im allgemeinen die
Eigenschaft, daß ihre Bildkurven den scheinbaren Umriß berühren.

   Eine Ausnahme kann nur eintreten, wenn die Tangente tc durch S0 geht; nur dann
versagt die vorstehende Beweisführung. Dann reduziert sich das Bild tc in β auf
einen Punkt, und die Kurve c' kann in P' eine Spitze erhalten. Ein Kreuzen
beider Kurven ist aber ausgeschlossen, denn aus der Definition von u' folgt
unmittelbar, daß c' ganz dem durch u' begrenzten Flächenstück angehören
muß.

   Die einfachsten Beispiele erhalten wir, wenn wir zur Darstellung durch Grundriß und
Aufriß oder zur axonometrischen Darstellung übergehen.
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   1.  Eine Schraubenlinie in Grundriß und Aufriß darzustellen (Fig. 86). Wird die
Grundrißebene auf den Zylinderkanten senkrecht gewählt, so ist der Grundriß mit dem
Grundkreis k des Zylinders identisch. Den Aufriß konstruiert man punktweise,
indem man den Grundkreis in n gleiche Teile teilt, und die den Teilpunkten
entsprechenden Aufrißprojektionen proportional zunehmen läßt. Sind A, B, C,
D ... die Teilpunkte auf dem Kreise, und ist d eine beliebige Länge, so hat
man
   


B2
B0
 = d,
    
C2
C0
 = 2d,
    
D2
D0
 = 3d
...



 zu machen. Der scheinbare Umriß besteht aus zwei Geraden, die Projektionen zweier
Zylindergeraden sind; sie werden von der Schraubenlinie abwechselnd berührt, und zwar
in Punkten, die im konstanten Abstand 2h aufeinanderfolgen, wenn h die Höhe
eines halben Schraubenganges ist. Der Aufriß ist in diesem Fall eine einfache
Wellenlinie.


   2.  Um dieselbe Schraubenlinie in derjenigen schiefen Projektion zu zeichnen, bei der
die y-Achse in die Richtung der negativen z-Achse fällt, verfährt man am einfachsten in
der Weise, daß man sich zunächst gemäß § 14 die Ellipse k' punktweise herstellt, die Bild
des Grundkreises k ist. (Fig. 87) Ist dann P1' der Bildpunkt des Punktes P1 von
Figur 8678
,
so erhält man den Bildpunkt P' des Schraubenlinienpunktes P in der Weise, daß man die
z-Koordinate P0P2 um die Strecke P0'P1' verkürzt, also P1'P' = P0P2 macht. Auch
hier berührt das Bild der Schraubenlinie den von den beiden äußersten Erzeugenden
gebildeten scheinbaren Umriß.

   Wird die Projektionsrichtung so gewählt, daß sie der Tangente im Punkte S parallel
ist, so erhält die Bildkurve in S' eine Spitze, die senkrecht gegen die Zylindergerade
verläuft.



   




	Fig 88
	




   In dieser Weise kann man auch mit andern auf dem Zylinder verlaufenden Kurven
verfahren, deren Grundriß und Aufriß leicht herstellbar ist. Um z. B. eine Ellipse zu
zeichnen, die durch eine Ebene ε ausgeschnitten wird, wähle man die Aufrißebene zu ε
senkrecht; dann reduziert sich der Aufriß auf eine Gerade, nämlich auf den Schnitt von ε
mit der Aufrißebene. Ähnlich kann man auch Kurven zeichnen, die auf einem geraden
Kegel verlaufen.


   3.  Eine Kreisscheibe mit einem in der Mitte befindlichen zylindrischen Loch zu
zeichnen (Fig. 88).

   Wir erhalten die einfachste Darstellung, indem wir wiederum die y-Achse in die
Richtung der negativen z-Achse fallen lassen.

   Bei dieser Darstellung werden die beiden Kreise G und H, die die äußere
zylindrische Fläche begrenzen, zu kongruenten Ellipsen, deren Mittelpunkte vertikal
übereinanderliegen, und das gleiche gilt für die Grenzkreise g und h des inneren
Zylindermantels. Man erhält sie wie im vorstehenden Paragraphen. Es gibt einen
äußeren und einen inneren scheinbaren Umriß. Der äußere besteht aus Teilen der
Ellipsen G und H und zwei parallelen Geraden; diese sind Bilder der beiden
Zylinderkanten, längs deren die Tangentialebenen des Zylinders zur yz-Achse
parallel sind. Diese beiden Geraden müssen daher die Ellipsen berühren. In
den inneren scheinbaren Umriß gehen im vorliegenden Fall nur Teile von g
und h ein. Zu beachten ist, daß die bezüglichen Teile von g und h in der Figur
unter einem spitzen Winkel zusammentreffen; die Kreuzungspunkte müssen
deshalb, um einen deutlichen Gesichtseindruck hervorzubringen, scharf zu erkennen
sein.
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   4.  Eine Kugel mit einigen ihrer größten Kreise in orthogonaler Projektion zu
zeichnen (Fig. 89).

   Derjenige größte Kreis, der zur Bildebene parallel liegt, liefert den scheinbaren
Umriß. Die anderen größten Kreise berühren ihn; man erhält ihre Bilder gemäß
§ 14.79


   5.  Der scheinbare Umriß ergab sich bisher unmittelbar in der Weise, daß
wir die Bilder der in ihn eingehenden Kurven direkt zeichnen konnten. In den
weniger einfachen Fällen wird er jedoch, wie es seiner Natur entspricht, nur
als Enveloppe konstruierbar sein. Ich gebe auch hierzu noch einige einfachere
Beispiele.



   


 	Fig 90 	





   Um zunächst einen Kreisring in derselben axonometrischen Darstellung zu zeichnen,
die vorher benutzt wurde, geht man am besten von einer Figur aus (Fig. 90), die den
Schnitt des Ringes mit einer durch die Rotationsachse (z-Achse) gehenden Ebene
darstellt; die so entstehende Schnittfigur besteht aus den beiden Kreisen k1 und k2. Wir
zeichnen nun zunächst wieder die axonometrischen Bilder der Kreise a1 und
a280,
in denen der Ring von der Äquatorebene geschnitten wird, sowie die Bilder
des oberen und unteren Berührungskreises b1 und b2. Die Durchmesser dieser
Kreise sind aus der Durchschnittfigur unmittelbar zu entnehmen; ihre Bilder sind
Ellipsen, die wir ebenso wie bei den vorstehenden Aufgaben, zu konstruieren
haben.81


   Um den scheinbaren Umriß zu erhalten, wollen wir diesmal einige seiner Punkte
direkt konstruieren, und zwar solche, die Punkten der yz-Ebene entsprechen. Die
Richtung der projizierenden Parallelstrahlen nehmen wir in bestimmter Weise als
gegeben an. Sei φ der Winkel, den sie mit der z-Achse bilden. Zeichnet man dann in der
Durchschnittfigur die Geraden, die mit der z-Achse den Winkel φ bilden und die Kreise
k1 und k2 berühren, so bestimmen diese Berührungspunkte, wie leicht ersichtlich,
diejenigen Parallelkreise u1, u2 und v1, v2 des Kreisrings, deren in der yz-Ebene liegende
Punkte den Umrißkurven angehören. Die Durchmesser dieser Parallelkreise sind aus der
Figur unmittelbar zu entnehmen. Deren Bilder zeichnen wir ebenfalls axonometrisch und
können nunmehr die Umrißkurven als Enveloppen der sämtlichen vorhandenen Ellipsen
herstellen. Jede dieser Ellipsen besitzt Punkte, die dem scheinbaren Umriß
angehören.

   Auch hier ist zu beachten, daß der innere Teil des scheinbaren Umrisses, wie im
vorigen Beispiel, in zwei Teile zerfällt, die unter einem spitzen Winkel zusammenstoßen.
Gerade diese Eigenschaft des Bildes ist für das Hervorbringen eines guten optischen
Eindruckes wesentlich.
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   6.  Ein Rotationshyperboloid H axonometrisch in schiefer Projektion zu zeichnen.
(Fig. 91).

   Sind k1 und k2 zwei Kreise des Hyperboloids, deren Ebenen vom Mittelpunkt
gleichen Abstand haben, so wird jede Gerade des Hyperboloids diese Kreise in zwei
solchen Punkten P1 und P2 schneiden, daß die Ebenen, die P1 und P2 mit der
Hauptachse verbinden, einen konstanten Winkel einschließen. Darauf beruht die folgende
Konstruktion.

   Man zerlege k1 und k2 in gleich viele Teile, bezeichne die senkrecht
übereinanderliegenden Teilpunkte durch gleiche Ziffern und konstruiere gemäß § 14 deren
axonometrische Bilder. Dann verbinde man den Punkt 1 von k1' mit dem Punkt ν von k2',
ebenso 2 von k1' mit ν + 1 von k2' und fahre so fort, so erhält man das Bild der einen
Geradenschar.82
 Die andere erhält man ebenso, wenn man die Punkte 1,2,... von k2' mit ν,ν + 1,... von
k1' verbindet. Alle diese Geraden müssen den scheinbaren Umriß berühren. Dieser ist
daher nichts anderes als die Enveloppe unserer Geradenscharen. Um die Figur
anschaulich zu machen, sind nur diejenigen Stücke der Geraden gezeichnet worden, die
auf dem vom Auge S0 sichtbaren Teil des Hyperboloids liegen.













§ 16. Die stereographische Projektion.



   Außer den auf der Perspektive beruhenden bildlichen Darstellungen sind für
besondere Zwecke andere Abbildungsmethoden im Gebrauch. Eine der wichtigsten ist die
stereographische Projektion.
   




	Fig 92
	




   Die stereographische Projektion kann noch als Sonderfall der allgemeinen
Perspektive angesehen werden, mit der Maßgabe, daß nur die Punkte einer
Kugelfläche der Abbildung unterworfen werden. Man fasse auf der Kugel
(Fig. 92)83
zwei Endpunkte eines Durchmessers in Betracht, die wir Nordpol N und Südpol S
nennen wollen, lege im Südpol S die Tangentialebene ε', betrachte den Nordpol N als
den Scheitel der perspektiven Beziehung und die Tangentialebene ε' als die Bildebene,
ziehe durch N einen beliebigen Strahl, der die Kugel in einem Punkt A und die
Tangentialebene in A' schneide, und hat damit dem Punkt A der Kugel den Bildpunkt
A' der Ebene ε zugewiesen. Jedem durch N gehenden Strahl, der die Kugel
noch in einem zweiten von N verschiedenen Punkt schneidet, entspricht so ein
Bildpunkt A', während umgekehrt auch zu jedem Punkt B' der Ebene ein Punkt B
der Kugel gehört, nämlich der stets vorhandene Punkt B, in dem der Strahl
NB' die Kugel außer in N durchdringt. Der Punkt S ist mit seinem Bildpunkt
identisch.

   Eine Ausnahme tritt nur für den Punkt N selbst ein und für die Strahlen, die die
Kugel in N berühren. Sie sind der Ebene ε' parallel. Will man auch hier das



Gesetz des eineindeutigen Entsprechens ausnahmslos gestalten, muß man wieder
uneigentliche Punkte der Ebene ε' einführen; im Gegensatz zu § 6 hat dies aber hier
so zu geschehen, daß man der Ebene nur einen uneigentlichen Punkt beilegt
und ihn dem Punkt N als Bildpunkt zuweist. Dies erweist sich in der Tat als
zulässig.84


   Näher hierauf einzugehen, ist nicht nötig, da es für die praktischen Zwecke, die wir
hier im Auge haben, nicht in Betracht kommt. Hat man nämlich eine stereographische
Abbildung eines solchen Teiles der Oberfläche herzustellen, der den Nordpol enthält, so
wird man den Punkt S als Zentrum der Projektion und als Bildebene ε' die
Tangentialebene in N wählen.

   Die Wichtigkeit und Nützlichkeit der stereographischen Projektion beruht auf
folgenden zwei Sätzen:


   I. Jedem Kugelkreis k entspricht als ebenes Bild ein Kreis k'.


   II. Zwei Kugelkreise schneiden sich unter denselben Winkeln, wie ihre Bildkreise.

   Den ersten Satz beweisen wir so, daß wir zeigen, daß gewissen Gruppen von vier
Punkten A, B, C, D der Kugel, die auf einem Kreise k liegen, vier Bildpunkte
entsprechen, die ebenfalls auf einem Kreise liegen.

   Verbindet man (Fig. 92) S mit A, so ist SA eine Höhe des rechtwinkligen Dreiecks
NSA', und daher besteht die Relation
   
	
   

N S 2
 = N A . N A'

	(1)






   




	Fig 93
	




   Sei nun k ein auf der Kugel liegender Kreis, η die ihn enthaltende Ebene, und e die
Schnittlinie der Ebenen η und ε'. Wir nehmen auf dem Kreis k vier Punkte A, B, C, D so an, daß
(Fig. 93)85
die Sehnen AB und CD sich auf e in einem Punkte O schneiden, und ziehen die vier
Strahlen



 N A A',       N B B',

N C C',       N D D'.


