
    
      [image: ]
      
    

  The Project Gutenberg eBook of Archimedes

    
This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.


Title: Archimedes


Author: Sir Thomas Little Heath



Release date: March 11, 2011 [eBook #35550]


Language: English


Credits: Produced by Marius Masi, Bryan Ness and the Online

        Distributed Proofreading Team at http://www.pgdp.net (This

        file was produced from images generously made available

        by The Internet Archive)




*** START OF THE PROJECT GUTENBERG EBOOK ARCHIMEDES ***






PIONEERS OF PROGRESS

MEN OF SCIENCE

Edited by S. CHAPMAN, M.A., D.Sc., F.R.S.

ARCHIMEDES

BY

Sir THOMAS HEATH

K.C.B., K.C.V.O., F.R.S.; Sc.D., Camb.

Hon. D.Sc., Oxford

Δός μοι ποῦ στῶ, καὶ κινῶ τὴν γῆν

LONDON:

SOCIETY FOR PROMOTING

CHRISTIAN KNOWLEDGE

NEW YORK: THE MACMILLAN CO.

1920

 



CONTENTS.


	CHAP. 	PAGE

	I. 	Archimedes 	1

	II. 	Greek Geometry to Archimedes 	7

	III. 	The Works of Archimedes 	 24

	IV. 	Geometry in Archimedes 	29

	V. 	The Sandreckoner 	45

	VI. 	Mechanics 	50

	VII. 	Hydrostatics 	53

	Bibliography 	57

	Chronology 	58



 





CHAPTER I.

ARCHIMEDES.

If the ordinary person were asked to say off-hand what
he knew of Archimedes, he would probably, at the most,
be able to quote one or other of the well-known stories
about him: how, after discovering the solution of some
problem in the bath, he was so overjoyed that he ran
naked to his house, shouting εὕρηκα, εὕρηκα (or, as we
might say, “I’ve got it, I’ve got it”); or how he said
“Give me a place to stand on and I will move the
earth”; or again how he was killed, at the capture of
Syracuse in the Second Punic War, by a Roman soldier
who resented being told to get away from a diagram
drawn on the ground which he was studying.

And it is to be feared that few who are not experts in
the history of mathematics have any acquaintance with
the details of the original discoveries in mathematics
of the greatest mathematician of antiquity, perhaps the
greatest mathematical genius that the world has ever
seen.

History and tradition know Archimedes almost exclusively
as the inventor of a number of ingenious
mechanical appliances, things which naturally appeal
more to the popular imagination than the subtleties of
pure mathematics.

Almost all that is told of Archimedes reaches us
through the accounts by Polybius and Plutarch of the
siege of Syracuse by Marcellus. He perished in the sack
of that city in 212 B.C., and, as he was then an old man

(perhaps 75 years old), he must have been born about
287 B.C. He was the son of Phidias, an astronomer,
and was a friend and kinsman of King Hieron of Syracuse
and his son Gelon. He spent some time at Alexandria
studying with the successors of Euclid (Euclid who
flourished about 300 B.C. was then no longer living).
It was doubtless at Alexandria that he made the
acquaintance of Conon of Samos, whom he admired
as a mathematician and cherished as a friend, as well
as of Eratosthenes; to the former, and to the latter
during his early period he was in the habit of communicating
his discoveries before their publication. It was
also probably in Egypt that he invented the water-screw
known by his name, the immediate purpose being the
drawing of water for irrigating fields.

After his return to Syracuse he lived a life entirely
devoted to mathematical research. Incidentally he became
famous through his clever mechanical inventions.
These things were, however, in his case the “diversions
of geometry at play,” and he attached no importance to
them. In the words of Plutarch, “he possessed so lofty
a spirit, so profound a soul, and such a wealth of scientific
knowledge that, although these inventions had won for
him the renown of more than human sagacity, yet he
would not consent to leave behind him any written work
on such subjects, but, regarding as ignoble and sordid
the business of mechanics and every sort of art which is
directed to practical utility, he placed his whole ambition
in those speculations in the beauty and subtlety of which
there is no admixture of the common needs of life”.

During the siege of Syracuse Archimedes contrived
all sorts of engines against the Roman besiegers. There
were catapults so ingeniously constructed as to be
equally serviceable at long or short range, and machines
for discharging showers of missiles through holes made
in the walls. Other machines consisted of long movable
poles projecting beyond the walls; some of these

dropped heavy weights upon the enemy’s ships and on
the constructions which they called sambuca, from their
resemblance to a musical instrument of that name, and
which consisted of a protected ladder with one end
resting on two quinqueremes lashed together side by
side as base, and capable of being raised by a windlass;
others were fitted with an iron hand or a beak like that
of a crane, which grappled the prows of ships, then
lifted them into the air and let them fall again. Marcellus
is said to have derided his own engineers and artificers with
the words, “Shall we not make an end of fighting with
this geometrical Briareus who uses our ships like cups to
ladle water from the sea, drives our sambuca off ignominiously
with cudgel-blows, and, by the multitude of missiles
that he hurls at us all at once, outdoes the hundred-handed
giants of mythology?” But the exhortation had
no effect, the Romans being in such abject terror that,
“if they did but see a piece of rope or wood projecting
above the wall they would cry ‘there it is,’ declaring
that Archimedes was setting some engine in motion
against them, and would turn their backs and run away,
insomuch that Marcellus desisted from all fighting and
assault, putting all his hope in a long siege”.

Archimedes died, as he had lived, absorbed in mathematical
contemplation. The accounts of the circumstances
of his death differ in some details. Plutarch
gives more than one version in the following passage:
“Marcellus was most of all afflicted at the death of
Archimedes, for, as fate would have it, he was intent on
working out some problem with a diagram, and, his mind
and his eyes being alike fixed on his investigation, he
never noticed the incursion of the Romans nor the
capture of the city. And when a soldier came up to
him suddenly and bade him follow to Marcellus, he
refused to do so until he had worked out his problem to
a demonstration; whereat the soldier was so enraged
that he drew his sword and slew him. Others say that

the Roman ran up to him with a drawn sword, threatening
to kill him; and, when Archimedes saw him, he
begged him earnestly to wait a little while in order that
he might not leave his problem incomplete and unsolved,
but the other took no notice and killed him. Again,
there is a third account to the effect that, as he was
carrying to Marcellus some of his mathematical instruments,
sundials, spheres, and angles adjusted to the
apparent size of the sun to the sight, some soldiers met
him and, being under the impression that he carried gold
in the vessel, killed him.” The most picturesque version
of the story is that which represents him as saying to a
Roman soldier who came too close, “Stand away, fellow,
from my diagram,” whereat the man was so enraged that
he killed him.

Archimedes is said to have requested his friends and
relatives to place upon his tomb a representation of a
cylinder circumscribing a sphere within it, together with
an inscription giving the ratio (3/2) which the cylinder
bears to the sphere; from which we may infer that he
himself regarded the discovery of this ratio as his greatest
achievement. Cicero, when quaestor in Sicily, found the
tomb in a neglected state and restored it. In modern
times not the slightest trace of it has been found.

Beyond the above particulars of the life of Archimedes,
we have nothing but a number of stories which, if perhaps
not literally accurate, yet help us to a conception of the
personality of the man which we would not willingly
have altered. Thus, in illustration of his entire preoccupation
by his abstract studies, we are told that he would
forget all about his food and such necessities of life, and
would be drawing geometrical figures in the ashes of the
fire, or, when anointing himself, in the oil on his body.
Of the same kind is the story mentioned above, that,
having discovered while in a bath the solution of the
question referred to him by Hieron as to whether a certain
crown supposed to have been made of gold did not

in fact contain a certain proportion of silver, he ran naked
through the street to his home shouting εὕρηκα, εὕρηκα.

It was in connexion with his discovery of the solution
of the problem To move a given weight by a given force
that Archimedes uttered the famous saying, “Give me a
place to stand on, and I can move the earth” (δός μοι ποῦ στῶ καὶ κινῶ τὴν γᾶν, or in his broad Doric, as one
version has it, πᾶ βῶ καὶ κινῶ τὰν γᾶν). Plutarch represents
him as declaring to Hieron that any given weight
could be moved by a given force, and boasting, in reliance
on the cogency of his demonstration, that, if he
were given another earth, he would cross over to it and
move this one. “And when Hieron was struck with
amazement and asked him to reduce the problem to
practice and to show him some great weight moved by a
small force, he fixed on a ship of burden with three masts
from the king’s arsenal which had only been drawn up
by the great labour of many men; and loading her with
many passengers and a full freight, sitting himself the
while afar off, with no great effort but quietly setting in
motion with his hand a compound pulley, he drew the
ship towards him smoothly and safely as if she were
moving through the sea.” Hieron, we are told elsewhere,
was so much astonished that he declared that, from that
day forth, Archimedes’s word was to be accepted on
every subject! Another version of the story describes
the machine used as a helix; this term must be supposed
to refer to a screw in the shape of a cylindrical helix
turned by a handle and acting on a cog-wheel with
oblique teeth fitting on the screw.

Another invention was that of a sphere constructed so
as to imitate the motions of the sun, the moon, and the
five planets in the heavens. Cicero actually saw this
contrivance, and he gives a description of it, stating that
it represented the periods of the moon and the apparent
motion of the sun with such accuracy that it would even
(over a short period) show the eclipses of the sun and

moon. It may have been moved by water, for Pappus
speaks in one place of “those who understand the making
of spheres and produce a model of the heavens by means
of the regular circular motion of water”. In any case it is
certain that Archimedes was much occupied with astronomy.
Livy calls him “unicus spectator caeli siderumque”.
Hipparchus says, “From these observations it
is clear that the differences in the years are altogether
small, but, as to the solstices, I almost think that both
I and Archimedes have erred to the extent of a quarter
of a day both in observation and in the deduction therefrom.”
It appears, therefore, that Archimedes had considered
the question of the length of the year. Macrobius
says that he discovered the distances of the planets.
Archimedes himself describes in the Sandreckoner the
apparatus by which he measured the apparent diameter
of the sun, i.e. the angle subtended by it at the eye.

The story that he set the Roman ships on fire by an
arrangement of burning-glasses or concave mirrors is not
found in any authority earlier than Lucian (second century
A.D.); but there is no improbability in the idea
that he discovered some form of burning-mirror, e.g.
a paraboloid of revolution, which would reflect to one
point all rays falling on its concave surface in a direction
parallel to its axis.





CHAPTER II.

GREEK GEOMETRY TO ARCHIMEDES.

In order to enable the reader to arrive at a correct
understanding of the place of Archimedes and of the
significance of his work it is necessary to pass in review
the course of development of Greek geometry from its
first beginnings down to the time of Euclid and
Archimedes.

Greek authors from Herodotus downwards agree in
saying that geometry was invented by the Egyptians
and that it came into Greece from Egypt. One account
says:—

“Geometry is said by many to have been invented
among the Egyptians, its origin being due to the
measurement of plots of land. This was necessary there
because of the rising of the Nile, which obliterated the
boundaries appertaining to separate owners. Nor is it
marvellous that the discovery of this and the other
sciences should have arisen from such an occasion, since
everything which moves in the sense of development
will advance from the imperfect to the perfect. From
sense-perception to reasoning, and from reasoning to
understanding, is a natural transition. Just as among
the Phœnicians, through commerce and exchange, an
accurate knowledge of numbers was originated, so also
among the Egyptians geometry was invented for the
reason above stated.

“Thales first went to Egypt and thence introduced
this study into Greece.”


But it is clear that the geometry of the Egyptians was
almost entirely practical and did not go beyond the
requirements of the land-surveyor, farmer or merchant.
They did indeed know, as far back as 2000 B.C., that in a
triangle which has its sides proportional to 3, 4, 5 the
angle contained by the two smaller sides is a right angle,
and they used such a triangle as a practical means of
drawing right angles. They had formulæ, more or less
inaccurate, for certain measurements, e.g. for the areas of
certain triangles, parallel-trapezia, and circles. They had,
further, in their construction of pyramids, to use the
notion of similar right-angled triangles; they even had a
name, se-qet, for the ratio of the half of the side of the
base to the height, that is, for what we should call the
co-tangent of the angle of slope. But not a single general
theorem in geometry can be traced to the Egyptians.
Their knowledge that the triangle (3, 4, 5) is right
angled is far from implying any knowledge of the general
proposition (Eucl. I., 47) known by the name of Pythagoras.
The science of geometry, in fact, remained to be
discovered; and this required the genius for pure speculation
which the Greeks possessed in the largest measure
among all the nations of the world.

Thales, who had travelled in Egypt and there learnt
what the priests could teach him on the subject, introduced
geometry into Greece.  Almost the whole of
Greek science and philosophy begins with Thales.  His
date was about 624-547 B.C. First of the Ionian
philosophers, and declared one of the Seven Wise Men
in 582-581, he shone in all fields, as astronomer, mathematician,
engineer, statesman and man of business. In
astronomy he predicted the solar eclipse of 28 May, 585,
discovered the inequality of the four astronomical seasons,
and counselled the use of the Little Bear instead of the
Great Bear as a means of finding the pole. In geometry
the following theorems are attributed to him—and their
character shows how the Greeks had to begin at the very

beginning of the theory—(1) that a circle is bisected by
any diameter (Eucl. I., Def. 17), (2) that the angles at
the base of an isosceles triangle are equal (Eucl. I., 5),
(3) that, if two straight lines cut one another, the
vertically opposite angles are equal (Eucl. I., 15), (4)
that, if two triangles have two angles and one side
respectively equal, the triangles are equal in all respects
(Eucl. I., 26). He is said (5) to have been the first to
inscribe a right-angled triangle in a circle: which must
mean that he was the first to discover that the angle in a
semicircle is a right angle. He also solved two problems
in practical geometry: (1) he showed how to measure
the distance from the land of a ship at sea (for this he is
said to have used the proposition numbered (4) above),
and (2) he measured the heights of pyramids by means
of the shadow thrown on the ground (this implies the use
of similar triangles in the way that the Egyptians had
used them in the construction of pyramids).

After Thales come the Pythagoreans. We are told
that the Pythagoreans were the first to use the term
μαθήματα (literally “subjects of instruction”) in the
specialised sense of “mathematics”; they, too, first
advanced mathematics as a study pursued for its
own sake and made it a part of a liberal education.
Pythagoras, son of Mnesarchus, was born in Samos
about 572 B.C., and died at a great age (75 or 80) at
Metapontum. His interests were as various as those of
Thales; his travels, all undertaken in pursuit of knowledge,
were probably even more extended. Like Thales,
and perhaps at his suggestion, he visited Egypt and
studied there for a long period (22 years, some say).

It is difficult to disentangle from the body of
Pythagorean doctrines the portions which are due to
Pythagoras himself because of the habit which the
members of the school had of attributing everything to
the Master (αὐτὸς ἔφα, ipse dixit). In astronomy two
things at least may safely be attributed to him; he held

that the earth is spherical in shape, and he recognised
that the sun, moon and planets have an independent
motion of their own in a direction contrary to that of
the daily rotation; he seems, however, to have adhered
to the geocentric view of the universe, and it was his
successors who evolved the theory that the earth does not
remain at the centre but revolves, like the other planets
and the sun and moon, about the “central fire”. Perhaps
his most remarkable discovery was the dependence
of the musical intervals on the lengths of vibrating
strings, the proportion for the octave being 2 : 1, for the
fifth 3 : 2 and for the fourth 4 : 3. In arithmetic he
was the first to expound the theory of means and of proportion
as applied to commensurable quantities. He laid
the foundation of the theory of numbers by considering
the properties of numbers as such, namely, prime
numbers, odd and even numbers, etc. By means of
figured numbers, square, oblong, triangular, etc. (represented
by dots arranged in the form of the various
figures) he showed the connexion between numbers and
geometry. In view of all these properties of numbers,
we can easily understand how the Pythagoreans came
to “liken all things to numbers” and to find in the
principles of numbers the principles of all things (“all
things are numbers”).

We come now to Pythagoras’s achievements in
geometry. There is a story that, when he came home
from Egypt and tried to found a school at Samos, he
found the Samians indifferent, so that he had to take
special measures to ensure that his geometry might not
perish with him. Going to the gymnasium, he sought
out a well-favoured youth who seemed likely to suit his
purpose, and was withal poor, and bribed him to learn
geometry by promising him sixpence for every proposition
that he mastered. Very soon the youth got fascinated
by the subject for its own sake, and Pythagoras rightly
judged that he would gladly go on without the sixpence.

He hinted, therefore, that he himself was poor and must
try to earn his living instead of doing mathematics;
whereupon the youth, rather than give up the study,
volunteered to pay sixpence to Pythagoras for each
proposition.

In geometry Pythagoras set himself to lay the foundations
of the subject, beginning with certain important
definitions and investigating the fundamental principles.
Of propositions attributed to him the most famous is, of
course, the theorem that in a right-angled triangle the
square on the hypotenuse is equal to the sum of the
squares on the sides about the right angle (Eucl. I.,
47); and, seeing that Greek tradition universally credits
him with the proof of this theorem, we prefer to believe
that tradition is right. This is to some extent confirmed
by another tradition that Pythagoras discovered a general
formula for finding two numbers such that the sum of
their squares is a square number. This depends on the
theory of the gnomon, which at first had an arithmetical
signification corresponding to the geometrical use of it
in Euclid, Book II. A figure in the shape of a gnomon
put round two sides of a square makes it into a larger
square. Now consider the number 1 represented by a
dot. Round this place three other dots so that the four
dots form a square (1 + 3 = 2²). Round the four dots
(on two adjacent sides of the square) place five dots at
regular and equal distances, and we have another square
(1 + 3 + 5 = 3²); and so on. The successive odd numbers
1, 3, 5 ... were called gnomons, and the general formula is

1 + 3 + 5 + ... + (2n − 1) = n².

Add the next odd number, i.e. 2n + 1, and we have
n² + (2n + 1) = (n + 1)². In order, then, to get two
square numbers such that their sum is a square we have
only to see that 2n + 1 is a square. Suppose that 2n + 1
= m²; then n = ½(m² − 1), and we have {½ (m² − 1) }² + m²
= {½ (m² + 1) }², where m is any odd number; and this is
the general formula attributed to Pythagoras.



Proclus also attributes to Pythagoras the theory of
proportionals and the construction of the five “cosmic
figures,” the five regular solids.

One of the said solids, the dodecahedron, has twelve
pentagonal faces, and the construction of a regular pentagon
involves the cutting of a straight line “in extreme
and mean ratio” (Eucl. II., 11, and VI., 30), which is a
particular case of the method known as the application of
areas. How much of this was due to Pythagoras himself
we do not know; but the whole method was at all
events fully worked out by the Pythagoreans and proved
one of the most powerful of geometrical methods. The
most elementary case appears in Euclid, I., 44, 45, where
it is shown how to apply to a given straight line as base
a parallelogram having a given angle (say a rectangle)
and equal in area to any rectilineal figure; this construction
is the geometrical equivalent of arithmetical division.
The general case is that in which the parallelogram,
though applied to the straight line, overlaps it or falls
short of it in such a way that the part of the parallelogram
which extends beyond, or falls short of, the parallelogram
of the same angle and breadth on the given
straight line itself (exactly) as base is similar to another
given parallelogram (Eucl. VI., 28, 29). This is the
geometrical equivalent of the most general form of
quadratic equation ax ± mx² = C, so far as it has real
roots; while the condition that the roots may be real
was also worked out (= Eucl. VI., 27). It is important
to note that this method of application of areas was
directly used by Apollonius of Perga in formulating the
fundamental properties of the three conic sections, which
properties correspond to the equations of the conics in
Cartesian co-ordinates; and the names given by Apollonius
(for the first time) to the respective conics are taken
from the theory, parabola (παραβολή) meaning “application”
(i.e. in this case the parallelogram is applied to the
straight line exactly), hyperbola (ὑπερβολή), “exceeding”

(i.e. in this case the parallelogram exceeds or overlaps
the straight line), ellipse (ἔλλειψις), “falling short” (i.e.
the parallelogram falls short of the straight line).

Another problem solved by the Pythagoreans is that
of drawing a rectilineal figure equal in area to one given
rectilineal figure and similar to another. Plutarch
mentions a doubt as to whether it was this problem or
the proposition of Euclid I., 47, on the strength of which
Pythagoras was said to have sacrificed an ox.

The main particular applications of the theorem of
the square on the hypotenuse (e.g. those in Euclid, Book
II.) were also Pythagorean; the construction of a square
equal to a given rectangle (Eucl. II., 14) is one of them
and corresponds to the solution of the pure quadratic
equation x² = ab.

The Pythagoreans proved the theorem that the sum
of the angles of any triangle is equal to two right
angles (Eucl. I., 32).