   Ist dann α die Ebene NAB, und γ die Ebene NCD, so schneiden sich
die drei Ebenen ε', α und γ ebenfalls in O; daher gehen durch ihn auch die
Schnittlinien von je zweien dieser Ebenen hindurch, also auch die von α und
ε' und die von γ und ε'. Auf der ersten liegen die Punkte A' und B', auf der
zweiten C' und D', und wir folgern so, daß OA'B' und OC'D' je eine Gerade
bilden. Wird nun die Relation 1) auf die Strahlen NA und NB angewandt, so
folgt
   
	
   

N A . N A' = N B . N B',

	(2)



und dies bedeutet, daß die vier Punkte A, B, A', B' auf einem gewissen Kreise ka liegen.
Andererseits schneiden sich AB und A'B' in O, und daher folgt aus dem Sehnensatz für
diesen Kreis ka weiter



   
	
   

O A . O A' = O B . O B'.

	(3)



In derselben Weise ergibt sich
   
	
   

O C . O C' = O D . O D'.

	




   Nun ist aber, da A, B, C, D Punkte des Kreises k sind,
   
	
   

O A . O B = O C . O D
 
	(4)



also folgt schließlich
   
	



   

O A' . O B' = O C' . O D'.
 
	(5)



es liegen also in der Tat auch die Punkte A', B', C', D' auf einem Kreise. Da eine solche
Relation für je zwei durch O gehende Geraden abgeleitet werden kann, ist damit das Bild
k' von k als Kreis erwiesen.

   Das Bild eines jeden durch N und S gehenden Meridians ist insbesondere eine durch
S gehende Gerade, und das Bild jedes Parallelkreises ein Kreis mit dem Mittelpunkt S.
Den Mittelpunkt eines beliebigen Kreises k' findet man auf Grund davon, daß es
einen Durchmesser des Kreises k gibt, der in einen Durchmesser des Kreises k'
übergeht, nämlich denjenigen, den die durch NS gehende auf k senkrechte Ebene
enthält.

   Um den Satz II zu beweisen, schicken wir zunächst folgende evidente Tatsachen
voraus.


   1.  Sind k und k1 zwei Kugelkreise, die sich in den Punkten P und P1 schneiden, so
sind die Winkel, die sie in P und P1 bilden, einander gleich, und zwar sind diese Winkel
identisch mit den Winkeln, die ihre Tangenten in P und P1 bilden. Das gleiche gilt für
zwei ebene Kreise.


   2.  Sind k, k1, k2... Kugelkreise, die sich im Punkte P berühren, also in diesem
Punkte dieselbe Tangente t haben, so berühren sich die Bildkreise k', k1', k2'... sämtlich
in P', und haben in P' die Bildgerade t' als Tangente.

   Man sieht nun zunächst, daß der Satz II in dem Fall evident ist, daß die Kugelkreise
k und k1 beide durch den Südpol S gehen, also ihre Tangenten t und t1 in der Ebene ε'
liegen. Dann gehen nämlich auch die Bildkreise k' und k1' durch S, und deren
Tangenten t' und t1' sind mit t und t1 identisch, woraus die Behauptung unmittelbar
folgt.

   Hieraus ergibt sich der Beweis des allgemeinen Falles folgendermaßen. Seien k und l
irgend zwei Kugelkreise, die sich im Punkte P schneiden, sei (k,l) der von ihnen gebildete
Winkel86,

und seien k' und l' die Bildkreise, so ist zu zeigen, daß
   
	
   

(measured angle)
(k, l) = 
(measured ansgle)
(k', l').

	(1)



ist. Gemäß 1. und 2. schließen wir dann zunächst, daß es zwei Kreise k1 und l1 gibt, die
in P dieselben Tangenten haben, wie k und l, und überdies durch S gehen, und es
ist
   
	
   

(measured angle)
(k, l) = 
(measured ansgle)
(k1, l1).

	(2)



Die Bildkreise k1' und l1' gehen dann ebenfalls durch S, und gemäß 1. und 2. ist
auch
   
	



   

(measured angle)
(k', l') = 
(measured ansgle)
(k1', l1').

	(3)



Da nun aber auf Grund des eben bewiesenen Sonderfalles
   
	
   

(measured angle)
(k1, l1) = 
(measured ansgle)
(k1', l1').

	(4)



ist, so folgt damit auch die Richtigkeit der Relation 1). Damit ist der Satz II in vollem
Umfange bewiesen.

   Die durch die stereographische Projektion vermittelte Abbildung wird deshalb als
winkeltreu bezeichnet. Denkt man sich auf der Kugel ein sehr kleines Kugeldreieck, so
entspricht ihm ein ebenes Kreisdreieck mit gleichen Winkeln, und da man diese
Dreiecke in der Annäherung als geradlinig betrachten kann, so sagt man, daß die
Abbildung in den kleinsten Teilen ähnlich ist. Abbildungen dieser Art heißen auch
konform.

   Als Beispiel behandeln wir diejenige Kugelteilung, die durch die sechs Diagonalebenen
eines der Kugel einbeschriebenen Würfels entsteht. Durch jeden Würfeleckpunkt
gehen drei von ihnen; wir haben also auf der Kugel sechs größte Kreise, die
sich zu je dreien in einem Punkt schneiden. Den Würfel denken wir uns in der
Stellung, die Figur 57 zeigt; die Diagonale AH fällt also mit der Achse NS
zusammen.



   




	Fig 94
	




   Die drei durch NS = HA gehenden Kreise projizieren sich (Fig. 94) in je eine durch
A gehende Gerade; jede von ihnen enthält die Bilder von zweien der Ecken B, C, D und
E, F, G. Nur die Längen AB1 und AE1 sind noch zu ermitteln. Offenbar erhalten wir
AB1, indem wir in Figur 56 HB bis zum Schnitt B1 mit der durch A gehenden
Horizontalen verlängern; analog ergibt die Verlängerung von AB his zum Schnitt mit der
durch H gehenden Horizontalen die Lange von AE1. Die Kreise durch B1C1E1F1,
C1D1F1G1 und B1D1E1G1 liefern die Bilder der drei gesuchten Diagonalkreise unserer
Kugelteilung.87











§ 17. Die Relief- und Theaterperspektive.



   Um zwei Ebenen ε und ε1 parallelperspektiv aufeinander zu
beziehen88,
genügt es gemäß § 5, 6 einem beliebigen Punkt P der Ebene ε einen beliebigen Punkt P1
von ε1 als entsprechenden zuzuweisen; die Verbindungslinie von P und P1 bestimmt die
Richtung der projizierenden Strahlen. Ferner schneiden sich gemäß Satz II von § 4 je
zwei entsprechende Geraden g und g1 beider Ebenen auf ihrer Schnittlinie s, die eine sich
selbst entsprechende Gerade ist.
   




	Fig 95
	




   Wird die Ebene ε1 um die Achse s in die Ebene ε hineingedreht, so wird g1 im
allgemeinen nicht mit g zusammenfallen. Es ist aber leicht, ein Paar entsprechender
Geraden von ε und ε1 zu finden, das diese Eigenschaft besitzt. (Fig. 95). Dazu braucht
man nur, nachdem man ε1 in ε hineingedreht hat, P1 und P zu verbinden, so stellt diese
Verbindungslinie ein Paar zusammenfallender Geraden dar. Ist nämlich G ihr
Schnittpunkt mit s, so ist G = G1 und die Geraden GP und G1P1 sind daher auch für
die ursprüngliche Lage von ε und ε1 entsprechende Geraden beider Ebenen. Wir
bezeichnen sie durch p und p1.

   Auf diesen Geraden p und p1 gibt es außer dem Punkt G = G1 noch ein zweites Paar
entsprechender Punkte, das bei der Vereinigung von ε1 mit ε zusammenfällt, nämlich
ihre unendlichfernen. Da wir es nämlich mit einer parallelperspektiven Beziehung zu tun
haben, so sind (§ 6, I) die unendlichfernen Punkte von p und p1 entsprechende Punkte
beider Ebenen, andererseits ist klar, daß sie bei der Vereinigung von ε1 mit ε
zusammenfallen. Gibt es auf p und p1 noch ein drittes Paar derartiger Punkte A und A1,
so müssen alle Paare entsprechender Punkte zusammenfallen; denn man hat GA = G1A1,



und der zu p und p1 gehörige Proportionalitätsfaktor ρ hat daher den Wert 1. Dies
wollen wir jedoch ausdrücklich ausschließen; insbesondere wird also auch der Punkt P1
nicht mit P zusammenfallen.

   Sei jetzt Q irgendein Punkt von ε, so können wir durch ihn eine Gerade q parallel
zu p legen. Dann ist auch q1 parallel zu p1, und da sich q und q1 überdies in
einem Punkt von s schneiden, so bilden auch q und q1 ein Paar entsprechender
Geraden, das bei der vereinigten Lage von ε und ε1 zusammenfällt. Für die
vereinigte Lage ist also q = q1 eine Gerade, die sowohl den Punkt Q wie auch den
Punkt Q1 enthält und außerdem durch den unendlichfernen Punkt von p geht.
Bezeichnen wir diesen Punkt noch durch S∞, so ergibt sich nunmehr das folgende
Resultat:


   I. Die beiden vereinigt liegenden Ebenen ε und ε1 sind so aufeinander bezogen, daß
sich je zwei entsprechende Geraden auf der Achse s schneiden, und je zwei entsprechende
Punkte auf einem durch ein festes Zentrum S∞ gehenden Strahl liegen. Der Punkt S∞
und jeder Punkt der Achse s entspricht sich selbst, ebenso jeder durch S∞ gehende
Strahl.89


   Von den vereinigt liegenden Ebenen ε und ε1 sagen wir auch jetzt, daß sie sich in
parallelperspektiver Lage befinden, und nennen s die Achse und S∞ das Zentrum der
Perspektivität. Statt Perspektivität sind auch die Bezeichnungen kollineare Lage,
Kollineationsachse und Kollineationszentrum im Gebrauch.

   Um eine solche Beziehung zu vermitteln, konnten wir in der ursprünglichen Lage von
ε und ε1 ein Punktepaar P, P1 beliebig einander zuweisen. Außerdem ist auch die
Schnittlinie s als gegeben zu betrachten. Dies überträgt sich analog auf die vereinigte
Lage. Hat man nämlich für die vereinigte Lage eine Achse s und ein Punktepaar P, P1
beliebig ausgewählt, und wird dann die vereinigte Lage durch Auseinanderdrehen
von ε und ε1 um s als Achse zunächst wieder aufgehoben, so ist durch das
Punktepaar P, P1 eine Projektionsrichtung und damit eine parallelperspektive
Beziehung vermittelt. Damit ist jedem Punkt der einen Ebene ein entsprechender der
anderen zugewiesen, und dies bleibt bestehen, wenn wir die vereinigte Lage
wieder herstellen. Da nun in der vereinigten Lage durch das Punktepaar P, P1
auch der Punkt S∞ bestimmt ist, können wir dies folgendermaßen als Satz
aussprechen:


   II. Um zwei vereinigte Ebenen ε und ε1 in parallelperspektive Beziehung zubringen,
kann mau die Achse s, das Zentrum S∞ und auf irgendeinem durch S∞ gehenden Strahl
ein Paar entsprechender Punkte P und P1 beliebig annehmen.




   Unser Beweis ging so vor, daß wir die Ebenen ε und ε1, um einen beliebigen Winkel
auseinander drehten. Man kann daher fragen, ob die sich für die vereinigte Lage
einstellende parallelperspektive Beziehung von diesem Winkel abhängt. Dies ist jedoch
nicht der Fall; vielmehr ist die so hergestellte perspektive Beziehung der vereinigten
Ebenen ε und ε1 durch s, S∞ und das Punktepaar P, P1 eindeutig bestimmt. Um dies
nachzuweisen, ist nur zu zeigen, daß sich zu einem gegebenen Punkt Q von ε der
zugehörige Punkt Q1 von ε1 eindeutig konstruieren läßt (Fig. 95). Man ziehe hierzu
durch Q die Gerade q parallel zur Geraden p = PP1 und außerdem die Gerade QP; ist G
ihr Schnitt mit s, so liegt Q1 erstens auf q1 = q und zweitens auf der Geraden g1 = GP1,
die der Geraden g = GP entspricht. Damit ist Q1 eindeutig bestimmt und der Beweis
geliefert.

   Sei endlich e eine durch P gehende Gerade von ε, die zu s parallel ist, also durch den
unendlichfernen Punkt von s geht, so entspricht ihr in ε1 eine Gerade e1, die ebenfalls
durch diesen Punkt geht, also ebenfalls zu s parallel ist. Jeder zu s parallelen Geraden
der einen Ebene entspricht also eine ebensolche Gerade der anderen. Unter den zu s
parallelen Geraden von ε befindet sich insbesondere auch die unendlichferne Gerade h∞
von ε; ihr entspricht daher eine zu s parallele Gerade h1 von ε1, und ebenso gibt
es in ε eine zu s parallele Gerade k; die der unendlichfernen Geraden von ε1
entspricht. Wir finden so die Resultate wieder, die wir analog schon in § 7 abgeleitet
haben.
   




	Fig 96
	




   Wir unterwerfen die Ebene ε nunmehr der in § 2 erörterten Abbildung,
und zwar in der Weise, daß die Ebenen ε und ε' sich in der Achse s schneiden
mögen.90
 Dabei entspricht dem Punkt S∞ der Ebene ε ein auf dem Horizont von ε' liegender
Fluchtpunkt S, und wir erhalten für die Bildebene ε' unmittelbar folgenden Tatbestand.
In ihr befinden sich zwei Ebenen ε' und ε'1 in der Weise in vereinigter Lage,
daß je zwei entsprechende Punkte P' und P'1 auf einem durch S gehenden
Strahl liegen, und je zwei entsprechende Geraden g' und g'1 sich auf der Achse s
schneiden. Der Punkt S und jeder Punkt der Achse s entspricht sich wieder selbst.
Auch jetzt sagen wir, daß sich ε' und ε'1 in perspektiver oder kollinearer Lage
befinden, und nennen s die Achse und S das Zentrum der perspektiven oder



kollinearen Lage. Auch von dem Satz II erkennen wir leicht, daß er sich auf diesen
allgemeineren Fall der perspektiven Lage überträgt. Wird nämlich (Fig. 96) in
der Ebene ε' eine Gerade s, ein Punkt S und auf einem durch S gehenden
Strahl ein Punktepaar P', P'1 beliebig angenommen, so können wir die Ebene
ε' so als Bildebene einer Ebene ε auffassen, daß sich ε und ε' in s schneiden,
und daß dem Punkt S in ε ein unendlichferner Punkt S∞ entspricht; man hat
hierzu das perspektive Zentrum S0, das die Beziehung von ε und ε' vermittelt,
nur so zu wählen, daß der Horizont von ε' durch S geht. Wir haben also den
Satz:


   III. Um für zwei vereinigte Ebenen ε' und ε'1 eine perspektive Lage herzustellen,
kann man die Achse s und das Zentrum S der Perspektivität, sowie auf einem
durch S gehenden Strahl ein Paar entsprechender Punkte P' und P'1 beliebig
annehmen.

   Gemäß § 4 gehen bei jeder perspektiven Beziehung zweier Ebenen ε und ε' Geraden,
die der Achse s parallel sind, in Geraden über, die ebenfalls zu s parallel sind. Betrachtet
man daher die in ε liegenden zu s parallelen Geraden einerseits als Geraden
von ε und andererseits als Geraden von ε1 so sind die ihnen entsprechenden
Geraden von ε' und ε'1 ebenfalls sämtlich zu s parallel; wir folgern also, daß
allen zur Achse parallelen Geraden von ε' die zu s parallelen Geraden von ε'1
entsprechen.

   Hieraus ziehen wir zwei Folgerungen. Erstens gibt es wieder in ε' eine zu s parallele
Gerade h', die der unendlichfernen Geraden von ε'1 entspricht, und in ε'1 eine zu s
parallele Gerade k'1, die der unendlichfernen Geraden von ε' entspricht. Wir wollen sie
wieder als Fluchtlinien bezeichnen, und zwar h' als Fluchtlinie von ε' und k'1 als
Fluchtlinie von ε'1. Eine zweite Folgerung fließt aus der überlegung, daß insbesondere
auch die beiden parallelen Geraden einander entsprechen müssen, die durch P' und P'1
gehen. Wir können daher den Satz III so abändern, daß wir die Punkte P' und P'1
durch irgend zwei einander entsprechende zu s parallele Geraden von ε' und ε'1 ersetzen.
Ein solches Paar entsprechender Geraden wird insbesondere durch die Fluchtlinie der
einen Ebene und die unendlichferne Gerade der anderen gebildet, und so erhalten wir
schließlich den Satz:


   IV. Um für zwei vereinigte Ebenen ε' und ε'1 die perspektive Lage herzustellen, kann
man die Achse s und das Zentrum S der Perspektivität, sowie eine zu s parallele Gerade
als Fluchtlinie der einen Ebene beliebig wählen.

   Das Vorstehende wollen wir nun sinngemäß auf den Raum übertragen. Doch mag
es genügen, die tatsächlichen Verhältnisse, soweit sie hier in Frage kommen,



darzustellen. Ihre volle Analogie mit den Sätzen der Ebene mag für ihre Richtigkeit
sprechen.
   




	Fig 97
	




   Wir denken uns zunächst den Raum doppelt, bezeichnen den einen durch Σ, den
anderen durch Σ1, und wollen Σ und Σ1 in der Weise einander zuordnen, daß an die
Stelle des Punktes S und der Achse s ein Punkt S und eine Ebene σ von analoger
Eigenschaft treten. Es soll also jeder Punkt von σ sich selbst entsprechen, und es sollen je
zwei entsprechende Punkte auf einem durch S gehenden Strahl liegen. Ist daher ε
irgendeine Ebene von Σ, so müssen sich ε und ε1 in einer Geraden von σ schneiden, und
ist g eine Gerade von Σ, so müssen sich auch die Geraden g und g1 in einem Punkt von σ
treffen. Diese Beziehung von Σ und Σ1 läßt sich auch hier so bewirken, daß wir
(Fig. 97) den Punkt S, die Ebene σ sowie ein Paar entsprechender Punkte P und
P1 auf einem durch S gehenden Strahl p = p1 beliebig annehmen. Man kann
nämlich zu einem Punkt Q von Σ den entsprechenden Punkt Q1 von Σ1 ganz
analog konstruieren, wie oben. Zieht man zunächst den Strahl QS = q, so muß
wegen q = q1 der Punkt Q1 auf ihm liegen. Wird ferner durch Q und P die
Gerade y gezogen, und ist G ihr Schnitt mit σ, so ist G = G1, also geht g1
durch G und P1, ist also konstruktiv bestimmt und enthält ebenfalls den Punkt
Q1.

   Es ist nur noch zu zeigen, daß sich die beiden Geraden q1 und g1, die
den Punkt Q1 bestimmen sollen, wirklich schneiden. Dies tun sie aber
in der Tat, da alle hier benutzten Geraden p, q, g und g1 in einer und
derselben Ebene liegen, und zwar in derjenigen, die durch p und q bestimmt
ist.91


   Von den so aufeinander bezogenen Räumen Σ und Σ1 sagen wir wiederum,
daß sie sich in perspektiver oder kollinearer Lage befinden, und nennen S das
Zentrum und σ die Ebene der Perspektivität oder Kollineation. Dann besteht der
Satz:





   V. Um zwei Räume Σ und Σ1 perspektiv aufeinander zu beziehen, kann man das
Zentrum S und die Ebene σ der Perspektivität, sowie auf einem durch S gehenden Strahl
ein Paar entsprechender Punkte P und P1 beliebig annehmen.
   




	Fig 98
	




   Wie oben, folgern wir auch hier, daß der Ebene π, die durch P geht und parallel zu σ
liegt, eine durch P1 gehende zu σ parallele Ebene π1 entspricht, daß ferner jeder zu σ
parallelen Ebene des einen Raumes eine ebenfalls zu σ parallele Ebene des anderen
Raumes entspricht, und daß man die perspektive Beziehung auch in der Weise
herstellen kann, daß man irgendein Paar von Ebenen, die zu σ parallel sind, in Σ
und Σ1 einander entsprechen läßt. Insbesondere entspricht auch wieder der
unendlichfernen Ebene η∞ von Σ in Σ1 eine zu σ parallele Fluchtebene η1 und der
unendlichfernen Ebene von Σ1 eine zu σ parallele Fluchtebene von Σ, und man kann die
perspektive Beziehung auch mittels eines dieser Ebenenpaare festlegen (Fig. 98). Also
folgt:


   VI. Um zwei Räume Σ und Σ1 perspektiv aufeinander zu beziehen, kann man das
Zentrum S und die Ebene σ der Perspektivität, sowie eine zu σ parallele Ebene als
Fluchtlinie des einen Raumes beliebig auswählen.

   Dies sind die Tatsachen, die der geometrischen Theorie der Reliefperspektive und der
Theaterperspektive zugrunde liegen.

   Eine auf dem Vorstehenden beruhende Reliefdarstellung hat so zu geschehen, daß der
darzustellende Körper R dem Raum Σ angehört, während sein Bild R1 Teil des Raumes
Σ1 ist. Sie ist ferner so herzustellen, daß das perspektivische Zentrum S das Auge des
Beschauers vorstellt, und die Ebene, auf der sich das Relief R1 erhebt, die Fluchtebene
η1 des Raumes Σ1 ist. Dies bewirkt, daß das Relief unendliche Tiefenausdehnung zu
besitzen scheint; es ist ja das Abbild eines sich bis zur unendlichfernen Ebene η∞ von Σ
erstreckenden Raumteils. Die Perspektivitätsebene σ, die die Räume Σ und Σ1
entsprechend gemeinsam haben, befindet sich zwischen dem Auge S und der Ebene η1;
das Relief R1 selbst ist ganz zwischen den Ebenen σ und η1 enthalten. Je näher
also das Relief R1 der Ebene σ kommt, um so geringer ist die Verzerrung, die



seine obersten Teile erleiden. Aus unserem allgemeinen Satz folgt noch, daß
S, σ, η1 beliebig wählbar sind, daß aber mit ihnen die Abbildung bestimmt
ist.92


   Es ist klar, daß eine so ausgeführte Reliefdarstellung nur auf ein in S befindliches
Auge einen guten bildmäßigen Eindruck machen würde. Aus diesem Grunde stützt sich
die Darstellung, die der Künstler schafft, teilweise auf andere Grundlagen, und zwar
wesentlich auf künstlerische Motive; sie ist weit mehr, als die malerische Darstellung,
durch Rücksichten anderer Art bedingt. Immerhin wird die Kenntnis der oben
dargelegten geometrischen Gesetze dem Beschauer das Beschauen des Reliefs
erleichtern.

   ähnlich steht es mit den geometrischen Gesetzen, die für die Herstellung der
Theaterkulissen die Grundlage bilden. Hier stellt der Vorhang die Ebene σ dar, in der die
wirkliche Welt und die Bühnenwelt zusammenstoßen; S ist wieder das Auge des
Zuschauers. Soll der Eindruck entstehen, daß sich die Bühnentiefe bis ins Unendliche
erstreckt, so muß ihr Hintergrund die Fluchtebene darstellen; so wird erreicht, daß die
Bühne als Bild des ganzen Raumes erscheinen kann, der sich vom Vorhang aus ins
Unendliche ausdehnt. Sollen die Bühnenkulissen nur einen endlichen Teil dieses Raumes
vorstellen, so hat man die Fluchtebene in geeigneter Entfernung hinter die Bühne zu
verlegen, und die einzelnen Kulissen so zu zeichnen, wie es diejenige Perspektive
Darstellung erfordert, die der angenommenen Lage des Auges S, dem Vorhang
als Ebene σ und der gewählten Lage der Fluchtebene η1 entspricht. Daß es
sich auch hier nur um gewisse allgemeine Grundlagen handeln kann, und daß
der bildliche Eindruck des Beschauers überdies von seiner Stellung zur Bühne
abhängt, ist klar. Immerhin darf man die Tatsache nicht außer acht lassen, daßauf
den Seiten- und Deckenkulissen die Bilder aller parallelen Geraden nach der
Fluchtebene konvergieren müssen. Für ihre richtige Zeichnung ist die angenommene
Lage der Fluchtebene hier ebenso entscheidend, wie bei der ebenen malerischen
Darstellung.












Anhang.



           
        	 S. 3. Das Auge enthält mehrere brechende Flächen. Die es durchdringenden
        Strahlen unterliegen daher den allgemeinen Gesetzen, die Gauß über solche
        Systeme abgeleitet hat.93
        Dies  bewirkt,  daßes  nicht  einen,  sondern  zwei  Knotenpunkte  K1  und
        K2  gibt,  durch  die  alle  von  P  ausgehenden  Strahlen  hindurch  gehen;
        der geradlinige Strahl PKPn ist daher genauer durch einen gebrochenen
        Linienzug PK1K2Pn zu ersetzen, und zwar sind PK1 und K2Pn parallele
        Geraden, während K1K2 mit ihnen einen Winkel bildet. Es ist K1K2 =
        0,416 .. mm.
             Die Lage des Knotenpunktes hängt außerdem von der Entfernung
        des  Punktes  P  vom  Auge  ab;  das  Auge  oder  vielmehr  die  Lage  der
        lichtbrechenden Medien akkommodiert sich nämlich stets so, daß gerade
        die von diesem Punkt ausgehenden Lichtstrahlen sich auf der Netzhaut
        vereinigen.
           