Speaking generally, we may say that the Pythagorean
geometry covered the bulk of the subject-matter of
Books I., II., IV., and VI. of Euclid (with the qualification,
as regards Book VI., that the Pythagorean theory
of proportion applied only to commensurable magnitudes).
Our information about the origin of the propositions of
Euclid, Book III., is not so complete; but it is certain
that the most important of them were well known to
Hippocrates of Chios (who flourished in the second half of
the fifth century, and lived perhaps from about 470 to
400 B.C.), whence we conclude that the main propositions
of Book III. were also included in the Pythagorean
geometry.

Lastly, the Pythagoreans discovered the existence of
incommensurable lines, or of irrationals. This was,
doubtless, first discovered with reference to the diagonal
of a square which is incommensurable with the side,
being in the ratio to it of √2 to 1. The Pythagorean
proof of this particular case survives in Aristotle and in

a proposition interpolated in Euclid’s Book X.; it is by
a reductio ad absurdum proving that, if the diagonal is
commensurable with the side, the same number must be
both odd and even. This discovery of the incommensurable
was bound to cause geometers a great shock,
because it showed that the theory of proportion invented
by Pythagoras was not of universal application, and
therefore that propositions proved by means of it were
not really established. Hence the stories that the discovery
of the irrational was for a time kept secret, and
that the first person who divulged it perished by shipwreck.
The fatal flaw thus revealed in the body of geometry
was not removed till Eudoxus (408-355 B.C.) discovered
the great theory of proportion (expounded in Euclid’s
Book V.), which is applicable to incommensurable as
well as to commensurable magnitudes.

By the time of Hippocrates of Chios the scope of
Greek geometry was no longer even limited to the Elements;
certain special problems were also attacked
which were beyond the power of the geometry of the
straight line and circle, and which were destined to play
a great part in determining the direction taken by Greek
geometry in its highest flights. The main problems in
question were three: (1) the doubling of the cube, (2) the
trisection of any angle, (3) the squaring of the circle;
and from the time of Hippocrates onwards the investigation
of these problems proceeded pari passu with the
completion of the body of the Elements.

Hippocrates himself is an example of the concurrent
study of the two departments. On the one hand, he
was the first of the Greeks who is known to have compiled
a book of Elements. This book, we may be sure,
contained in particular the most important propositions
about the circle included in Euclid, Book III. But a
much more important proposition is attributed to Hippocrates;
he is said to have been the first to prove that
circles are to one another as the squares on their diameters

(= Eucl. XII., 2), with the deduction that similar
segments of circles are to one another as the squares on
their bases. These propositions were used by him in
his tract on the squaring of lunes, which was intended to
lead up to the squaring of the circle. The latter problem
is one which must have exercised practical geometers
from time immemorial. Anaxagoras for instance (about
500-428 B.C.) is said to have worked at the problem
while in prison. The essential portions of Hippocrates’s
tract are preserved in a passage of Simplicius (on Aristotle’s
Physics), which contains substantial fragments
from Eudemus’s History of Geometry. Hippocrates
showed how to square three particular lunes of different
forms, and then, lastly, he squared the sum of a certain
circle and a certain lune. Unfortunately, however, the
last-mentioned lune was not one of those which can be
squared, and so the attempt to square the circle in this
way failed after all.

Hippocrates also attacked the problem of doubling
the cube. There are two versions of the origin of this
famous problem. According to one of them, an old
tragic poet represented Minos as having been dissatisfied
with the size of a tomb erected for his son Glaucus, and
having told the architect to make it double the size, retaining,
however, the cubical form. According to the
other, the Delians, suffering from a pestilence, were told
by the oracle to double a certain cubical altar as a means
of staying the plague.  Hippocrates did not, indeed,
solve the problem, but he succeeded in reducing it to
another, namely, the problem of finding two mean proportionals
in continued proportion between two given
straight lines, i.e. finding x, y such that a : x = x : y =
y : b, where a, b are the two given straight lines. It is
easy to see that, if a : x = x : y = y : b, then b/a = (x/a)³,
and, as a particular case, if b = 2a, x³ = 2a³, so that the
side of the cube which is double of the cube of side a
is found.



The problem of doubling the cube was henceforth
tried exclusively in the form of the problem of the two
mean proportionals. Two significant early solutions are
on record.

(1) Archytas of Tarentum (who flourished in first half of
fourth century B.C.) found the two mean proportionals by
a very striking construction in three dimensions, which
shows that solid geometry, in the hands of Archytas at
least, was already well advanced. The construction was
usually called mechanical, which it no doubt was in form,
though in reality it was in the highest degree theoretical.
It consisted in determining a point in space as the intersection
of three surfaces: (a) a cylinder, (b) a cone, (c)
an “anchor-ring” with internal radius = 0. (2) Menæchmus,
a pupil of Eudoxus, and a contemporary of Plato,
found the two mean proportionals by means of conic
sections, in two ways, (α) by the intersection of two parabolas,
the equations of which in Cartesian co-ordinates
would be x² = ay, y² = bx, and (β) by the intersection
of a parabola and a rectangular hyperbola, the corresponding
equations being x² = ay, and xy = ab respectively.
It would appear that it was in the effort to solve
this problem that Menæchmus discovered the conic
sections, which are called, in an epigram by Eratosthenes,
“the triads of Menæchmus”.

The trisection of an angle was effected by means of a
curve discovered by Hippias of Elis, the sophist, a contemporary
of Hippocrates as well as of Democritus and
Socrates (470-399 B.C.). The curve was called the
quadratrix because it also served (in the hands, as we
are told, of Dinostratus, brother of Menæchmus, and of
Nicomedes) for squaring the circle. It was theoretically
constructed as the locus of the point of intersection of two
straight lines moving at uniform speeds and in the same
time, one motion being angular and the other rectilinear.
Suppose OA, OB are two radii of a circle at right angles
to one another. Tangents to the circle at A and B,

meeting at C, form with the two radii the square OACB.
The radius OA is made to move uniformly about O, the
centre, so as to describe the angle AOB in a certain
time. Simultaneously AC moves parallel to itself at
uniform speed such that A just describes the line AO
in the same length of time. The intersection of the
moving radius and AC in their various positions traces
out the quadratrix.

The rest of the geometry which concerns us was mostly
the work of a few men, Democritus of Abdera, Theodorus
of Cyrene (the mathematical teacher of Plato), Theætetus,
Eudoxus, and Euclid. The actual writers of Elements
of whom we hear were the following. Leon, a little
younger than Eudoxus (408-355 B.C.), was the author
of a collection of propositions more numerous and
more serviceable than those collected by Hippocrates.
Theudius of Magnesia, a contemporary of Menæchmus
and Dinostratus, “put together the elements admirably,
making many partial or limited propositions
more general”. Theudius’s book was no doubt the
geometrical text-book of the Academy and that used by
Aristotle.

Theodorus of Cyrene and Theætetus generalised the
theory of irrationals, and we may safely conclude that a
great part of the substance of Euclid’s Book X. (on
irrationals) was due to Theætetus. Theætetus also wrote
on the five regular solids (the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron), and Euclid
was therefore no doubt equally indebted to Theætetus
for the contents of his Book XIII. In the matter of
Book XII. Eudoxus was the pioneer. These facts are
confirmed by the remark of Proclus that Euclid, in compiling
his Elements, collected many of the theorems of
Eudoxus, perfected many others by Theætetus, and
brought to irrefragable demonstration the propositions
which had only been somewhat loosely proved by his predecessors.



Eudoxus (about 408-355 B.C.) was perhaps the greatest
of all Archimedes’s predecessors, and it is his achievements,
especially the discovery of the method of exhaustion,
which interest us in connexion with Archimedes.

In astronomy Eudoxus is famous for the beautiful
theory of concentric spheres which he invented to explain
the apparent motions of the planets, and, particularly,
their apparent stationary points and retrogradations.
The theory applied also to the sun and moon, for which
Eudoxus required only three spheres in each case. He
represented the motion of each planet as compounded
of the rotations of four interconnected spheres about
diameters, all of which pass through the centre of the
earth. The outermost sphere represents the daily rotation,
the second a motion along the zodiac circle or
ecliptic; the poles of the third sphere, about which that
sphere revolves, are fixed at two opposite points on the
zodiac circle, and are carried round in the motion of the
second sphere; and on the surface of the third sphere
the poles of the fourth sphere are fixed; the fourth
sphere, revolving about the diameter joining its two
poles, carries the planet which is fixed at a point on its
equator. The poles and the speeds and directions of
rotation are so chosen that the planet actually describes
a hippopede, or horse-fetter, as it was called (i.e. a figure of
eight), which lies along and is longitudinally bisected by
the zodiac circle, and is carried round that circle. As
a tour de force of geometrical imagination it would be
difficult to parallel this hypothesis.

In geometry Eudoxus discovered the great theory of
proportion, applicable to incommensurable as well as commensurable
magnitudes, which is expounded in Euclid,
Book V., and which still holds its own and will do so for
all time. He also solved the problem of the two mean
proportionals by means of certain curves, the nature of
which, in the absence of any description of them in our
sources, can only be conjectured.



Last of all, and most important for our purpose, is his
use of the famous method of exhaustion for the measurement
of the areas of curves and the volumes of solids.
The example of this method which will be most familiar
to the reader is the proof in Euclid XII., 2, of the theorem
that the areas of circles are to one another as the squares
on their diameters. The proof in this and in all cases
depends on a lemma which forms Prop. 1 of Euclid’s
Book X. to the effect that, if there are two unequal
magnitudes of the same kind and from the greater you
subtract not less than its half, then from the remainder
not less than its half, and so on continually, you will at
length have remaining a magnitude less than the lesser
of the two magnitudes set out, however small it is.
Archimedes says that the theorem of Euclid XII., 2, was
proved by means of a certain lemma to the effect that, if
we have two unequal magnitudes (i.e. lines, surfaces, or
solids respectively), the greater exceeds the lesser by
such a magnitude as is capable, if added continually to
itself, of exceeding any magnitude of the same kind as
the original magnitudes. This assumption is known as
the Axiom or Postulate of Archimedes, though, as he
states, it was assumed before his time by those who
used the method of exhaustion. It is in reality used
in Euclid’s lemma (Eucl. X., 1) on which Euclid
XII., 2, depends, and only differs in statement from
Def. 4 of Euclid, Book V., which is no doubt due to
Eudoxus.

The method of exhaustion was not discovered all at
once; we find traces of gropings after such a method
before it was actually evolved. It was perhaps Antiphon,
the sophist, of Athens, a contemporary of Socrates (470-399
B.C.), who took the first step. He inscribed a square
(or, according to another account, an equilateral triangle)
in a circle, then bisected the arcs subtended by the sides,
and so inscribed a polygon of double the number of
sides; he then repeated the process, and maintained that,

by continuing it, we should at last arrive at a polygon
with sides so small as to make the polygon coincident
with the circle. Though this was formally incorrect, it
nevertheless contained the germ of the method of exhaustion.