        	 S. 4. Hier kommen insbesondere folgende Tatsachen in Betracht.
            
            	Die Wahrnehmung der räumlichen Objekte kommt durch die Gesichtseindrücke
            zweier Augen zustande; bekanntlich ist die richtige Beurteilung der
            Entfernung der Objekte zu einem erheblichen Teil durch das binokulare
            Sehen bedingt.94
            Dagegen wird das Bild nur mit Rücksicht auf ein einziges Auge hergestellt.
            

            	Da  die  Herstellung  des  Bildes  so  erfolgt,  daß  wir  die  sämtlichen
            Sehstrahlen mit der Bildebene zum Schnitt bringen, so wird damit
            von selbst eine bestimmte Stellung des Auges und des Gegenstandes
            zur Bildebene vorausgesetzt. Das Auge vermag aber die Treue des
            Bildes auch dann noch zu erkennen, wenn es seine Stellung zur Bildebene
            ändert; freilich wird sich diese Änderung in gewissen Schranken halten
            müssen, damit der gute Eindruck erhalten bleibt.95
            Durch diesen Umstand wird die Zweckmäßigkeit der zeichnerischen
            Annahmen bedingt, die für die gegenseitige Stellung des Auges und
            des Körpers Σ zur Bildebene maßgebend sind (vgl. § 3).



            

            	Das Akkommodationsvermögen des Auges muß auch deshalb helfend
            eintreten, weil die Knotenpunkte der Sehstrahlen, die einerseits vom
            Körper Σ und andererseits vom Bild Σ' ins Auge gelangen, gemäß
            der  vorstehenden  Anmerkung  tatsächlich  verschieden  voneinander
            sind. Die Lage des Knotenpunkts hängt nämlich von der Entfernung
            des betrachteten Gegenstandes vom Auge ab; Bild und Gegenstand
            haben aber verschiedenen Abstand vom Auge.


           

        	 S. 7. Das Auge ist stets geneigt, Geraden, die im Bilde einen Schnittpunkt
        haben, einen solchen auch in der Wirklichkeit beizulegen. Die vorn
        genannte Zeichnungsart soll daher vor der Entstehung unrichtiger
        Vorstellungen bewahren; sie erreicht dies besonders dadurch, daß sie den
        Sachverhalt im Bilde etwas übertreibt und dadurch die Aufmerksamkeit
        steigert.96
           

        	 S. 25. Da der Desarguessche Satz in neuerer Zeit durch Hilberts
        Untersuchungen (Grundlagen der Geometrie, Leipzig, 2. Aufl., 1903) eine
        erhöhte Wichtigkeit erlangt hat, mögen hier einige Ausführungen über ihn
        folgen.
             Er folgt unmittelbar aus den grundlegenden Tatsachen des Schneidens und
        Verbindens für Punkte, Gerade und Ebene (a. a. O. S. 2ff). Ferner
        steht er sich selbst dualistisch gegenüber; man beweist daher ganz
        analog, daß Dreiecke, deren Seiten die in ihm genannte Eigenschaft
        besitzen, so liegen, daß die Verbindungslinien ihrer Ecken durch einen
        Punkt gehen. Von den beiden Eigenschaften, daß die Ecken auf drei
        Strahlen durch einen Punkt liegen, und daß die Seiten sich in drei
        Punkten einer Geraden schneiden, zieht also die eine die andere nach
        sich.
        
     Da die Figur, die man zum Desarguesschen Satz zeichnet, eine ebene
        Figur ist, so gilt dies alles auch für die in dieser Figur enthaltenen
        derselben Ebene angehörigen Dreiecke. Ob es aber auch für je zwei analoge
        Dreiecke einer Ebene gilt, bedarf der Untersuchung. Den Beweis kann
        man zunächst unmittelbar dem Grundsatz der Axonometrie in § 14
        entnehmen, wie aus dem dort durchgeführten Beispiel 4 hervorgeht.
        Man kann ihn aber auch mittels seiner Schnittpunktsätze ableiten;
        indem man im Raum eine Desarguessche Figur konstruiert, deren
        Projektionen die ebenen Dreiecke sind. Einen Beweis findet man z. B. bei
        F. Enriques, Vorlesungen über projektive Geometrie, Leipzig, 1903,
        § 10.
        
     Endlich hat Hilbert gezeigt, daß der Desarguessche Satz für eine
        ebene Geometrie, in der die grundlegenden Sätze des Schneidens und



        Verbindens gelten, nicht erfüllt zu sein braucht, wenn man nur in der
        Ebene operiert; also von allen räumlichen Konstruktionen absieht
        (a. a. O. S. 49).
           


        	 S. 35. Der Umstand, daß man der Ebene ε' noch eine beliebige Neigung gegen
        ε geben darf, beruht darauf, daß zwei parallelperspektiv bezogene Ebenen in
        dieser Beziehung verbleiben, wenn man sie um die Perspektivitätsachse dreht;
        nur die Richtung der projizierenden Strahlen erfährt dabei eine Änderung.
        Einen Beweis enthalten die Ausführungen von § 17.
           

        	 S. 38. Die Sätze, die hier in Frage kommen, sind die des Schneidens und
        Verbindens (vgl. Hilbert, Grundlagen der Geometrie, Leipzig, 2. Aufl., 1903,
        S. 2). Allerdings müßten auch die Sätze der Anordnung (a. a. O. S. 4) in
        ähnlicher Weise berücksichtigt werden; doch sind diese Begriffe vorher so
        zu formulieren, daß sie sich auf geschlossene Kurven, wie z. B. den
        Kreis beziehen. Gemäß § 7 bildet ja die Gerade eine geschlossene
        Kurve.
           

        	 S. 40. Die Vervollkommnung unserer geometrischen Raumauffassung, die
        durch die konsequente Einführung der uneigentlichen, unendlichfernen Elemente
        bewirkt wird, verdanken wir wesentlich J. V. Poncelet, den wir überhaupt als
        den eigentlichen Begründer der projektiven Denkweise zu betrachten haben. Sie
        ist in seinem Traité des propriétés projectives des figures, Paris 1822 (2. Aufl.,
        1865) enthalten; vgl. besonders § 49 ff. Die Notwendigkeit, für die so
        eingeführten Elemente das Bestehen der grundlegenden Schnittpunktsätze zu
        erweisen, erkannte wohl zuerst G. K. Gh. v. Staudt; vgl. seine Geometrie der
        Lage, Nürnberg 1847, p. 23. Den Ausdruck Permanenz der Grundgesetze
        entnehme ich H. Hankel, der ihn auf arithmetischem Gebiet (Permanenz der
        formalen Gesetze) zu dem gleichen Zweck und mit der gleichen Bedeutung
        einführte. Vgl. Theorie der komplexen Zahlsysteme, Leipzig 1867,
        p. 10.
           

        	 S. 74. Bei Bildern, die man frei nach der Natur entwirft, pflegt man so zu
        verfahren, daß man die Fluchtpunkte der einzelnen Geraden oder Richtungen
        durch wirkliches Visieren ermittelt. Man stellt dazu das Auge auf
        den unendlichfernen Punkt der Geraden ein und fixiert zugleich den
        Durchdringungspunkt der Sehrichtung mit der Bildebene.
           

        	 S. 117. Die Gleichwertigkeit dieser Methode mit der von § 12 beruht auf der
        Relativität aller Bewegung. Die Drehung des Dodekaeders gegen die
        Aufrißebene kann man so mitmachen, daß man sich in die Aufrißebene oder
        auch in das Dodekaeder hineinbegibt. Dem ersten Fall entspricht eine Drehung



        des Dodekaeders gegen die als fest erscheinende Aufrißebene, dem
        zweiten die Einführung einer neuen Aufrißebene bei fest bleibendem
        Dodekaeder.
           

        	 S. 137. Das Kubooktaeder gehört, wie auch das Rhombendodekaeder zu der
        großen Klasse der sogenannten Kristallformen. Alle Kristallformen pflegt man
        axonometrisch zu zeichnen. Vielfach sind sie nur so bestimmt, daß man für jede
        ihrer Flächen ihre „Indizes“kennt, das sind die reziproken Werte der
        von ihnen auf den axonometrischen Achsen abgeschnittenen Stücke
        (ihre Ebenenkoordinaten im Sinne der analytischen Geometrie). Aus
        ihnen sind die Kristallformen zu zeichnen, und zwar so, daß man jede
        Kante als Schnittlinie der beiden Ebenen konstruiert, die durch sie
        hindurchgehen.
             Das allgemeine Prinzip, nach dem man dies auszuführen hat, ist das
        folgende. Wir wollen die drei Geraden, die axonometrisch die drei
        Grundrichtungen darstellen, als x-, y-, z-Achse bezeichnen. Sind dann ε und ε'
        zwei Ebenen, die eine Kante k bestimmen, so sind mit den Indizes dieser
        Ebenen zugleich ihre Schnittpunkte mit den drei Grundrichtungen und damit
        auch ihre Spuren in den drei Grundebenen gegeben. Sind Ex, Ey, Ez und Ex',
        Ey', Ez' die Schnittpunkte, so schneiden sich die Spuren EyEz und Ey'Ez' in
        einem in der yz-Ebene enthaltenen Punkt der Kante k, und ebenso liefern
        ExEz, und Ex'Ez' sowie ExEy und Ex'Ey' je einen Punkt von k. Damit ist
        auch k selbst bestimmt.
        
     Naturgemäß handelt es sich bei diesen Konstruktionen immer um die
        geeignete Auswahl derjenigen Kanten, die man zuerst zeichnet und
        mit denen man die übrigen der Reihe nach bestimmt. Es empfiehlt
        sich, das Rhombendodekaeder auch aus den Spuren seiner Flächen
        herzustellen.
           


        	 S. 156. Die Geometrie, die durch stereographische Projektion in der
        Ebene entsteht, ist genau genommen eine Geometrie, in der die Punkte
        und Kreise die Elementargebilde darstellen (Kreisgeometrie). Analog
        ist ja auch die Kugelfläche Träger einer derartigen Geometrie. Die
        Geraden der Ebene kommen daher nur als Grenzfälle von Kreisen in
        Betracht.
           

        	 S. 162. Die stereographische Projektion wird besonders benutzt, um die
        Eigenschaften der Kugelteilung und die an sie anschließenden Satze der
        Funktionentheorie zu illustrieren. Auch für die Zwecke der Kristallographie wird
        sie aus diesem Grunde vielfach verwendet.
           











Von A. Schoenflies erschien ferner im fleichen Verlage:








Die Entwicklung der Lehre von den
Punktmannigfaltigkeiten.

Bericht, erstattet der Deutschen Mathematiker-Vereinigung.

In zwei Teilen, gr. 8. Geh.

Teil I: [V u. 251 S.] 1900. n. M. 8.–

Teil II: Mit 26 Figuren. [X u. 431 S.] 1908. n. M. 12.–



   Die Mengenlehre hat sich längst als ein unentbehrliches Hilfsmittel fast der gesamten höheren Mathematik
erwiesen; Analysis und Geometrie haben ihren befruchtenden Einfluß in gleicher Weise erfahren. Sie hat unsere
Anschauung geklärt, unser mathematisches Denken vertieft und überall außerordentliche Resultate
gezeitigt.

   Von dieser Erkenntnis aus hat die Deutsche Mathematiker-Vereinigung vor einer Reihe von Jahren den
Verfasser aufgefordert, den damals noch zerstreuten Stoff zu sammeln und einheitlich zu verarbeiten. Dies ist
durch den obigen Bericht in ausführlicher und eingehender Weise geschehen: Wenn auch knapp
gehalten, soll er den Suchenden in lesbarer Weise über Probleme und Resultate orientieren. An
verschiedenen Stellen hat der Verfasser die Behandlung der Probleme selbständig weiterzuführen
versucht.

   Der erste Teil, der 1900 erschien, enthält die allgemeinen Sätze der Mengenlehre, die Theorie der
Punktmengen und ihre Anwendung auf die Analysis der reellen Funktionen. Der zweite, 1908 erschienene,
enthält, von einigen Zusätzen zum ersten Teil abgesehen, wesentlich die Anwendungen auf die Geometrie. Die
mengentheoretische Klärung der geometrischen Grundbegriffe ist nur sehr allmählich erfolgt; erst jetzt war sie
so weit fortgeschritten, daß wenigstens ein Teil einer zusammenhängenden Darstellung fähig wurde. Es ist
derjenige, der im Mittelpunkt der Analysis Situs steht und zugleich die Hilfsmittel für den Aufbau der
Riemannschen Funktionentheorie bildet; in ihm kommen wesentlich die gestaltlich invarianten Eigenschaften
der geometrischen Gebilde zum Ausdruck, insbesondere diejenigen, die den Kurvenbegriff und die
Kurvenmengen betreffen.

   Wenn der Bericht auch auf absolute Vollständigkeit keinen Anspruch machen kann, ist ihm doch ein
abgerundeter, umfassender Inhalt gegeben worden.



  Geometrie

der Bewegung in synthetischer Darstellung.

Mit Figuren im Text. [VI u. 195 S.] gr. 8. 1886. Geh. n. M. 4.–


   Das Buch gibt die Geometrie der Bewegung auf rein geometrischer Basis, ohne Sätze über Geschwindigkeit
und Beschleunigung der bewegten Punkte zu benutzen, indem die Gestalt der durch Bewegung entstehenden
Raumgebilde, mit deren Eigenschaften sich die Geometrie der Bewegung beschäftigt, einzig und allein von dem
Gesetz abhängt, nach welchem die Bewegung vor sich geht, d.h. von den verschiedenen Lagen, welche der
bewegliche Körper der Reihe nach im Raume einnimmt, und nicht von der größeren oder geringeren
Geschwindigkeit, mit der die Bewegung vor sich geht. Dabei erscheint die Geometrie der Bewegung als ein
spezieller Zweig der synthetischen Geometrie, indem in der Tat die projektive Beziehung der Lagen, in welche
der bewegliche Körper der Reihe nach gelangt, eine einfache Ableitung der darzustellenden Lehren
gestattet.






  Kristallsysteme und Kristallstruktur.

Mit 73 Figuren im Text. [XII u. 639 S.] gr. 8. 1891. Geh. n. M. 12.–


   Der erste Teil der Schrift gibt eine konsequente und möglichst einfache Ableitung der 32 durch
ihre Symmetrie voneinander verschiedenen im ganzen möglichen Kristallsysteme. Die Hilfsmittel
der Darstellung sind hierbei durchaus elementar, zu ihnen gehört vor allem der Gruppenbegriff,
der, wenn auch erst jüngeren Datums, doch zu den einfachsten Grundbegriffen der Mathematik
zählt.

   Der zweite Teil enthält eine ausführliche Erörterung der Theorien der Kristallstruktur auf Grund der
Hypothese, daß die Struktur der Kristalle ihren Ausdruck in der regelmäßigen Anordnung der Kristallmolekeln
findet. Es ergibt sich, daß geometrisch noch zwei Theorien im Rahmen dieser Hypothese möglich sind, die sich
an die Namen Bravais bzw. Wiener und Sohncke knüpfen.








Verlag von B. G. Teubner in Leizig und Berlin.




           	
     Beyel, Dr. Chr.: 
	Privatdozent  an  dem  eidgenössischen  Polytechnikum
        zu  Zürich,  darstellende  Geometrie.  Mit  einer  Sammlung  von  1800
        Dispositionen zu Aufgaben aus der darstellenden Geometrie. Mit 1 Tafel.
        [XII u. 189 S.] gr. 8. 1901. In Leinwand geb. n. M. 3.60.
           
	
     Burmester, Dr. L.: 
	Professor an der Kgl. Technischen Hochschule zu
        München,
            
            	Theorie  und  Darstellung  der  Beleuchtung  gesetzmäßig  gestalteter
            Flächen, mit besonderer Rücksicht auf die Bedürfnisse technischer
            Hochschulen. 2. Ausgabe. Mit einem Atlas von 14 lithogr. Tafeln (in
            qu. Fol. in Mappe). [XVI u. 386 S.] gr. 8. 1875. Geh. n. M. 8.–
            

            	Grundzüge der Reliefperspektive nebst Anwendung zur Herstellung
            reliefperspektivischer                                                Modelle.
            Als  Ergänzung  zum  Perspektiv-Unterricht  an  Kunstakademien,
            Kunstgewerbeschulen und technischen Lehranstalten bearbeitet. Mit
            3 lithograph. und 1 Lichtdrucktafel. [IV u. 30 S.] gr. 8. 1883. Geh. n.
            M. 2.–


           
	
     v. Dalwigk, Prof. Dr. F.: 
	Privatdozent an der Universität Marburg a. L.,
        Vorlesungen über darstellende Geometrie. 2 Bände. Mit zahlreichen Figuren im
        Text und mit Tafeln, gr. 8. 1908. In Leinw. geb.
            [Band I erscheint im Oktober 1908.]
        
       Der erste Band behandelt die Parallelprojektion. Den größten Umfang nimmt die
        Orthogonalprojektion mit Grund und Aufriß ein, dann folgen die schiefe Parallelperspektive und ein
        kurzer Aufriß der Axonometrie. Kotierte Projektion und Beleuchtangslehre sind neben einigen
        anderen kleinen Kapiteln in den Anhang verwiesen.
        
       Der zweite Band bringt die wesentlichen Methoden der malerischen Perspektive, dann
        (kürzer) die freie Perspektive und die ebene Zentralkollineation mit Anwendungen
        auf die Kegelschnitte als Kreisprojektionen. Den Schluß bilden die Grundzüge der
        Reliefperspektive und der Photogrammetrie.–Über die Vorlesungen des Verfassers und damit
        auch über den Inhalt und die Anordnung des Buches finden sich nähere Angaben im
        Jahresbericht der deutschen Mathematiker-Vereinigung, 1906 S. 349 ff., besonders 354-57.
        Übrigens bildet das Buch nur einen Teil von „geometrischen Vorlesungen aus der reinen
        und angewandten Mathematik“, von denen zunächst zwei weitere Bande rasch folgen
        sollen.
           

	
     Fiedler, Dr. W.: 
	vorm. Professor am eidgenössischen Polytechnikum zu Zürich,
        die darstellende Geometrie in organischer Verbindung mit der Geometrie der
        Lage. Für Vorlesungen und zum Selbststudium. 3 Teile, gr. 8. Geh. n. M. 40.30,
        geb. n. M. 43.80.
            	
          I. Teil: 
	Die   Methoden   der   darstellenden   Geometrie   und   die   Elemente   der
            projektivischen Geometrie. 4. Auflage. Mit zahlreichen Figuren im Text und auf 2
            lithogr. Tafeln. [XXIV u. 431 S.] 1904. Geh. n. M. 10.–, in Leinwand geb. n. M. 11.–
            
	
          II. Teil: 
	Die darstellende Geometrie der krummen Linien und Flächen. 3. Auflage.
            Mit zahlreichen Figuren im Text und 16 lithogr. Tafeln, [XXXIII u. 560 S.] 1885. Geh.
            n. M. 14.–, in Leinwand geb. n. M. 15.40.
            
	



          III. Teil: 
	Die konstruierende und analytische Geometrie der Lage. 3.  Auflage.  Mit
            zahlreichen Figuren im Text und l lithogr. Tafel. [XXX u. 660 S.] 1888. Geh. n. M.
            16.–, in Leinwand geb. n. M. 17.40.


           
	
     Hempel, J.: 
	Lehrer an der staatlichen Baugewerkschule zu Hamburg,
        Schattenkonstruktionen. Für den Gebrauch an Baugewerkschulen und ähnlichen
        Lehranstalten sowie zum Selbstunterricht. Mit 51 Textfiguren und 20 Tafeln
        praktischer Beispiele in Lichtdruck. [IV u. 60 S.] quer Folio. 1906. In Leinw.
        geb. n. M. 5.–
             Von der Voraussetzung ausgehend, daß ganz allein ein klares sicheres Erfassen des
        Raumvorgangs den praktischen Zeichner zum schnellen und bewußt sicheren Konstruieren befähigen
        kann, nicht etwa auswendig gelernte Gesetze oder Beweise noch auch mechanisch eingeprägte
        Lösungen, gibt der Verf. in dem Werkchen nach einem einleitenden Text mit 61 Fig. zu, 20 Tafeln
        mit zahlreichen praktischen, dem Baugewerbe entnommenen übungsbeispielen kurze Erläuterungen
        der angewandten Lösungsverfahren unter möglichster Vermeidung verwirrender Ziffern und
        Buchstabenbezeichnungen.–Den parallelprojektiven Schattenkonstruktionen ist, den
        Forderungen der Praxis Folge leistend, noch eine kleinere Gruppe perspektivischer
        Schattenkonstruktionen, die zugleich das Wichtigste über Linearperspektive enthält,
        angefügt.
           

	
     Holzmüller, Prof. Dr. G.: 
	vorm. Direktor der Provinzialgewerbeschule
        zu Hagen i. W., Einführung in das stereometrische Zeichnen, Mit
        Berücksichtigung der Kristallographie und Kartographie. Mit 16 lith. Tafeln.
        [VI u. 102 S.] 1886. gr. 8. Kart. n. M. 4.40.
           
	
     Loria, Dr. G.: 
	Professor an der Universität Genua, Vorlesungen über
        darstellende Geometrie. Autorisierte, nach dem italienischen Manuskript
        bearbeitete deutsche Ausgabe von Fr. Schütte, Oberlehrer am Gymnasium zu
        Düren. In 2 Teilen.
            	
          I. Teil: 
	Die Darstellungsmethoden. Mit 163 Figuren im Texte. [XI u. 219 S.] gr. 8 1907.
            In Leinwand geb. n. M. 6.80.


               Das vorstehende Werk über darstellende Geometrie, aus mehrjährigen Vorlesungen des
        Verfassers hervorgegangen, setzt nur elementare Kenntnisse der projektiven und analytischen
        Geometrie voraus. Der zunächst vorliegende erste Band behandelt die Darstellungsmethoden. Er
        beginnt mit einem kurzen Abriß der Geometrie des Zirkels und der Geometrographie und geht dann
        in den drei ersten Büchern zur Darlegung der Methoden der Orthogonalprojektion,
        Zentralprojektion und kotierten Ebenen über. Jede dieser Darstellungsmethoden wird in
        umfangreicher Weise zur Lösung der wichtigsten Aufgaben über Punkte, Geraden und Ebenen
        herangezogen. Das 4. Buch behandelt die Axonometrie, das 5., zum erstenmal in einem elementaren
        Lehrbuche, die Photogrammetrie.
           

	
     Müller, Dr. C. H.: 
	Professor am Kgl. Kaiser-Friedrichs-Gymnasium zu
        Frankfurt a.M., und O. Presler, Professor an der Städtischen Oberrealschule
        zu Hannover, Leitfaden der Projektionslehre. Ein Übungsbuch der
        konstruierenden Stereometrie.
            	
          Ausgabe A.: 
	Vorzugsweise für Realgymnasien und Oberrealschulen. Mit 233 Figuren im
            Text. [VIII u. 320 S.] gr. 8. 1903. Geb. n. M. 4.–
            
	
          Ausgabe B.: 
	Für Gymnasien und sechsstufige Realanstalten. Mit 122 Figuren im Text
            [VI u. 138 S.] gr. 8. 1903. Geb. n. M. 2.–


           
	



     Müller, Dr. E.: 
	Professor an der k.k. Technischen Hochschule zu Wien,
        Lehrbuch der darstellenden Geometrie für technische Hochschulen. In 2
        Bänden.
            	
          I. Band.: 
	Mit 273 Figuren und 3 Tafeln. [XIV u. 368 S.] gr. 8. 1908 In Leinwand geb. n.
            M. 12.–


               Der vorliegende erste Band behandelt auf Grund der Darstellung durch zugeordnete
        Normalrisse (Orthogonalprojektion auf zwei zueinander senkrechte Ebenen) die Elementaraufgaben
        und die Kurven und Flächen (abwickelbare Flächen, Kugelfläche, Dreh- und Schraubenflächen,
        windschiefe und „graphische“ Flächen), während die kotierte Projektion, Dachausmittlung
        Axonometrie, schiefe Projektion und Perspektive den Inhalt des zweiten Bandes bilden werden, Die
        Anpassung an das praktische technische Zeichnen zeigt sich in dem vorliegenden Bande. unter
        anderem darin, daß das Konstruieren mit Hilfe von Auf- und Kreuzriß stets mitberücksichtigt, die
        Verwendung der Projektionsachsen und damit der Spurelemente von Geraden und Ebenen
        vermieden wird, daß ferner bei zahlreichen Konstruktionen möglichst mit einem Rißgearbeitet oder,
        besser gesagt, die verwendeten anderen Risse in jenen hineingelegt werden. Das Konstruieren der
        Schatten an technischen Gegenständen liefert, neben deren axonometrischer Darstellung, wohl den
        besten Übungsstoff zur Ausbildung in der räumlichen Vorstellung in der beabsichtigten Richtung.
        Hauptsächlich aus diesem Grunde, neben ihrer praktischen Anwendung, erfahren die
        Schattenkonstruktionen eine eingehendere Behandlung als sonst in Lehrbüchern ähnlichen
        Umfangs.
        