Hippocrates, as we have seen, is said to have proved
the theorem that circles are to one another as the squares
on their diameters, and it is difficult to see how he could
have done this except by some form, or anticipation, of
the method. There is, however, no doubt about the
part taken by Eudoxus; he not only based the method
on rigorous demonstration by means of the lemma or
lemmas aforesaid, but he actually applied the method to
find the volumes (1) of any pyramid, (2) of the cone,
proving (1) that any pyramid is one third part of the
prism which has the same base and equal height, and (2)
that any cone is one third part of the cylinder which has
the same base and equal height. Archimedes, however,
tells us the remarkable fact that these two theorems
were first discovered by Democritus (who flourished
towards the end of the fifth century B.C.), though he was
not able to prove them (which no doubt means, not that
he gave no sort of proof, but that he was not able
to establish the propositions by the rigorous method
of Eudoxus). Archimedes adds that we must give no
small share of the credit for these theorems to Democritus;
and this is another testimony to the marvellous
powers, in mathematics as well as in other subjects,
of the great man who, in the words of Aristotle,
“seems to have thought of everything”. We know
from other sources that Democritus wrote on irrationals;
he is also said to have discussed the question of two
parallel sections of a cone (which were evidently supposed
to be indefinitely close together), asking whether
we are to regard them as unequal or equal: “for if
they are unequal they will make the cone irregular as
having many indentations, like steps, and unevennesses,

but, if they are equal, the cone will appear to have the
property of the cylinder and to be made up of equal,
not unequal, circles, which is very absurd”. This explanation
shows that Democritus was already close on
the track of infinitesimals.

Archimedes says further that the theorem that spheres
are in the triplicate ratio of their diameters was proved
by means of the same lemma. The proofs of the propositions
about the volumes of pyramids, cones and spheres
are, of course, contained in Euclid, Book XII. (Props.
3-7 Cor., 10, 16-18 respectively).

It is no doubt desirable to illustrate Eudoxus’s
method by one example. We will take one of the simplest,
the proposition (Eucl. XII., 10) about the cone.
Given ABCD, the circular base of the cylinder which
has the same base as the cone and equal height, we inscribe
the square ABCD; we then bisect the arcs subtended
by the sides, and draw the regular inscribed
polygon of eight sides, then similarly we draw the
regular inscribed polygon of sixteen sides, and so on.
We erect on each regular polygon the prism which has
the polygon for base, thereby obtaining successive prisms
inscribed in the cylinder, and of the same height with it.
Each time we double the number of sides in the base of
the prism we take away more than half of the volume
by which the cylinder exceeds the prism (since we take
away more than half of the excess of the area of the
circular base over that of the inscribed polygon, as in
Euclid XII., 2). Suppose now that V is the volume
of the cone, C that of the cylinder. We have to prove
that C = 3V. If C is not equal to 3V, it is either
greater or less than 3V.

Suppose (1) that C > 3V, and that C = 3V + E.
Continue the construction of prisms inscribed in the
cylinder until the parts of the cylinder left over outside
the final prism (of volume P) are together less than E.




	Then 	C − P < E.

	But 	C − 3V = E;

	Therefore 	P > 3V.



But it has been proved in earlier propositions that P is
equal to three times the pyramid with the same base as
the prism and equal height.

Therefore that pyramid is greater than V, the volume
of the cone: which is impossible, since the cone encloses
the pyramid.

Therefore C is not greater than 3V.

Next (2) suppose that C < 3V, so that, inversely,

V > 1⁄3 C.

This time we inscribe successive pyramids in the cone
until we arrive at a pyramid such that the portions of
the cone left over outside it are together less than the
excess of V over 1⁄3 C.  It follows that the pyramid is
greater than 1⁄3 C. Hence the prism on the same base as
the pyramid and inscribed in the cylinder (which prism is
three times the pyramid) is greater than C: which is
impossible, since the prism is enclosed by the cylinder,
and is therefore less than it.

Therefore V is not greater than 1⁄3 C, or C is not less
than 3V.

Accordingly C, being neither greater nor less than 3V,
must be equal to it; that is, V = 1⁄3 C.

It only remains to add that Archimedes is fully acquainted
with the main properties of the conic sections.
These had already been proved in earlier treatises, which
Archimedes refers to as the “Elements of Conics”. We
know of two such treatises, (1) Euclid’s four Books on

Conics, (2) a work by one Aristæus called “Solid Loci,”
probably a treatise on conics regarded as loci. Both
these treatises are lost; the former was, of course, superseded
by Apollonius’s great work on Conics in eight
Books.





CHAPTER III.

THE WORKS OF ARCHIMEDES.

The range of Archimedes’s writings will be gathered
from the list of his various treatises. An extraordinarily
large proportion of their contents represents entirely new
discoveries of his own. He was no compiler or writer of
text-books, and in this respect he differs from Euclid and
Apollonius, whose work largely consisted in systematising
and generalising the methods used and the results
obtained by earlier geometers. There is in Archimedes
no mere working-up of existing material; his objective
is always something new, some definite addition to the
sum of knowledge. Confirmation of this is found in the
introductory letters prefixed to most of his treatises. In
them we see the directness, simplicity and humanity of
the man. There is full and generous recognition of the
work of predecessors and contemporaries; his estimate
of the relation of his own discoveries to theirs is obviously
just and free from any shade of egoism. His manner is
to state what particular discoveries made by his predecessors
had suggested to him the possibility of extending
them in new directions; thus he says that, in connexion
with the efforts of earlier geometers to square the circle,
it occurred to him that no one had tried to square a parabolic
segment; he accordingly attempted the problem
and finally solved it. Similarly he describes his discoveries
about the volumes and surfaces of spheres and
cylinders as supplementing the theorems of Eudoxus

about the pyramid, the cone and the cylinder. He does
not hesitate to say that certain problems baffled him for
a long time; in one place he positively insists, for the
purpose of pointing a moral, on specifying two propositions
which he had enunciated but which on further investigation
proved to be wrong.

The ordinary MSS. of the Greek text of Archimedes
give his works in the following order:—

	 
1. On the Sphere and Cylinder (two books).

2. Measurement of a Circle.

3. On Conoids and Spheroids.

4. On Spirals.

5. On Plane Equilibriums (two books).

6. The Sandreckoner.

7. Quadrature of a Parabola.


 


A most important addition to this list has been made
in recent years through an extraordinary piece of good
fortune. In 1906 J. L. Heiberg, the most recent editor
of the text of Archimedes, discovered a palimpsest of
mathematical content in the “Jerusalemic Library” of
one Papadopoulos Kerameus at Constantinople. This
proved to contain writings of Archimedes copied in
a good hand of the tenth century. An attempt had been
made (fortunately with only partial success) to wash out
the old writing, and then the parchment was used again
to write a Euchologion upon. However, on most of the
leaves the earlier writing remains more or less legible.
The important fact about the MS. is that it contains,
besides substantial portions of the treatises previously
known, (1) a considerable portion of the work, in two
books, On Floating Bodies, which was formerly supposed
to have been lost in Greek and only to have survived in
the translation by Wilhelm of Mörbeke, and (2) most
precious of all, the greater part of the book called The
Method, treating of Mechanical Problems and addressed
to Eratosthenes. The important treatise so happily
recovered is now included in Heiberg’s new (second)

edition of the Greek text of Archimedes (Teubner,
1910-15), and some account of it will be given in the
next chapter.

The order in which the treatises appear in the MSS.
was not the order of composition; but from the various
prefaces and from internal evidence generally we are able
to establish the following as being approximately the
chronological sequence:—

	 
1. On Plane Equilibriums, I.

2. Quadrature of a Parabola.

3. On Plane Equilibriums, II.

4. The Method.

5. On the Sphere and Cylinder, I, II.

6. On Spirals.

7. On Conoids and Spheroids.

8. On Floating Bodies, I, II.

9. Measurement of a Circle.

10. The Sandreckoner.


 


In addition to the above we have a collection of
geometrical propositions which has reached us through
the Arabic with the title “Liber assumptorum Archimedis”.
They were not written by Archimedes in their
present form, but were probably collected by some later
Greek writer for the purpose of illustrating some ancient
work. It is, however, quite likely that some of the propositions,
which are remarkably elegant, were of Archimedean
origin, notably those concerning the geometrical
figures made with three and four semicircles respectively
and called (from their shape) (1) the shoemaker’s knife
and (2) the Salinon or salt-cellar, and another theorem
which bears on the trisection of an angle.

An interesting fact which we now know from Arabian
sources is that the formula for the area of any triangle
in terms of its sides which we write in the form

Δ = √{s (s − a) (s − b) (s − c) },

and which was supposed to be Heron’s because Heron
gives the geometrical proof of it, was really due to
Archimedes.



Archimedes is further credited with the authorship of
the famous Cattle-Problem enunciated in a Greek epigram
edited by Lessing in 1773. According to its
heading the problem was communicated by Archimedes
to the mathematicians at Alexandria in a letter to
Eratosthenes; and a scholium to Plato’s Charmides
speaks of the problem “called by Archimedes the Cattle-Problem”.
It is an extraordinarily difficult problem in
indeterminate analysis, the solution of which involves
enormous figures.

Of lost works of Archimedes the following can be
identified:—

1. Investigations relating to polyhedra are referred to
by Pappus, who, after speaking of the five regular solids,
gives a description of thirteen other polyhedra discovered
by Archimedes which are semi-regular, being contained
by polygons equilateral and equiangular but not similar.
One at least of these semi-regular solids was, however,
already known to Plato.

2. A book of arithmetical content entitled Principles
dealt, as we learn from Archimedes himself, with the
naming of numbers, and expounded a system of expressing
large numbers which could not be written in the
ordinary Greek notation. In setting out the same system
in the Sandreckoner (see Chapter V. below), Archimedes
explains that he does so for the benefit of those who had
not seen the earlier work.

3. On Balances (or perhaps levers). Pappus says that
in this work Archimedes proved that “greater circles
overpower lesser circles when they rotate about the same
centre”.

4. A book On Centres of Gravity is alluded to by Simplicius.
It is not, however, certain that this and the
last-mentioned work were separate treatises, Possibly
Book I. On Plane Equilibriums may have been part of a
larger work (called perhaps Elements of Mechanics), and
On Balances may have been an alternative title. The

title On Centres of Gravity may be a loose way of referring
to the same treatise.