       Obgleich das Buch mit den Elementen beginnt, so wird doch eine vorangegangene
        Beschäftigung mit dem Gegenstand, also eine gewisse Denk- und Konstruktionsfertigkeit,
        vorausgesetzt. Der Verfasser war bestrebt, soweit es die mathematische Vorbildung des angehenden
        Technikers zulaßt, allgemeine Methoden zu verwenden und höhere Gesichtspunkte zu
        gewinnen.
           

	
     Richter, Dr. O.: 
	, Oberlehrer am König-Albert-Gymnasium zu Leipzig, Kreis
        und Engel in senkrechter Projektion. Für den Unterricht und zum
        Selbststudium. Mit 147 Figuren im Text. [X u. 188 S.] gr. 8. 1908. Geh. n. M.
        4.40, in Leinwand geb. n. M. 4.80.
             Angesichts des oft und seit langem beklagten Übelstandes, daß die für die Schulung des
        Baumanschauungsvermögens so wichtige Darstellung der Kugel und ihrer Kreise nicht nur im
        stereometrischen Unterrichte hintangesetzt, sondern sogar in der darstellenden Geometrie wenig
        gepflegt und selbst schematisiert wird, hat der Verfasser den Versuch gemacht, eine Anzahl der in
        der Raumlehre häufig auftretenden Körper in allgemeiner Lage gezeichnet darzubieten und die
        genaue Bildherstellung zu begründen und unter Hinweis auf die obwaltenden mathematischen
        Beziehungen und bei möglichster Beschränkung auf eine einzige Bildtafel, um die Verwendung der
        Konstruktionen im Unterrichte zu erleichtern. Dabei sind außer der Kugel nicht nur Zylinder und
        Kegel, sondern auch andere aus Kugel, Zylinder und Kegel ableitbare Raumgebilde
        berücksichtigt worden, z. B. Prismen und Pyramiden, Platonische und Archimedische
        Körper nebst einigen Durchdringungen. Die rechtwinklige Axonometrie, von der Kugel
        abgeleitet, die Haupt- und Nebenkreise der Kugel nebst ihren Polen werden ausführlich
        betrachtet, die nichteuklidische Geometrie auf der Kugel wenigstens gestreift. Eine
        vollständige Begründung der hauptsächlich benutzten Ellipseneigenschaften leitet das
        Buch ein, Anwendung auf die Rotationskörper, auf die Schraubenlinien von Zylinder,
        Kegel, Kugel, sowie auf die Erd- und Himmelskunde beschließen es. Vorausgesetzt
        wird die Kenntnis der elementaren Planimetrie und Stereometrie, einschließlich der
        harmonischen Eigenschaften des Kreises, an einigen Stellen auch der Trigonometrie und der
        Algebra.
           

	
     Schilling, Dr. Fr.: 
	Professor an der Technischen Hochschule zu Danzig, über die
        Anwendungen der darstellenden Geometrie, insbesondere über die
        Photogrammetrie. Mit einem Anhang: Welche Vorteile gewährt die Benutzung
        des Projektionsapparates im mathematischen Unterricht? Vorträge, gehalten
        bei Gelegenheit des Ferienkurses für Oberlehrer der Mathematik und
        Physik, Göttingen, Ostern 1904. Mit 151 Figuren und 5 Doppeltafeln.
        [VI u. 198 S.] gr. 8. 1904. Geh. n. M. 4.60, in Leinwand geb. n. M.



        5.–
           
	
     Schüßler, Dr. B.: 
	Professor an der Technischen Hochschule zu Graz, orthogonale
        Axonometrie. Ein Lehrbuch zum Selbststudium. Mit 29 Figurentafeln in
        besonderem Hefte. [VIII u. 170 S.] gr. 8. 1905. In Leinwand geb. n. M.
        7.–
           
	
     Schütte, Fr.: 
	Oberlehrer am Gymnasium zu Düren, Anfangsgründe der
        darstellenden Geometrie für Gymnasien. Mit 54 Textfiguren. [42 S.] gr. 8. 1905.
        Steif geh. n. M. –.80.
           
	
     Sturm, Geheimer Regierungsrat Dr. R.: 
	Professor an der Universität
        Breslau, Elemente der darstellenden Geometrie. 2. umgearbeitete und
        erweiterte Auflage. Mit 61 Figuren im Text und 7 lithogr. Tafeln. [V u. 157 S.]
        gr. 8. 1900. In Leinw. geb. n. M. 5.60.
           
	
     Weiler, Dr. A.: 
	Professor an der Universität Zürich, neue Behandlung
        der Parallelprojektionen und der Axonometrie. Mit 109 Figuren im
        Text. 2. wohlfeile Ausgabe. [VIII u. 210 S.] gr. 8. 1896. Geh. n. M.
        2.80.
           
	
     Wiener, Geheimer Hofrat Dr. Chr.: 
	weil. Professor an der Großherzogl.
        Polytechnischen Schule zu Karlsruhe, Lehrbuch der darstellenden Geometrie. In
        2 Bänden, gr. 8. Geh. n. M. 30.–
            	
          I. Band: 
	Geschichte  der  darstellenden  Geometrie,  ebenflächige  Gebilde,  krumme
            Linien (I. Teil), projektive Geometrie. Mit Figuren im Text. [XX u. 477 S.] (1884.)
            Unveränderter anastatischer Abdruck 1906 mit hinzugefügtem Register n. M. 12.–
            
	
          II. Band: 
	Krumme  Linien   (II.   Teil)   und  krumme  Flächen  Beleuchtungslehre,
            Perspektive. Mit Figuren im Text. [XXX u. 649 S.] 1887. n. M. 18.–


           












Encyklopädie der Mathematischen Wissenschaften








mit Einschluß ihrer Anwendungen.

Herausgegeben im Auftrage der

Akademien der Wissenschaften zu Göttingen, Leipzig, München und Wien,

sowie unter Mitwirkung zahlreicher Fachgenossen

In 7 Bänden zu je 6-8 Heften, gr. 8. Geheftet und in Halbfrz. geb.


   	   I	Arithmetik und Algebra, 2 Teile, redigiert von W. Fr. Meyer.


	  II	Analysis, 2 Teile, redigiert von H. Burkhardt und W. Wirtinger.


	 III	Geometrie, 3 Teile, redigiert von W. Fr. Meyer.                     


	 IV	Mechanik, 4 Teilbände, redigiert von F. Klein und C. H. Müller.


	  V	Physik, 3 Teile, redigiert von A. Sommerfeld.                         


	 VI	1.  Geodäsie  und  Geophysik,  2  Teilbände  redigiert  von  Ph.
Furtwängler und B. Wiechert                                            


	     	2. Astronomie, red. von K. Schwarzschild.                            


	VII	Geschichte, Philosophie, Didaktik. (In Vorbereitung)         


	      




   Aufgabe der Encyklopädie ist es, in knapper, zu rascher Orientierung geeigneter Form, aber
mit möglichster Vollständigkeit eine Gesamtdarstellung der mathematischen Wissenschaften nach
ihrem gegenwärtigen Inhalt an gesicherten Resultaten zu geben und zugleich durch sorgfältige
Literaturangaben die geschichtliche Entwicklung der mathematischen Methoden seit dem Beginn des 19.
Jahrhunderts nachzuweisen. Sie beschränkt sich dabei nicht auf die sogenannte reine Mathematik, sondern
berücksichtigt auch ausgiebig die Anwendungen auf Mechanik und Physik, Astronomie und Geodäsie, die
verschiedenen Zweige der Technik und andere Gebiete, und zwar in dem Sinne, daß sie einerseits den
Mathematiker darüber orientiert, welche Fragen die Anwendungen an ihn stellen, andererseits
den Astronomen, Physiker, Techniker darüber, welche Antwort die Mathematik auf diese Fragen
gibt. In sieben Banden zu je etwa 640 Druckseiten sollen die einzelnen Gebiete in einer Reihe
sachlich geordneter Artikel behandelt werden; der letzte Band soll ein ausführliches alphabetisches
Register enthalten. Auf die Ausführung von Beweisen der mitgeteilten Satze muß natürlich verzichtet
werden.

   Die Ansprüche an die Vorkenntnisse der Leser sind so gehalten, daß das Werk auch demjenigen nützlich
sein kann, der nur über ein bestimmtes Gebiet Orientierung sucht.





Encyclopédie des sciences mathématiques

pures et appliquées











Publiée sous les auspices des Académies des sciences

de Göttingue, de Leipzig, de Munich et de Vienne

avec la collaboration de nombreux savants.




Edition française,

rédigée et publiée d’après l’édition allemande sous la direction de Jules Molk,
professeur à l’université de Nancy.

En sept tomes, gr. 8. Geheftet.


   Durch die günstige Aufnahme veranlaßt, welche die deutsche Ausgabe dieses monumentalen Werkes in
Fachkreisen gefunden hat, und auf vielfache Anregungen hat sich die Verlagsbuchhandlung entschlossen, die
Encyklopädie der Mathematischen Wissenschaften in Gemeinschaft mit der Firma Gauthier-Villiars in Paris
auch in französischer Sprache erscheinen zu lassen. Das Werk wird, wie schon die ersten Lieferungen zeigen,
seitens der deutschen Bearbeiter viele Änderungen und Zusätze erfahren, und auch die französischen
Mitarbeiter, sämtlich Autoritäten auf ihren Gebieten, haben eine gründliche Umarbeitung vorgenommen.
Zum ersten Male dürfte somit wohl hier der Fall eingetreten sein, daß sich bei einem so großen
Werke die ersten deutschen und französischen Fachgelehrten zu gemeinsamer Arbeit verbunden
haben.







Verlag von B. G. Teubner in Leizig und Berlin.





Repertorium der höheren Mathematik
(Difinitionen, Formeln, Theoreme, Literaturnachweise) von Ernst Pascal, ord. Professor
an der Universität Pavia. Deutsche Ausgabe von weil. A. Schepp in Wiesbaden. 2.
neubearb. Aufl. In zwei Teilen: Analysis und Geometrie, gr. 8. I. Teil: Die Analysis.
Herausgegeben von P. Epstein, [ca. 700 S.] 1909. In Leinwand geb. ca. n. M.
12.–(Erscheint im Januar 1909.) II. Teil: Die Geometrie. Herausgegeben von H. E.
Timerding, [ca. 800 S.] 1909. In Leinwand geb. ca. n. M. 14.–[Erscheint Ostern
1909.]

   Der Zweck des Buches ist, auf einem möglichst kleinen Raum die wichtigsten Theorien der neueren
Mathematik zu vereinigen, von jeder Theorie nur so viel zu bringen, daß der Leser imstande ist, sich in ihr zu
orientieren, und auf die Bücher zu verweisen, in welchen er Ausführlicheres finden kann. Für den Studierenden
der Mathematik soll es ein "Vademekumßein, in dem er, kurz zusammengefaßt, alle mathematischen Begriffe
und Resultate findet, die er während seiner Studien sich angeeignet hat oder noch aneignen will. Die
Anordnung der verschiedenen Teile ist bei jeder Theorie fast immer dieselbe: zuerst werden die Definitionen
und Grundbegriffe der Theorie gegeben, alsdann die Theoreme und Formeln (ohne Beweis) aufgestellt, welche
die Verbindung zwischen den durch die vorhergehenden Definitionen eingeführten Dingen oder
Größen bilden, und schließlich ein kurzer Hinweis auf die Literatur über die betreffende Theorie
gebracht.

Vocabulaire Mathématique
, français-allemand et allemand-français. Mathematisches Vokabularium, französisch-deutsch
und deutsch-französisch. Enthaltend die Kunstausdrücke aus der reinen und
angewandten Mathematik. Von Professor Dr. Felix Müller. [XV u. 316 S.] Lex.-8.
1900/1901. In Leinw. geb. n. M. 20.–Wurde in 2 Lieferungen ausgegeben: I. Lieferung.
[IX u. 132 S.] 1900. Geb. n. M. 8.–II. Lieferung. [S. IX-XV u. 133-316.] 1901. Geb. n. M.
11.–

   Das Vokabularium enthält in alphabetischer Folge mehr als 12000 Kunstausdrücke aus der reinen und
angewandten Mathematik in französischer und deutscher Sprache und soll in erster Linie eine Ergänzung der
gebräuchlichen Wörterbücher für die beiden genannten Sprachen sein. Da das Vokabularium zugleich als
Vorarbeit zu einem Mathematischen Wörterbuche dienen soll, so sind auch zahlreiche Nominalbenennungen
aufgenommen, deren Anführung aus rein sprachlichem Interesse überflüssig erscheinen dürfte. Z. B. Gaußsche
Abbildung (einer Fläche auf eine Kugel] (Gauß 1887) [inf. Geom.] représentation de Gauss; Clairauts Satz (über
die geodätischen Linien auf Umdrehungsflächen) (Clairaut 1793) [inf. Geom.] théorème de Clairaut. Aus den
beigefügten Zusätzen ist zu ersehen, daß das Vokabularium mehr bietet, als der Titel erwarten
laut.

Vorlesungen über Geschichte der Mathematik
. von Moritz Cantor. In 4 Bänden, gr. 8. I. Band. Von den ältesten Zeiten bis zum
Jahre 1200 n. Chr. 3. Aufl. Mit 114 Figuren im Text und l lithogr. Tafel. [VI u. 941 S.]
1907. Geb. n. M. 24.–, in Halbfranz geb. n. M. 26.–II. Band. Vom Jahre 1200 his zum
Jahre 1668. 2. verb. u. verm. Aufl. Mit 190 Figuren im Text. [XII u. 943 S.] gr. 8. 1900.
Geb. n. M. 26.–, in Halbfranz geb. n. M. 28.–III. Band. Vom Jahre 1668 bis zum
Jahre 1758. 2. verb. u. verm. Aufl. Mit 146 Figuren im Text. [X u. 923 S.]
gr. 8. 1901. Geb. n. M. 25.–, in Halbfranz geb. n. M. 27.–IV. Band. Vom
Jahre 1759 his zum Jahre 1799. Herausgegeben unter Mitwirkung der Herren V.
Bobynin, A. v. Braunmühl, F. Cajori, S. Günther, V. Kommerell, G.
Loria, E. Netto, G. Vivanti, und C. R. Wallner von M. Cantor. Mit 100
Figuren im Text. [VI uv 1113 S.] 1908. Geb. n. M. 32.–, in Halbfranz geb. n. M.
35.–




   „Einen hervorragenden Platz unter den neueren Veröffentlichungen über die Geschichte der Mathematik
nimmt die zusammenfassende Darstellung ein, die uns Moritz Cantor geschenkt hat.

   Mit rastlosem Fleiß, mit nie ermüdender Geduld, mit der unverdrossenen Liebe des Sammlers, der auch
das scheinbar Geringe nicht vernachlässigt, hat Moritz Cantor dies kolossale Material gesammelt, kritisch
gesichtet, durch eigene Forschungen ergänzt, nach einheitlichen Grundsätzen und einheitlichem Plan zu einem
Ganzen verschmolzen, und indem er in seltener Unparteilichkeit bei strittigen Fragen, deren die Geschichte der
Mathematik so viele hat, auch die abweichenden Ansichten zu Wort kommen ließ, hat er ein Werk
geschaffen, das die reichste Quelle der Belehrung, der Anregung für einen jeden ist, der sich über
einen geschichtlichen Fragepunkt Rat holen, der an der Geschichte der Mathematik mitarbeiten
will...“                                                                            
                                                                     

(Aus den Göttingischen gelehrten
Anzeigen.)








Encyklopädie

der Elementar-Mathematik.








Ein Handbuch für Lehrer und Studierende von

Dr. Heinrich Weber
    und     Dr. Joseph Wellstein
,

Professoren an der Universität Straßburg i. E.

In drei Bänden, gr. 8. In Leinw. geb.


   I. Elementare Algebra und Analysis. Bearbeitet von H. Weber. 2. Auflage.
Mit 88 Textfiguren. [XVIII u 539 S.] 1906. n. M. 9.60.

   II. Elemente der Geometrie. Bearbeitet von H. Weber, J. Wellstein und
W. Jacobsthal. 2. Auflage. Mit 261 Textfiguren [XII u. 596 S.] 1907. n. M.
12.–

   III. Angewandte Elementar-Mathematik. Bearbeitet von H. Weber, J.
Wellstein und R.H. Weber (Rostock). Mit 358 Textfiguren. [XIII u. 666 S.] 1907 n.
M. 14.–

   Das Werk verfolgt das Ziel, den künftigen Lehrer auf einen wissenschaftlichen
Standpunkt zu stellen, von dem aus er imstande ist, das, was er später zu lehren hat,
tiefer zu erkennen und zu erfassen und damit den Wert dieser Lehren für die allgemeine
Geistesbildung zu erhöhen.–Das Ziel dieser Arbeit ist nicht in der Vergrößerung des
Umfanges der Elementar-Mathematik zu ersehen oder in der Einkleidung höherer
Probleme in ein elementares Gewand, sondern in einer strengen Begründung und leicht
faßlichen Darlegung der Elemente. Das Werk ist nicht sowohl für den Schüler selbst als
für den Lehrer und Studierenden bestimmt, die neben jenen fundamentalen
Betrachtungen auch eine für den praktischen Gebrauch nützliche, wohlgeordnete
Zusammenstellung der wichtigsten Algorithmen und Probleme darin finden
werden.

   „... Zwei Momente müssen hervorgehoben werden, die dem Buche das Gepräge verleihen. Das eine liegt
darin, daß die grundlegenden Fragen der Geometrie eine eingehende Behandlung erfahren, in einem Umfange,
wie er in zusammenfassenden Werken sonst nicht anzutreffen ist.... Das zweite Moment ist in dem Umstande zu
erblicken, daß die Verfasser es nicht darauf angelegt haben, eine pragmatische Vorführung des üblichen Vorrats
an geometrischen Sätzen, Konstruktionen und Rechnungen zu geben, sondern daß es ihnen mehr darum zu tun
war, an ausgewähltem Material die wissenschaftlichen Methoden der Geometrie zur Geltung zu bringen und
überall auf die Grundfragen einzugehen. Ist so die theoretische Seite, namentlich in einigen Abschnitten, stark
zum Ausdruck gekommen, so ist doch auch auf die praktischen Bedürfnisse Rücksicht genommen, die
freilich erst mit dem dritten Bande ihre endgültige Befriedigung finden sollen, doch ist dafür an



verschiedenen Stellen, so in der Trigonometrie und in der analytischen Geometrie schon vorgearbeitet
worden.... So darf der Inhalt des zweiten Bandes der „Encyklopädie der Elementar-Mathematik“als ein
sehr reichhaltiger bezeichnet werden, der über die Grenzen dessen, was an der Schule geboten
werden kann, erheblich hinausführt, der aber auch–und das ist noch wichtiger und offenkundig der
Hauptzweck des Werkes–eine Vertiefung des geometrischen Wissens vermittelt. Jüngere Lehrer der
Mathematik werden das Buch gewiß oft und mit Nutzen zu Rate ziehen, namentlich wenn sie im
Unterrichte zu prinzipiell wichtigen Fragen kommen, um sich über die leitenden Gedanken zu
orientieren.“

   Eines verdient noch besonders hervorgehoben zu werden das ist die reiche Ausstattung mit schönen, sehr
instruktiv gezeichneten Figuren. Der schwierigen Vorstellung der verschiedenen Formen sphärischer Dreiecke
kommen die stereographischen Bilder der Euler’schen, Möbius’schen und Study’schen Dreiecke sehr zu
statten.“                                                                                               
                                                                     

(Zeltschrift für das
Realschulwesen.)

   „... Daß ein Hochschullehrer von der Bedeutung des Verfassers die Elementar-Mathematik von höherer
Warte aus behandelt und mustergültig darstellt, ist selbstverständlich. Jeder Lehrer, jeder Studierende muß das
Werk, welches nicht nur in methodischer, sondern auch in systematischer Hinsicht von Bedeutung
und daher eine wichtige Erscheinung der elementaren mathematischen Literatur ist, besitzen und
studieren.“                                                                        
                                                                     

(Zeitschrift für lateinlose höhere
Schulen.)
   „... Die Encyklopädie will kein Schulbuch im gewöhnlichen Sinne des Wortes sein, ist aber zur
Vorbereitung auf den Unterricht, namentlich in den oberen Klassen, den Lehrern der Mathematik dringend zu
empfehlen, welche die bezüglichen Originalarbeiten nicht alle selbst studiert haben, sich aber doch orientieren
wollen, wie vom Standpunkte der modernen Wissenschaft die Begriffsbildungen, Methoden und Entwicklungen
der Elementar-Mathematik zu gestalten sind.“
                                                                     


(C. Färber Im Archiv der Mathematik und Physik.)












1

Die folgende Darstellung enthält nur eine Annäherung an die wirklichen Verhältnisse. Das
 Genauere findet man im Anhang, 1. 



2

Die Figur ist nur schematised gezeichnet. 



3

Als Strahlenbündel bezeichnet man die Gesamtheit aller durch einen Punkt des Raumes gehenden
 geraden Linien oder Strahlen; der Punkt selbst heißt sein Scheitel oder sein Mittelpunkt.




4

Vgl. Anhang, 2.




5

Eine ausführliche Würdigung dieser Verhältnisse findet man bei Helmholtz, in dem Aufsatze: „Das
 Auge und das Sehen“, Populäre wissenschaftliche Vorträge, Heft 2.




6

Als Projektion bezeichnet die Sprache zwar auch den Prozess des Projizierens, zumeist aber sein
 Ergebnis.



7

Eine ausführlichere Erörterung der unendlichfernen Punkte kann erst in § 6 gegeben
 werden.



8

Es ist also G der Fluchtpunkt und G' die Spur von g.



9

Vgl. den Anhang, 3.



10

Bei unserer Festsetzung über die Lage des Auges zur Bildebene kommt hier nur derjenige Teil der
   Geraden g in Betracht, der hinter der Bildebene liegt. Näheres in § 6.



11

Man vgl. Fig. 5, in der man außer dem Fluchtpunkt G der Geraden g nur noch den Fluchtpunkt
   einer Geraden anderer Richtung anzunehmen braucht.



12

Man beachte die richtige Lage der in γ enthaltenen Stücke von l und r in der Zeichnungsebene.
   Es muß l nach links unten und r nach rechts unten gehen, damit beide Geraden beim Zurückdrehen in
   die Ebene γ in ihre richtige Lage kommen.



13

Hier wird immei vorausgesetzt, daß wir die Lage des Auges beliebig annehmen dürfen.



14

Freilich konnte dies bei den Figuren dieser Schrift mit Rücksicht auf den Platz nicht immer
   geschehen.



15

In Fig. 8 gehen N P' und das von P auf a gefällte Lot durch denselben Punkt der
   Achse.



16

In neuerer Zeit hat man sich auch der Frage zugewandt, wie man eine Figur durch ein
   Minimum zeichnerischer Schritte (Anlegen des Lineals, Schlagen eines Kreises usw.) erhalten
   kann. Diese Untersuchungen, die wesentlich von E. Lemoine ausgehen, können ebenfalls zur
   Vereinfachung der Ausführung beitragen; vgl. seine Schrift: Géométrographie ou art des constructions
   géométriques Paris 1902. Allerdings steht hier auch die Genauigkeit der Zeichnung in vorderster
   Linie.



17

Die Figur stellt zugleich die Durchdringung eines dreiseitigen Prismas und einer dreiseitigen
   Pyramide dar.



18

Vgl. den Anhang, 4.



19

Auf weitere durch S0 gehende Gerade und Ebenen besonderer Art kommen wir in § 6
   ausführlicher zurück.



20

Die Ebenen, die zwei parallele Geraden von ε mit S0 verbinden, sind nämlich in diesem Fall
   parallel und schneiden daher auch ε' in parallelen Geraden.



21

Die Figur enthält zugleich die Durchdringung eines dreiseitigen und eines vierseitigen Prismas.
   Diese ist also so zu zeichnen, daß Satz III von § 4 für jedes Paar entsprechender Geraden erfüllt ist.
   Vgl. auch § 14, Beispiel 4.



22

Die Geraden, die durch P und P' parallel zu s laufen, sind übrigens stets entsprechende
   Geraden.



23

Fällt P auf P', so sind je zwei entsprechende Winkel beider Strahlenbüschel einander
   gleich.



24

Man kann offenbar irgend zwei entsprechende Seiten der Dreiecke ABC und A'B'C' zu diesem
   Zweck benutzen.



25

Vgl. den Anhang, 5.



26

Die Bezeichnung weicht in diesem Paragraph von der früheren ab.



27

Vgl. den Anhang, 6.



28

Vgl. den Anhang, 7.



29

Die zueinander parallelen Geraden g, g1, g2... von ε bezeichnet man deshalb auch als
   Parallelstrahlenbüschel und nennt G∞ seinen Scheitel. Die ihnen entsprechenden Geraden bilden in ε'
 einen gewöhnlichen Strahlenbüschel mit dem Seheitel G.



30

Ich setze als bekannt voraus, daß jeder Kegel, der durch Projektion eines Kreises
   vom Punkte S0 aus entsteht, durch eine Ebene in einer Kurve zweiter Ordnung geschnitten
   wird.



31

Die Hilfslinien sind in den Figuren nachträglich wieder getilgt worden. Übrigens sind auch die
   nicht sichtbaren Punkte A für die Zeichnung benutzt worden.



32

Es ist sehr zu empfehlen, die Zeichnung von Parabel und Hyperbel selbst auszuführen, sowohl
   nach der ersten, wie nach der zweiten Methode. Man kann übrigens auch beide Methoden
   verbinden.