5. Catoptrica, an optical work from which Theon of
Alexandria quotes a remark about refraction.

6. On Sphere-making, a mechanical work on the construction
of a sphere to represent the motions of the
heavenly bodies (cf. pp. 5-6 above).

Arabian writers attribute yet further works to Archimedes,
(1) On the circle, (2) On a heptagon in a circle,
(3) On circles touching one another, (4) On parallel lines,
(5) On triangles, (6) On the properties of right-angled
triangles, (7) a book of Data; but we have no confirmation
of these statements.





CHAPTER IV.

GEOMETRY IN ARCHIMEDES.

The famous French geometer, Chasles, drew an instructive
distinction between the predominant features of the
geometry of the two great successors of Euclid, namely,
Archimedes and Apollonius of Perga (the “great geometer,”
and author of the classical treatise on Conics).
The works of these two men may, says Chasles, be
regarded as the origin and basis of two great inquiries
which seem to share between them the domain of
geometry. Apollonius is concerned with the Geometry
of Forms and Situations, while in Archimedes we find
the Geometry of Measurements, dealing with the quadrature
of curvilinear plane figures and with the quadrature and
cubature of curved surfaces, investigations which gave
birth to the calculus of the infinite conceived and brought
to perfection by Kepler, Cavalieri, Fermat, Leibniz and
Newton.

In geometry Archimedes stands, as it were, on the
shoulders of Eudoxus in that he applied the method of
exhaustion to new and more difficult cases of quadrature
and cubature. Further, in his use of the method he
introduced an interesting variation of the procedure as
we know it from Euclid. Euclid (and presumably
Eudoxus also) only used inscribed figures, “exhausting”
the figure to be measured, and had to invert the second
half of the reductio ad absurdum to enable approximation
from below (so to speak) to be applied in that case also.

Archimedes, on the other hand, approximates from above
as well as from below; he approaches the area or volume
to be measured by taking closer and closer circumscribed
figures, as well as inscribed, and thereby compressing, as
it were, the inscribed and circumscribed figure into one,
so that they ultimately coincide with one another and
with the figure to be measured. But he follows the
cautious method to which the Greeks always adhered;
he never says that a given curve or surface is the limiting
form of the inscribed or circumscribed figure; all that he
asserts is that we can approach the curve or surface as
nearly as we please.

The deductive form of proof by the method of exhaustion
is apt to obscure not only the way in which the
results were arrived at but also the real character of the
procedure followed. What Archimedes actually does in
certain cases is to perform what are seen, when the
analytical equivalents are set down, to be real integrations;
this remark applies to his investigation of the areas of a
parabolic segment and a spiral respectively, the surface
and volume respectively of a sphere and a segment of a
sphere, and the volume of any segments of the solids of
revolution of the second degree. The result is, as a rule,
only obtained after a long series of preliminary propositions,
all of which are links in a chain of argument
elaborately forged for the one purpose. The method
suggests the tactics of some master of strategy who foresees
everything, eliminates everything not immediately
conducive to the execution of his plan, masters every
position in its order, and then suddenly (when the very
elaboration of the scheme has almost obscured, in the
mind of the onlooker, its ultimate object) strikes the final
blow. Thus we read in Archimedes proposition after
proposition the bearing of which is not immediately
obvious but which we find infallibly used later on; and
we are led on by such easy stages that the difficulty of
the original problem, as presented at the outset, is

scarcely appreciated. As Plutarch says, “It is not
possible to find in geometry more difficult and troublesome
questions, or more simple and lucid explanations”.
But it is decidedly a rhetorical exaggeration when Plutarch
goes on to say that we are deceived by the easiness of
the successive steps into the belief that any one could
have discovered them for himself. On the contrary, the
studied simplicity and the perfect finish of the treatises involve
at the same time an element of mystery. Although
each step depends upon the preceding ones, we are left
in the dark as to how they were suggested to Archimedes.
There is, in fact, much truth in a remark of Wallis to the
effect that he seems “as it were of set purpose to have
covered up the traces of his investigation as if he had
grudged posterity the secret of his method of inquiry
while he wished to extort from them assent to his
results”.

A partial exception is now furnished by the Method;
for here we have (as it were) a lifting of the veil and a
glimpse of the interior of Archimedes’s workshop. He
tells us how he discovered certain theorems in quadrature
and cubature, and he is at the same time careful to insist
on the difference between (1) the means which may serve
to suggest the truth of theorems, although not furnishing
scientific proofs of them, and (2) the rigorous demonstrations
of them by approved geometrical methods
which must follow before they can be finally accepted as
established.

Writing to Eratosthenes he says: “Seeing in you, as
I say, an earnest student, a man of considerable eminence
in philosophy and an admirer of mathematical inquiry
when it comes your way, I have thought fit to write out
for you and explain in detail in the same book the
peculiarity of a certain method, which, when you see it,
will put you in possession of a means whereby you can
investigate some of the problems of mathematics by
mechanics. This procedure is, I am persuaded, no less

useful for the proofs of the actual theorems as well. For
certain things which first became clear to me by a
mechanical method had afterwards to be demonstrated
by geometry, because their investigation by the said
method did not furnish an actual demonstration. But it
is of course easier, when we have previously acquired
by the method some knowledge of the questions, to
supply the proof than it is to find the proof without any
previous knowledge. This is a reason why, in the case
of the theorems the proof of which Eudoxus was the first
to discover, namely, that the cone is a third part of the
cylinder, and the pyramid a third part of the prism,
having the same base and equal height, we should give
no small share of the credit to Democritus, who was the
first to assert this truth with regard to the said figures,
though he did not prove it. I am myself in the position
of having made the discovery of the theorem now to be
published in the same way as I made my earlier
discoveries; and I thought it desirable now to write out
and publish the method, partly because I have already
spoken of it and I do not want to be thought to have
uttered vain words, but partly also because I am
persuaded that it will be of no little service to mathematics;
for I apprehend that some, either of my
contemporaries or of my successors, will, by means of
the method when once established, be able to discover
other theorems in addition, which have not occurred to
me.

“First then I will set out the very first theorem which
became known to me by means of mechanics, namely,
that Any segment of a section of a right-angled cone [i.e.
a parabola] is four-thirds of the triangle which has the same
base and equal height; and after this I will give each of
the other theorems investigated by the same method.
Then, at the end of the book, I will give the geometrical
proofs of the propositions.”

The following description will, I hope, give an idea of

the general features of the mechanical method employed
by Archimedes. Suppose that X is the plane or solid
figure the area or content of which is to be found. The
method in the simplest case is to weigh infinitesimal
elements of X against the corresponding elements of
another figure, B say, being such a figure that its area or
content and the position of its centre of gravity are
already known. The diameter or axis of the figure X
being drawn, the infinitesimal elements taken are parallel
sections of X in general, but not always, at right angles
to the axis or diameter, so that the centres of gravity of
all the sections lie at one point or other of the axis or
diameter and their weights can therefore be taken as
acting at the several points of the diameter or axis. In
the case of a plane figure the infinitesimal sections are
spoken of as parallel straight lines and in the case of a
solid figure as parallel planes, and the aggregate of the
infinite number of sections is said to make up the whole
figure X. (Although the sections are so spoken of as
straight lines or planes, they are really indefinitely narrow
plane strips or indefinitely thin laminae respectively.)
The diameter or axis is produced in the direction away
from the figure to be measured, and the diameter or axis
as produced is imagined to be the bar or lever of a
balance. The object is now to apply all the separate
elements of X at one point on the lever, while the corresponding
elements of the known figure B operate at
different points, namely, where they actually are in the
first instance. Archimedes contrives, therefore, to move
the elements of X away from their original position and
to concentrate them at one point on the lever, such that
each of the elements balances, about the point of suspension
of the lever, the corresponding element of B
acting at its centre of gravity. The elements of X and B
respectively balance about the point of suspension in
accordance with the property of the lever that the weights
are inversely proportional to the distances from the

fulcrum or point of suspension. Now the centre of
gravity of B as a whole is known, and it may then be
supposed to act as one mass at its centre of gravity.
(Archimedes assumes as known that the sum of the
“moments,” as we call them, of all the elements of the
figure B, acting severally at the points where they actually
are, is equal to the moment of the whole figure applied
as one mass at one point, its centre of gravity.) Moreover
all the elements of X are concentrated at the one
fixed point on the bar or lever. If this fixed point is H,
and G is the centre of gravity of the figure B, while C is
the point of suspension,

X : B = CG : CH.

Thus the area or content of X is found.

Conversely, the method can be used to find the centre
of gravity of X when its area or volume is known beforehand.
In this case the elements of X, and X itself, have
to be applied where they are, and the elements of the
known figure or figures have to be applied at the one
fixed point H on the other side of C, and since X, B and
CH are known, the proportion

B : X = CG : CH

determines CG, where G is the centre of gravity of X.

The mechanical method is used for finding (1) the area
of any parabolic segment, (2) the volume of a sphere and
a spheroid, (3) the volume of a segment of a sphere and
the volume of a right segment of each of the three conicoids
of revolution, (4) the centre of gravity (a) of a
hemisphere, (b) of any segment of a sphere, (c) of any
right segment of a spheroid and a paraboloid of revolution,
and (d) of a half-cylinder, or, in other words, of a
semicircle.

Archimedes then proceeds to find the volumes of two
solid figures, which are the special subject of the treatise.
The solids arise as follows:—

(1) Given a cylinder inscribed in a rectangular parallelepiped
on a square base in such a way that the two

bases of the cylinder are circles inscribed in the opposite
square faces, suppose a plane drawn through one side
of the square containing one base of the cylinder and
through the parallel diameter of the opposite base of the
cylinder. The plane cuts off a solid with a surface resembling
that of a horse’s hoof. Archimedes proves that
the volume of the solid so cut off is one sixth part of the
volume of the parallelepiped.

(2) A cylinder is inscribed in a cube in such a way
that the bases of the cylinder are circles inscribed in two
opposite square faces. Another cylinder is inscribed
which is similarly related to another pair of opposite
faces. The two cylinders include between them a solid
with all its angles rounded off; and Archimedes proves
that the volume of this solid is two-thirds of that of the
cube.

Having proved these facts by the mechanical method,
Archimedes concluded the treatise with a rigorous geometrical
proof of both propositions by the method of
exhaustion. The MS. is unfortunately somewhat mutilated
at the end, so that a certain amount of restoration
is necessary.

I shall now attempt to give a short account of the
other treatises of Archimedes in the order in which they
appear in the editions. The first is—

On the Sphere and Cylinder.