33

Man vergleiche die Figuren 5 bis 8.



34

Die Geraden p, v, n stellen drei zueinander senkrechte Richtungen dar, was ebenfalls ihre
   bevorzugte Benutzung erklärt.



35

Für Darstellungen, die nur die Bedeutung konstruktiver Hilfsmittel besitzen, geschieht dies
   allerdings doch. Vgl. § 12.



36

Die nicht sichtbaren Linien sind nachträglich getilgt worden.



37

Zur Kontrolle der Zeichnung wird man dies immer benutzen; vgl. § 3, 5.



38

Man kann auch F' selbst so zeichnen; der Genauigkeit halber wird man aber auch mit B'N
  operieren.



39

Die Reihenfolge, in der man die einzelnen Punkte und Geraden des Bildes erhält, ist stets Sache
   des Zeichners, bedarf also, um die Zeichnung möglichst zu kürzen, in jedem Fall besonderer
   Erwägung.



40

Diese Verbindungslinie pflegt meist punktiert gezeichnet zu werden. Vgl. die Anm. 52 auf
   S. 84.



41

Für unsere Zwecke kommen nur solche Raumfiguren Σ in Betracht, die sich vom
   Auge aus hinter der Bildebene und über der Grundebene befinden; die Lage von P1 und P2,
   ist alsdann immer so, daß P1 unter und P2 über der Achse liegt. Läßt man allgemeinere
   Lagen von Σ zu, so können auch P1 und P2 andere Lagen in der Zeichnungsebene annehmen.
   Dies bleibt aber hier außer Betracht; für die dadurch bedingten Verhältnisse muß ich auf die
   ausführlicheren Lehrbücher verweisen. Dort pflegt man sich den Gegenstand im allgemeinen vor der
   Aufrißebene stehend zu denken, nimmt die Grundrißebene als Zeichnungsebene und legt die
   Aufrißebene in die Grundrißebene um. Alsdann sind diejenigen Teile des Gegenstandes im Aufriß
   stark zu zeichnen, die von der Aufrißebene den größten Abstand haben; vgl. den Schluß von
   § 10.



42

Die von E ausgehenden Kanten sind nicht gezeichnet, sie sind unsichtbar. Dies wirkt stärker
   räumlich als die Figur 36.



43

Sind sie gegeben, so beachte man, daß sie sich in der Aufrißebene gemäß § 5 in ihrer natürlichen
   Größe darstellen.



44

Erst nachträglich bemerke ich, daß die Buchstaben E und F doppelt vorkommen. Auch
   steht die Pyramide wegen Platzmangel der Bildebene zu nahe, um einen guten Eindruck
   hervorzubringen.



45

Die Figur würde besser sein, wenn die Pyramide nicht — aus Platzmangel — der Bildebene zu
   nahe stände.



46

Es empfiehlt sich, die Bilder zu den Figuren 35 und 36 selbst zu zeichnen.



47

Vgl. den Anhang, 8.



48

Man beachte, daß die Figuren durch Hineindrehen der Grundrißebene in die Aufrißebene
   entstehen.



49

Da sich der Zeichner ebenfalls vor resp. über der Aufrißebene befindet, sind dies zugleich
   diejenigen, die er selbst sieht.



50

Um Grundriß und Aufriß als gute körperliche Bilder aufzufassen, hat man das Auge auf
   unendliche Sehweite einzustellen. Vgl. S. 125 Anm. 64.



51

Diese Bezeichnung weicht zwar von dem allgemeinen Schema etwas ab, sie wird aber nur an
   dieser Stelle vorübergehend benutzt.



52

Diese Spuren pflegt man vielfach so zu zeichnen, wie es oben geschehen ist, nämlich aus Strichen
    und Punkten. Es ist ein Haupterfordernis einer guten Figur, daß man aus der Art, in der die einzelnen
    Linien gezeichnet sind, ihre Bedeutung und damit die Gestalt der bezüglichen Raumfigur leicht zu
    entnehmen vermag. Ich habe deshalb die früher ziemlich allgemein gebräuchliche Zeichnungsart
    benutzt.



53

Sind g und f windschief, so ist der Schnittpunkt (g1,f1) die erste Projektion desjenigen
   Punktes, in dem f die projizierende Ebene γ1 kreuzt. Die analoge Bedeutung hat der Punkt
   (g2,f2).



54

Mittels des obenerwähnten Satzes löst man auch leicht die Aufgabe, die Spuren einer
   Ebene zu zeichnen, die durch drei Punkte A, B, C geht, wenn die Projektionen dieser Punkte
   gegeben sind. Mit den Projektionen von A, B, C sind nämlich auch die Projektionen ihrer
   Verbindungelinien gegeben, man braucht also nur deren Spuren in π1 und in π2 zu konstruieren und
   zu verbinden, um die Spuren der Ebene zu erhalten. Übrigens genügt es, die Spuren von
   zwei Geraden zu konstruieren. Der Kontrolle wegen wird man es aber auch für die dritte
   tun.

      Ähnlich konstruiert man auch die Spuren einer durch eine Gerade und einen Punkt bestimmten
Ebene.




55

Die Figur betrifft nur den Fall eines Flachenstücks Φ.



56

Dies folgt zunächst für die Kanten durch A und H, und damit auch für die andern, die diesen
   parallel sind.



57

Dies Verfahren ist nichts anderes als eine Anwendung der allgemeinen Methode, alle Ebenen in
   die Zeichnungsebene hineinzudrehen.



58

Um den Grundriß nicht zu stören, ist die Ebene durch AB selbst gelegt worden.



59

Dies ist identisch mit der obenerwähnten Tatsache, daß die Aufrißprojektionen ihrer Länge nach
   ungeändert bleiben, wenn man den Gegenstand Σ um eine zur Grundrißebene vertikale Achse dreht.
   Seine so entstehende Lage zur Aufrißebene kann man nämlich auch dadurch herstellen, daß man ihn
   festhält und die Aufrißebene dreht, und dies bedeutet wiederum die Einführung einer neuen
   Projektionsebene.



60

Die Zeichnung soll auch hier durch besondere Wahl und Art der Linien ihre Bedeutung erkennen
   lassen; vgl. S. 84 Anm. 52 .



61

Vgl. den Anhang, 9.



62

Eine praktische Folge hiervon ist, daß das Zeichnen der Achse a entbehrlich ist. Bei Festhaltung
   der Aufrißebene bedeutet dies die Zulassung einer variablen Lage für die Grundrißebene.



63

Der Satz gilt auch dann noch, wenn zwei Seiten des Dreiecks A'B'C' zusammenfallen.



64

Bei Bildern, die mittels einer Parallelprojektion gezeichnet werden, müssen wir uns gemäß § 1
   vorstellen, daß sich das betrachtende Auge in unendlicher Entfernung befindet, und zwar in der
   Richtung, die durch die projizierenden Strahlen angegeben wird. Um einen möglichst guten optischen
   Eindruck eines axonometrisch gezeichneten Bildes zu erhalten, haben wir daher das Auge auf Unendlich
   einzustellen und ihm überdies die Lage zur Bildebene zu geben, die durch die projizierenden Strahlen
   gefordert wird. Bei einer Orthogonalprojektion muß es also senkrecht über dem Bilde stehen. Der
   optische Eindruck wird um so besser werden, je weiter man das Auge von der Zeichnungsebene
   entfernt.



65

Dies geschieht der Übersichtlichkeit der Figur wegen.



66

Es gibt auch hier zwei solche Ebenenscharen.



67

Man kann das Sechseck auch so zeichnen, daß man zunächst diejenigen Geraden beliebig
   annimmt, die irgend zwei von M ausgehenden Strecken entsprechen.



68

Die ursprünglich gezeichneten Würfelkanten sind nachträglich getilgt worden.



69

In der Figur ist diese Konstruktion nur für die obere und untere Grundfläche des Würfels
   angedeutet worden.



70

Wir konnten daher die Figur 13 (S. 25) als Bild eines drei seitigen Pyramidenstumpfes
   betrachten.



71

In Fig. 79 fallt C
0 in den unendlich fernen Punkt von s0.



72

Eine andere Konstruktion ist in § 15 angegeben.



73

Vgl. den Anhang, 10.



74

Die Ellipsenbogen selbst enthält z. B. Figur 83.



75

Die Beweisgründe sind im folgenden teilweise der Anschauung entnommen.



76

Ist z. B. Σ ein Polyeder, und geht eine Ebene dieses Polyeders durch S0, so gibt es Kegelkanten,
   die in diese Ebene fallen, und denen ein ganzes Stück der Oberfläche Φ angehört.



77

Da ein Irrtum nicht entstehen kann, wird auch u als Umrißkurve bezeichnet werden.



78

Man beachte, daß sich der Zylinder unsern Festsetzungen gemäß (§ 10) hinter der
   Aufrißebene befindet, so daß der Grundriß beim Zurückdrehen hinter die Ebene des Papiers
   tritt.



79

Das Auge ist durchaus gewöhnt, Bilder, die sich auf die Kugel beziehen, in orthogonaler
   Projektion dargestellt zu sehen. Wahrscheinlich beruht es darauf, daß die Kugel dem Auge von jedem
   Punkte aus gleich erscheint, und zwar so, daß ihr wirklicher Umriß u ein Kreis ist. Es wünscht daher
   auch den scheinbaren Umriß u' als Kreis zu sehen. Dies ist aber nur für die orthogonale Projektion der
   Fall. Bei schiefer Projektion ist der scheinbare Umriß eine Ellipse, doch projiziert sich auch
   bei ihr der zur Bildebene parallele größte Kreis in seiner naturlichen Form. Ihn pflegt man
   deshalb bei schiefer Projektion im Bilde zu zeichnen. Er wird aber von den Bildern der anderen
   größten Kreise im allgemeinen nicht berührt, sondern gekreuzt. Ein derartiges Bild entsteht
   z. B., wenn wir in Figur 83 den Kreisbogen AC zum ganzen Kreis und die Ellipsenbogen
   AB' und CB' zu den ganzen Ellipsen vervollständigen. Die Ellipse, die in diesem Fall den
   scheinbaren Umriß darstellt, würde diese Kurven wieder berühren. Doch ist ein so gezeichnetes Bild
   dem Auge trotz setner Richtigkeit aus den genannten Gründen ungewohnt und wird deshalb
   besser vermieden. Für einzelne Teile der Kugel ist dies, wie die Figuren zeigen, nicht der
   Fall.



80

Der Index 1 entspricht hier und im folgenden dem inneren, der Index 2 dem äußeren
    Kreis.



81

Das Bild des Kreises b
2 fehlt in der Figur, da er unsichtbar ist.



82

In der obigen Figur ist ν = 9.



83

Die Figur enthält von der Kugel nur den größten Kreis N A S.



84

Vergleiche den Anhang, 11.



85

Die Figur soll nur die Lage der Geraden und Ebenen erkennen lassen. Die Gerade e ist in ihr
   nicht gezeichnet.



86

Es gibt zwei solcher Winkel für k, l und k', l'; die obige Relation gilt naturgemäß für jedes Paar
   entsprechender Winkel.



87

Vgl. den Anhang, 12.



88

Es ist für das Folgende bequemer, die sonst immer durch ε und ε' bezeichneten Ebenen jetzt ε
  und ε1 zu nennen.



89

Im allgemeinen entpricht also einem Punkt der einen Ebene ein von ihm verschiedener Punkt
   der anderen, nur S∞ und die Punkte von s machen eine Ausnahme und entsprechen sich
   selbst.



90

Die Ebene ε entspricht also der Ebene γ und ε' der Bildebene β.



91

Man sieht leicht, daß die beiden Strahlen p und q in Σ und Σ1 ein Ebenenpaar ε und ε1
   bestimmen, das sich selbst entspricht, und daßfür dieses Paar vereinigt liegender Ebenen die Perspektive
   Lage gemäß Satz III vorhanden ist.



92

Die Fluchtebene von Σ, die also in Σ der unendlichfernen Ebene von Σ1 entspricht, heißt auch
   Verschwindungsebene. Beide Fluchtebenen werden auch Gegenebenen genannt.
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Vgl. Gesammelte Werke, Bd. 5. S. 245 ff.
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Die räumliche Wirkung des Stereoskops beruht bekanntlich darauf, daß es zwei Bilder benutzt;
   eines, das für das linke, und eines, das für das rechte Auge hergestellt ist.
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Man erkennt dies z. B., wenn man in Fig. 39 (S. 73) das Auge von links nach rechts über die
   Figur wandern läßt. Dabei ändern sich die scheinbaren Dimensionen des Sockels erheblich. Ebenso
   ist es mit dem Bild des Kastens in Fig. 33 (S. 65).
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In den Figuren dieser Schrift ist dies manchmal in zu starkem Maße geschehen.
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