Book I. begins with a preface addressed to Dositheus
(a pupil of Conon), which reminds him that on a former
occasion he had communicated to him the treatise proving
that any segment of a “section of a right-angled cone”
(i.e. a parabola) is four-thirds of the triangle with the same
base and height, and adds that he is now sending the
proofs of certain theorems which he has since discovered,
and which seem to him to be worthy of comparison with
Eudoxus’s propositions about the volumes of a pyramid
and a cone. The theorems are (1) that the surface of a

sphere is equal to four times its greatest circle (i.e. what
we call a “great circle” of the sphere); (2) that the surface
of any segment of a sphere is equal to a circle with
radius equal to the straight line drawn from the vertex
of the segment to a point on the circle which is the base
of the segment; (3) that, if we have a cylinder circumscribed
to a sphere and with height equal to the diameter,
then (a) the volume of the cylinder is 1½ times that of
the sphere and (b) the surface of the cylinder, including
its bases, is 1½ times the surface of the sphere.

Next come a few definitions, followed by certain Assumptions,
two of which are well known, namely:—

1. Of all lines which have the same extremities the
straight line is the least (this has been made the basis of
an alternative definition of a straight line).

2. Of unequal lines, unequal surfaces and unequal
solids the greater exceeds the less by such a magnitude as,
when (continually) added to itself, can be made to exceed
any assigned magnitude among those which are comparable
[with it and] with one another (i.e. are of the same kind).
This is the Postulate of Archimedes.

He also assumes that, of pairs of lines (including broken
lines) and pairs of surfaces, concave in the same direction
and bounded by the same extremities, the outer is greater
than the inner. These assumptions are fundamental to
his investigation, which proceeds throughout by means
of figures inscribed and circumscribed to the curved lines
or surfaces that have to be measured.

After some preliminary propositions Archimedes finds
(Props. 13, 14) the area of the surfaces (1) of a right
cylinder, (2) of a right cone. Then, after quoting certain
Euclidean propositions about cones and cylinders, he
passes to the main business of the book, the measurement
of the volume and surface of a sphere and a segment
of a sphere. By circumscribing and inscribing to a great
circle a regular polygon of an even number of sides and
making it revolve about a diameter connecting two opposite

angular points he obtains solids of revolution
greater and less respectively than the sphere. In a
series of propositions he finds expressions for (a) the
surfaces, (b) the volumes, of the figures so inscribed and
circumscribed to the sphere. Next he proves (Prop. 32)
that, if the inscribed and circumscribed polygons which,
by their revolution, generate the figures are similar, the
surfaces of the figures are in the duplicate ratio, and their
volumes in the triplicate ratio, of their sides. Then he
proves that the surfaces and volumes of the inscribed and
circumscribed figures respectively are less and greater
than the surface and volume respectively to which the
main propositions declare the surface and volume of the
sphere to be equal (Props. 25, 27, 30, 31 Cor.). He
has now all the material for applying the method of exhaustion
and so proves the main propositions about the
surface and volume of the sphere. The rest of the book
applies the same procedure to a segment of the sphere.
Surfaces of revolution are inscribed and circumscribed to
a segment less than a hemisphere, and the theorem about
the surface of the segment is finally proved in Prop. 42.
Prop. 43 deduces the surface of a segment greater than
a hemisphere. Prop. 44 gives the volume of the sector
of the sphere which includes any segment.

Book II begins with the problem of finding a sphere
equal in volume to a given cone or cylinder; this
requires the solution of the problem of the two mean proportionals,
which is accordingly assumed. Prop. 2 deduces,
by means of 1., 44, an expression for the volume
of a segment of a sphere, and Props. 3, 4 solve the important
problems of cutting a given sphere by a plane
so that (a) the surfaces, (b) the volumes, of the segments
may have to one another a given ratio. The solution of
the second problem (Prop. 4) is difficult. Archimedes
reduces it to the problem of dividing a straight line AB
into two parts at a point M such that

MB : (a given length) = (a given area) : AM².



The solution of this problem with a determination of the
limits of possibility are given in a fragment by Archimedes,
discovered and preserved for us by Eutocius in
his commentary on the book; they are effected by means
of the points of intersection of two conics, a parabola and
a rectangular hyperbola. Three problems of construction
follow, the first two of which are to construct a segment
of a sphere similar to one given segment, and
having (a) its volume, (b) its surface, equal to that of
another given segment of a sphere. The last two propositions
are interesting.  Prop. 8 proves that, if V, V′
be the volumes, and S, S′ the surfaces, of two segments
into which a sphere is divided by a plane, V and S belonging
to the greater segment, then

S² : S′ ² > V : V′ > S3/2 : S′ 3/2.

Prop. 9 proves that, of all segments of spheres which
have equal surfaces, the hemisphere is the greatest in
volume.

The Measurement of a Circle.

This treatise, in the form in which it has come down
to us, contains only three propositions; the second, being
an easy deduction from Props. 1 and 3, is out of place in
so far as it uses the result of Prop. 3.

In Prop. 1 Archimedes inscribes and circumscribes to
a circle a series of successive regular polygons, beginning
with a square, and continually doubling the number of
sides; he then proves in the orthodox manner by the
method of exhaustion that the area of the circle is equal
to that of a right-angled triangle, in which the perpendicular
is equal to the radius, and the base equal to
the circumference, of the circle. Prop. 3 is the
famous proposition in which Archimedes finds by
sheer calculation upper and lower arithmetical limits to

the ratio of the circumference of a circle to its diameter,
or what we call π; the result obtained is 31⁄7 > π > 310⁄71.
Archimedes inscribes and circumscribes successive regular
polygons, beginning with hexagons, and doubling
the number of sides continually, until he arrives at inscribed
and circumscribed regular polygons with 96 sides; seeing
then that the length of the circumference of the circle is intermediate
between the perimeters of the two polygons,
he calculates the two perimeters in terms of the diameter
of the circle. His calculation is based on two close
approximations (an upper and a lower) to the value of
√3, that being the cotangent of the angle of 30°, from
which he begins to work. He assumes as known that
265/153 < √3 < 1351/780.  In the text, as we have it, only the
results of the steps in the calculation are given, but they
involve the finding of approximations to the square roots
of several large numbers: thus 11721⁄8 is given as the approximate
value of √(137394333⁄64), 3013¾ as that of
√(9082321) and 18389⁄11 as that of √(3380929). In this
way Archimedes arrives at 14688 / 4673½ as the ratio of the perimeter
of the circumscribed polygon of 96 sides to the diameter
of the circle; this is the figure which he rounds up
into 31⁄7. The corresponding figure for the inscribed polygon
is 6336 / 2017¼, which, he says, is > 310⁄71. This example shows
how little the Greeks were embarrassed in arithmetical
calculations by their alphabetical system of numerals.

On Conoids and Spheroids.

The preface addressed to Dositheus shows, as we may
also infer from internal evidence, that the whole of this
book also was original. Archimedes first explains what
his conoids and spheroids are, and then, after each

description, states the main results which it is the aim of
the treatise to prove. The conoids are two. The first
is the right-angled conoid, a name adapted from the old
name (“section of a right-angled cone”) for a parabola;
this conoid is therefore a paraboloid of revolution. The
second is the obtuse-angled conoid, which is a hyperboloid
of revolution described by the revolution of a hyperbola
(a “section of an obtuse-angled cone”) about its transverse
axis. The spheroids are two, being the solids of
revolution described by the revolution of an ellipse (a
“section of an acute-angled cone”) about (1) its major
axis and (2) its minor axis; the first is called the “oblong”
(or oblate) spheroid, the second the “flat” (or
prolate) spheroid. As the volumes of oblique segments
of conoids and spheroids are afterwards found in terms
of the volume of the conical figure with the base of the
segment as base and the vertex of the segment as vertex,
and as the said base is thus an elliptic section of an
oblique circular cone, Archimedes calls the conical figure
with an elliptic base a “segment of a cone” as distinct
from a “cone”.

As usual, a series of preliminary propositions is required.
Archimedes first sums, in geometrical form,
certain series, including the arithmetical progression, a,
2a, 3a, ... na, and the series formed by the squares of
these terms (in other words the series 1², 2², 3², ... n²);
these summations are required for the final addition of
an indefinite number of elements of each figure, which
amounts to an integration. Next come two properties
of conics (Prop. 3), then the determination by the method
of exhaustion of the area of an ellipse (Prop. 4).  Three
propositions follow, the first two of which (Props. 7, 8)
show that the conical figure above referred to is really
a segment of an oblique circular cone; this is done by
actually finding the circular sections. Prop. 9 gives a
similar proof that each elliptic section of a conoid or
spheroid is a section of a certain oblique circular cylinder

(with axis parallel to the axis of the segment of the
conoid or spheroid cut off by the said elliptic section).
Props. 11-18 show the nature of the various sections
which cut off segments of each conoid and spheroid and
which are circles or ellipses according as the section is
perpendicular or obliquely inclined to the axis of the
solid; they include also certain properties of tangent
planes, etc.

The real business of the treatise begins with Props.
19, 20; here it is shown how, by drawing many plane
sections equidistant from one another and all parallel
to the base of the segment of the solid, and describing
cylinders (in general oblique) through each plane section
with generators parallel to the axis of the segment and
terminated by the contiguous sections on either side, we
can make figures circumscribed and inscribed to the segment,
made up of segments of cylinders with parallel
faces and presenting the appearance of the steps of a
staircase. Adding the elements of the inscribed and
circumscribed figures respectively and using the method
of exhaustion, Archimedes finds the volumes of the respective
segments of the solids in the approved manner
(Props. 21, 22 for the paraboloid, Props. 25, 26 for the
hyperboloid, and Props. 27-30 for the spheroids). The
results are stated in this form: (1) Any segment of a
paraboloid of revolution is half as large again as the cone
or segment of a cone which has the same base and axis;
(2) Any segment of a hyperboloid of revolution or of a
spheroid is to the cone or segment of a cone with the
same base and axis in the ratio of AD + 3CA to AD + 2CA
in the case of the hyperboloid, and of 3CA − AD to
2CA − AD in the case of the spheroid, where C is the
centre, A the vertex of the segment, and AD the axis
of the segment (supposed in the case of the spheroid to
be not greater than half the spheroid).



On Spirals.

The preface addressed to Dositheus is of some length
and contains, first, a tribute to the memory of Conon,
and next a summary of the theorems about the sphere
and the conoids and spheroids included in the above two
treatises. Archimedes then passes to the spiral which,
he says, presents another sort of problem, having nothing
in common with the foregoing. After a definition of the
spiral he enunciates the main propositions about it which
are to be proved in the treatise. The spiral (now known
as the Spiral of Archimedes) is defined as the locus of a
point starting from a given point (called the “origin”)
on a given straight line and moving along the straight
line at uniform speed, while the line itself revolves at
uniform speed about the origin as a fixed point. Props.
1-11 are preliminary, the last two amounting to the summation
of certain series required for the final addition
of an indefinite number of element-areas, which again
amounts to integration, in order to find the area of the
figure cut off between any portion of the curve and the
two radii vectores drawn to its extremities. Props. 13-20
are interesting and difficult propositions establishing the
properties of tangents to the spiral. Props. 21-23 show
how to inscribe and circumscribe to any portion of the
spiral figures consisting of a multitude of elements which
are narrow sectors of circles with the origin as centre;
the area of the spiral is intermediate between the areas
of the inscribed and circumscribed figures, and by the
usual method of exhaustion Archimedes finds the areas
required. Prop. 24 gives the area of the first complete
turn of the spiral (= 1⁄3π (2πa)², where the spiral is r = aθ),
and of any portion of it up to OP where P is any point
on the first turn. Props. 25, 26 deal similarly with the
second turn of the spiral and with the area subtended by
any arc (not being greater than a complete turn) on any
turn. Prop. 27 proves the interesting property that, if

R1 be the area of the first turn of the spiral bounded by
the initial line, R2 the area of the ring added by the
second complete turn, R3 the area of the ring added by the
third turn, and so on, then R3 = 2R2, R4 = 3R2, R5 = 4R2,
and so on to Rn = (n − 1) R2, while R2, = 6R1.

Quadrature of the Parabola.

The title of this work seems originally to have been
On the Section of a Right-angled Cone and to have been
changed after the time of Apollonius, who was the first
to call a parabola by that name. The preface addressed
to Dositheus was evidently the first communication from
Archimedes to him after the death of Conon. It begins
with a feeling allusion to his lost friend, to whom the
treatise was originally to have been sent. It is in this
preface that Archimedes alludes to the lemma used by
earlier geometers as the basis of the method of exhaustion
(the Postulate of Archimedes, or the theorem of
Euclid X., 1). He mentions as having been proved by
means of it (1) the theorems that the areas of circles are
to one another in the duplicate ratio of their diameters,
and that the volumes of spheres are in the triplicate
ratio of their diameters, and (2) the propositions proved
by Eudoxus about the volumes of a cone and a pyramid.
No one, he says, so far as he is aware, has yet tried to
square the segment bounded by a straight line and a
section of a right-angled cone (a parabola); but he has
succeeded in proving, by means of the same lemma, that
the parabolic segment is equal to four-thirds of the
triangle on the same base and of equal height, and he
sends the proofs, first as “investigated” by means of
mechanics and secondly as “demonstrated” by geometry.
The phraseology shows that here, as in the Method,
Archimedes regarded the mechanical investigation as
furnishing evidence rather than proof of the truth of the
proposition, pure geometry alone furnishing the absolute
proof required.



The mechanical proof with the necessary preliminary
propositions about the parabola (some of which are
merely quoted, while two, evidently original, are proved,
Props. 4, 5) extends down to Prop. 17; the geometrical
proof with other auxiliary propositions completes the
book (Props. 18-24). The mechanical proof recalls that
of the Method in some respects, but is more elaborate in
that the elements of the area of the parabola to be
measured are not straight lines but narrow strips. The
figures inscribed and circumscribed to the segment are
made up of such narrow strips and have a saw-like edge;
all the elements are trapezia except two, which are
triangles, one in each figure. Each trapezium (or
triangle) is weighed where it is against another area
hung at a fixed point of an assumed lever; thus the
whole of the inscribed and circumscribed figures respectively
are weighed against the sum of an indefinite number
of areas all suspended from one point on the lever. The
result is obtained by a real integration, confirmed as
usual by a proof by the method of exhaustion.

The geometrical proof proceeds thus. Drawing in
the segment the inscribed triangle with the same base
and height as the segment, Archimedes next inscribes
triangles in precisely the same way in each of the segments
left over, and proves that the sum of the two new
triangles is ¼ of the original inscribed triangle. Again,
drawing triangles inscribed in the same way in the four
segments left over, he proves that their sum is ¼ of the
sum of the preceding pair of triangles and therefore (¼)²
of the original inscribed triangle. Proceeding thus, we
have a series of areas exhausting the parabolic segment.
Their sum, if we denote the first inscribed triangle by Δ, is

Δ {1 + ¼ + (¼)² + (¼)³ + . . . .}

Archimedes proves geometrically in Prop. 23 that the
sum of this infinite series is 4⁄3Δ, and then confirms by
reductio ad absurdum the equality of the area of the
parabolic segment to this area.





CHAPTER V.

THE SANDRECKONER.

The Sandreckoner deserves a place by itself. It is not
mathematically very important; but it is an arithmetical
curiosity which illustrates the versatility and genius of
Archimedes, and it contains some precious details of
the history of Greek astronomy which, coming from such
a source and at first hand, possess unique authority. We
will begin with the astronomical data. They are contained
in the preface addressed to King Gelon of Syracuse,
which begins as follows:—

“There are some, King Gelon, who think that the
number of the sand is infinite in multitude; and I mean
by the sand not only that which exists about Syracuse
and the rest of Sicily but also that which is found in
every region whether inhabited or uninhabited. Again,
there are some who, without regarding it as infinite, yet
think that no number has been named which is great
enough to exceed its multitude. And it is clear that
they who hold this view, if they imagined a mass made
up of sand in other respects as large as the mass of the
earth, including in it all the seas and the hollows of the
earth filled up to a height equal to that of the highest of
the mountains, would be many times further still from
recognising that any number could be expressed which
exceeded the multitude of the sand so taken. But I will
try to show you, by means of geometrical proofs which
you will be able to follow, that, of the numbers named
by me and given in the work which I sent to Zeuxippus,

some exceed not only the number of the mass of sand
equal in size to the earth filled up in the way described,
but also that of a mass equal in size to the universe.

“Now you are aware that ‘universe’ is the name given
by most astronomers to the sphere the centre of which is
the centre of the earth, while the radius is equal to the
straight line between the centre of the sun and the centre
of the earth. This is the common account, as you have
heard from astronomers. But Aristarchus of Samos
brought out a book consisting of some hypotheses, in
which the premises lead to the conclusion that the universe
is many times greater than that now so called.
His hypotheses are that the fixed stars and the sun remain
unmoved, that the earth revolves about the sun in
the circumference of a circle, the sun lying in the centre
of the orbit, and that the sphere of the fixed stars,
situated about the same centre as the sun, is so great
that the circle in which he supposes the earth to revolve
bears such a ratio to the distance of the fixed stars as
the centre of the sphere bears to its surface.”

Here then is absolute and practically contemporary
evidence that the Greeks, in the person of Aristarchus of
Samos (about 310-230 B.C.), had anticipated Copernicus.

By the last words quoted Aristarchus only meant to
say that the size of the earth is negligible in comparison
with the immensity of the universe. This, however, does
not suit Archimedes’s purpose, because he has to assume
a definite size, however large, for the universe. Consequently
he takes a liberty with Aristarchus. He says
that the centre (a mathematical point) can have no ratio
whatever to the surface of the sphere, and that we must
therefore take Aristarchus to mean that the size of the
earth is to that of the so-called “universe” as the size
of the so-called “universe” is to that of the real universe
in the new sense.

Next, he has to assume certain dimensions for the
earth, the moon and the sun, and to estimate the angle

subtended at the centre of the earth by the sun’s diameter;
and in each case he has to exaggerate the probable
figures so as to be on the safe side. While therefore
(he says) some have tried to prove that the perimeter
of the earth is 300,000 stadia (Eratosthenes, his contemporary,
made it 252,000 stadia, say 24,662 miles,
giving a diameter of about 7,850 miles), he will assume
it to be ten times as great or 3,000,000 stadia. The
diameter of the earth, he continues, is greater than that
of the moon and that of the sun is greater than that of
the earth. Of the diameter of the sun he observes that
Eudoxus had declared it to be nine times that of the
moon, and his own father, Phidias, had made it twelve
times, while Aristarchus had tried to prove that the
diameter of the sun is greater than eighteen times but
less than twenty times the diameter of the moon (this
was in the treatise of Aristarchus On the Sizes and Distances
of the Sun and Moon, which is still extant, and
is an admirable piece of geometry, proving rigorously,
on the basis of certain assumptions, the result stated).
Archimedes again intends to be on the safe side, so he
takes the diameter of the sun to be thirty times that of
the moon and not greater. Lastly, he says that Aristarchus
discovered that the diameter of the sun appeared
to be about 1⁄720th part of the zodiac circle, i.e. to subtend
an angle of about half a degree; and he describes
a simple instrument by which he himself found that the
angle subtended by the diameter of the sun at the time
when it had just risen was less than 1⁄164th part and
greater than 1⁄200th part of a right angle. Taking this as
the size of the angle subtended at the eye of the observer
on the surface of the earth, he works out, by an interesting
geometrical proposition, the size of the angle subtended
at the centre of the earth, which he finds to
be > 1⁄203rd part of a right angle. Consequently the
diameter of the sun is greater than the side of a regular
polygon of 812 sides inscribed in a great circle of the

so-called “universe,” and a fortiori greater than the side
of a regular chiliagon (polygon of 1000 sides) inscribed in
that circle.

On these assumptions, and seeing that the perimeter
of a regular chiliagon (as of any other regular polygon
of more than six sides) inscribed in a circle is more than
3 times the length of the diameter of the circle, it easily
follows that, while the diameter of the earth is less than
1,000,000 stadia, the diameter of the so-called “universe”
is less than 10,000 times the diameter of the
earth, and therefore less than 10,000,000,000 stadia.

Lastly, Archimedes assumes that a quantity of sand
not greater than a poppy-seed contains not more than
10,000 grains, and that the diameter of a poppy-seed is
not less than 1⁄40th of a dactylus (while a stadium is less
than 10,000 dactyli).

Archimedes is now ready to work out his calculation,
but for the inadequacy of the alphabetic system of
numerals to express such large numbers as are required.
He, therefore, develops his remarkable terminology for
expressing large numbers.

The Greek has names for all numbers up to a myriad
(10,000); there was, therefore, no difficulty in expressing
with the ordinary numerals all numbers up to a myriad
myriads (100,000,000). Let us, says Archimedes, call
all these numbers numbers of the first order. Let the
second order of numbers begin with 100,000,000, and end
with 100,000,000². Let 100,000,000² be the first number
of the third order, and let this extend to 100,000,000³;
and so on, to the myriad-myriadth order, beginning with
100,000,00099,999,999 and ending with 100,000,000100,000,000,
which for brevity we will call P. Let all the numbers
of all the orders up to P form the first period, and let
the first order of the second period begin with P and end
with 100,000,000 P; let the second order begin with this,
the third order with 100,000,000² P, and so on up to the
100,000,000th order of the second period, ending with

1,000,000,000100,000,000 P or P². The first order of the third
period begins with P², and the orders proceed as before.
Continuing the series of periods and orders of each period,
we finally arrive at the 100,000,000th period ending with
P100,000,000. The prodigious extent of this scheme is seen
when it is considered that the last number of the first
period would now be represented by 1 followed by
800,000,000 ciphers, while the last number of the
100,000,000th period would require 100,000,000 times
as many ciphers, i.e. 80,000 million million ciphers.

As a matter of fact, Archimedes does not need, in
order to express the “number of the sand,” to go beyond
the eighth order of the first period. The orders of the
first period begin respectively with 1, 108, 1016, 1024, ...
(108)99,999,999; and we can express all the numbers required
in powers of 10.

Since the diameter of a poppy-seed is not less than
1⁄40th of a dactylus, and spheres are to one another in the
triplicate ratio of their diameters, a sphere of diameter
1 dactylus is not greater than 64,000 poppy-seeds, and,
therefore, contains not more than 64,000 × 10,000 grains
of sand, and a fortiori not more than 1,000,000,000, or
109 grains of sand. Archimedes multiplies the diameter
of the sphere continually by 100, and states the corresponding
number of grains of sand. A sphere of diameter
10,000 dactyli and a fortiori of one stadium contains
less than 1021 grains; and proceeding in this way to
spheres of diameter 100 stadia, 10,000 stadia and so on,
he arrives at the number of grains of sand in a sphere
of diameter 10,000,000,000 stadia, which is the size of
the so-called universe; the corresponding number of
grains of sand is 1051. The diameter of the real universe
being 10,000 times that of the so-called universe, the
final number of grains of sand in the real universe is
found to be 1063, which in Archimedes’s terminology is a
myriad-myriad units of the eighth order of numbers.





CHAPTER VI.

MECHANICS.

It is said that Archytas was the first to treat mechanics
in a systematic way by the aid of mathematical principles;
but no trace survives of any such work by him. In
practical mechanics he is said to have constructed a
mechanical dove which would fly, and also a rattle to
amuse children and “keep them from breaking things
about the house” (so says Aristotle, adding “for it is
impossible for children to keep still”).

In the Aristotelian Mechanica we find a remark on the
marvel of a great weight being moved by a small force,
and the problems discussed bring in the lever in various
forms as a means of doing this. We are told also that
practically all movements in mechanics reduce to the
lever and the principle of the lever (that the weight and
the force are in inverse proportion to the distances from
the point of suspension or fulcrum of the points at which
they act, it being assumed that they act in directions
perpendicular to the lever). But the lever is merely
“referred to the circle”; the force which acts at the
greater distance from the fulcrum is said to move a weight
more easily because it describes a greater circle.

There is, therefore, no proof here. It was reserved for
Archimedes to prove the property of the lever or balance
mathematically, on the basis of certain postulates precisely
formulated and making no large demand on the
faith of the learner. The treatise On Plane Equilibriums

in two books is, as the title implies, a work on statics
only; and, after the principle of the lever or balance has
been established in Props. 6, 7 of Book I., the rest of
the treatise is devoted to finding the centre of gravity of
certain figures. There is no dynamics in the work and
therefore no room for the parallelogram of velocities,
which is given with a fairly adequate proof in the
Aristotelian Mechanica.

Archimedes’s postulates include assumptions to the
following effect: (1) Equal weights at equal distances
are in equilibrium, and equal weights at unequal distances
are not in equilibrium, but the system in that case
“inclines towards the weight which is at the greater
distance,” in other words, the action of the weight which
is at the greater distance produces motion in the direction
in which it acts; (2) and (3) If when weights are
in equilibrium something is added to or subtracted from
one of the weights, the system will “incline” towards
the weight which is added to or the weight from which
nothing is taken respectively; (4) and (5) If equal and
similar figures be applied to one another so as to coincide
throughout, their centres of gravity also coincide; if
figures be unequal but similar, their centres of gravity
are similarly situated with regard to the figures.

The main proposition, that two magnitudes balance at
distances reciprocally proportional to the magnitudes, is
proved first for commensurable and then for incommensurable
magnitudes. Preliminary propositions have
dealt with equal magnitudes disposed at equal distances
on a straight line and odd or even in number, and have
shown where the centre of gravity of the whole system
lies. Take first the case of commensurable magnitudes.
If A, B be the weights acting at E, D on the straight
line ED respectively, and ED be divided at C so that
A : B = DC : CE, Archimedes has to prove that the
system is in equilibrium about C. He produces ED to
K, so that DK = EC, and DE to L so that EL = CD;

LK is then a straight line bisected at C. Again, let H
be taken on LK such that LH = 2LE or 2CD, and
it follows that the remainder HK = 2DK or 2EC.
Since A, B are commensurable, so are EC, CD. Let
x be a common measure of EC, CD. Take a weight
w such that w is the same part of A that x is of LH.
It follows that w is the same part of B that x is of HK.
Archimedes now divides LH, HK into parts equal to x,
and A B into parts equal to w, and places the w’s at
the middle points of the x’s respectively. All the w’s
are then in equilibrium about C. But all the w’s acting
at the several points along LH are equivalent to A
acting as a whole at the point E. Similarly the w’s
acting at the several points on HK are equivalent to B
acting at D. Therefore A, B placed at E, D respectively
balance about C.

Prop. 7 deduces by reductio ad absurdum the same
result in the case where A, B are incommensurable.
Prop. 8 shows how to find the centre of gravity of the
remainder of a magnitude when the centre of gravity of
the whole and of a part respectively are known. Props.
9-15 find the centres of gravity of a parallelogram, a
triangle and a parallel-trapezium respectively.

Book II., in ten propositions, is entirely devoted to
finding the centre of gravity of a parabolic segment, an
elegant but difficult piece of geometrical work which is
as usual confirmed by the method of exhaustion.





CHAPTER VII.

HYDROSTATICS.

The science of hydrostatics is, even more than that of
statics, the original creation of Archimedes. In hydrostatics
he seems to have had no predecessors. Only one
of the facts proved in his work On Floating Bodies, in
two books, is given with a sort of proof in Aristotle.
This is the proposition that the surface of a fluid at rest
is that of a sphere with its centre at the centre of the
earth.

Archimedes founds his whole theory on two postulates,
one of which comes at the beginning and the other after
Prop. 7 of Book I. Postulate 1 is as follows:—

“Let us assume that a fluid has the property that, if
its parts lie evenly and are continuous, the part which is
less compressed is expelled by that which is more compressed,
and each of its parts is compressed by the fluid
above it perpendicularly, unless the fluid is shut up in
something and compressed by something else.”

Postulate 2 is: “Let us assume that any body which
is borne upwards in water is carried along the perpendicular
[to the surface] which passes through the centre
of gravity of the body”.

In Prop. 2 Archimedes proves that the surface of any
fluid at rest is the surface of a sphere the centre of which
is the centre of the earth. Props. 3-7 deal with the
behaviour, when placed in fluids, of solids (1) just as

heavy as the fluid, (2) lighter than the fluid, (3) heavier
than the fluid. It is proved (Props. 5, 6) that, if the
solid is lighter than the fluid, it will not be completely
immersed but only so far that the weight of the solid
will be equal to that of the fluid displaced, and, if it be
forcibly immersed, the solid will be driven upwards by a
force equal to the difference between the weight of the
solid and that of the fluid displaced. If the solid is
heavier than the fluid, it will, if placed in the fluid,
descend to the bottom and, if weighed in the fluid, the
solid will be lighter than its true weight by the weight
of the fluid displaced (Prop. 7).

The last-mentioned theorem naturally connects itself
with the story of the crown made for Hieron. It was
suspected that this was not wholly of gold but contained
an admixture of silver, and Hieron put to Archimedes
the problem of determining the proportions in which the
metals were mixed. It was the discovery of the solution
of this problem when in the bath that made Archimedes
run home naked, shouting εὕρηκα, εὕρηκα. One account
of the solution makes Archimedes use the proposition
last quoted; but on the whole it seems more likely that
the actual discovery was made by a more elementary
method described by Vitruvius. Observing, as he is said
to have done, that, if he stepped into the bath when it
was full, a volume of water was spilt equal to the volume
of his body, he thought of applying the same idea to the
case of the crown and measuring the volumes of water displaced
respectively (1) by the crown itself, (2) by the same
weight of pure gold, and (3) by the same weight of pure
silver. This gives an easy means of solution. Suppose
that the weight of the crown is W, and that it contains
weights w1 and w2, of gold and silver respectively. Now
experiment shows (1) that the crown itself displaces
a certain volume of water, V say, (2) that a weight
W of gold displaces a certain other volume of water,

V1 say, and (3) that a weight W of silver displaces a
volume V2.

From (2) it follows, by proportion, that a weight w1 of
gold will displace w1/W · V1 of the fluid, and from (3) it
follows that a weight w2 of silver displaces w2/W · V2 of the
fluid.

Hence     V = w1/W · V1 + w2/W · V2;

therefore     WV = w1V1 + w2V2,

that is,     (w1 + w2) V = w1V1 + w2V2,

so that     w1/w2 = (V2 − V) / (V − V1),

which gives the required ratio of the weights of gold and
silver contained in the crown.

The last two propositions of Book I. investigate the
case of a segment of a sphere floating in a fluid when the
base of the segment is (1) entirely above and (2) entirely
below the surface of the fluid; and it is shown that the
segment will in either case be in equilibrium in the position
in which the axis is vertical, the equilibrium being
in the first case stable.

Book II. is a geometrical tour de force. Here, by the
methods of pure geometry, Archimedes investigates the
positions of rest and stability of a right segment of a
paraboloid of revolution floating with its base upwards
or downwards (but completely above or completely
below the surface) for a number of cases differing (1) according
to the relation between the length of the axis of
the paraboloid and the principal parameter of the generating
parabola, and (2) according to the specific gravity
of the solid in relation to the fluid; where the position
of rest and stability is such that the axis of the solid is
not vertical, the angle at which it is inclined to the
vertical is fully determined.

The idea of specific gravity appears all through, though

this actual term is not used. Archimedes speaks of the
solid being lighter or heavier than the fluid or equally
heavy with it, or when a ratio has to be expressed, he
speaks of a solid the weight of which (for an equal volume)
has a certain ratio to that of the fluid.
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