

 [image: Cover]

 The Project Gutenberg eBook of The Oak Ridge ALGOL Compiler for the Control Data Corporation 1604

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

Title: The Oak Ridge ALGOL Compiler for the Control Data Corporation 1604

Author: L. L. Bumgarner

Release date: November 17, 2015 [eBook #50468]

 Most recently updated: October 22, 2024

Language: English

Credits: Produced by David Starner, Stephen Hutcheson, and the

 Online Distributed Proofreading Team at http://www.pgdp.net

 (This book was produced from images made available by the

 HathiTrust Digital Library.)

*** START OF THE PROJECT GUTENBERG EBOOK THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION 1604 ***

ORNL-3460

UC-32—Mathematics and Computers

TID-4500 (23rd ed.)

THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION 1604

PRELIMINARY PROGRAMMER'S MANUAL

L. L. Bumgarner

OAK RIDGE NATIONAL LABORATORY

operated by

UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

Printed in USA. Price: $1.25 Available from the

Office of Technical Services

U. S. Department of Commerce

Washington 25, D. C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States,
nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any employee or
contractor of the Commission, or employee of such contractor, to the extent that such employee
or contractor of the Commission, or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

ORNL-3460

Contract No. W-7405-eng-26

Mathematics Division

THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION

1604—PRELIMINARY PROGRAMMER’S MANUAL

L. L. Bumgarner

DATE ISSUED

JAN 30 1964

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee

operated by

UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

CONTENTS

	I. Introduction 1

	II. Language Restrictions 2

	III. Modes of Operation of the Compiler 4

	IV. Input-Output and Intermediate Tape 5

	Input-Output 5

	READ 5

	PAGE 7

	Lists and the List Declaration 7

	PRINT 9

	WRITE 9

	PUNCH 10

	Formats and the Format Declaration 10

	INPUT 11

	OUTPUT 12

	Intermediate Tape Procedures 13

	BINREAD 13

	BINWRITE 14

	ENDFILE 14

	REWIND 14

	BACKUP 14

	Tape-Checking Procedures 14

	EOF 15

	READERR 15

	WRITERR 15

	V. The External Declaration 16

	VI. Standard Procedures 16

	VII. Error Checking and Diagnostics 17

	VIII. Running Programs 19

	ALGOL Control System 20

	EOP Card 20

	Compile and Execute: ALGO 21

	PROGRAM Card 22

	Compile/Execute: ALDAP 22

	ALDAP Control Statement 22

	Job Deck: ALDAP Compilation/Execution 23

	Examples 25

	APPENDICES

	A. Adjuncts to Algol 60 30

	B. Hardware Representation 32

	C. Structure of Procedure Calling Sequence 35

	D. Internal Representation of Strings 37

	E. Program Efficiency 38

	F. Controversial Features of Algol 60 40

	G. Fortran Subprograms in an Algol Program 41

THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION 1604—PRELIMINARY PROGRAMMER’S MANUAL

L. L. Bumgarner

ABSTRACT

This document is a preliminary programmer’s manual
for use of the Control Data 1604 Algol Compiler. The compiler
was constructed by the Programming Research Group of
the Mathematics Division in cooperation with Control Data
Corporation. A knowledge of Algol 60 is assumed. Included
are descriptions of input-output facilities and details for
operation under the monitor system.

I. Introduction

This document is to serve as a programmer’s manual for the
Algol compiler constructed as a cooperative project by Control Data
Corporation and the Mathematics Division of Oak Ridge National Laboratory.
The compiler is designed for the Control Data 1604 and 1604-A computers.
The document is preliminary in that the compiler is not thoroughly tested
and may undergo further development.

The reader is assumed to be familiar with Algol 60. The
defining descriptions are the two reports on Algol 60 available in the
following references:

1. P. Naur et al, “Report on the Algorithmic Language Algol 60,”
Comm. Assoc. Comp. Mach., 3 (1960), No. 5, 299-314.

2. P. Naur et al, “Revised Report on the Algorithmic Language
Algol 60,” Comm. Assoc. Comp. Mach., 6 (1963), No. 1, 1-17.

The second report clears up certain ambiguities that appeared in the
first report. The reports are not easy reading for the novice. The
following expositions are more readable:

1. Baumann, Bauer, Feliciano and Samelson, Introduction to
Algol, Prentice-Hall, Inc. (to be published in late 1963).

2. Bottenbruch, H., “Structure and Use of Algol 60,” Jour.
Assoc. Comp. Mach., 9 (1962), No. 2, 161-221, and ORNL-3148.

The Baumann publication also contains the revised Algol 60 report.

Throughout this document various examples of statements and
declarations appear without the semicolon which is always required for
separating them. This is to avoid the implication that the semicolon is
part of the statement or the declaration. In sentences, a comma or period
may appear where a semicolon or other delimiter would be indicated in the
context of a program.

Word delimiters rendered in bold-face type in the Algol report
are herein indicated by underlining.

II. Language Restrictions

The compiler correctly handles programs written in Algol 60
subject to the following restrictions.

1. The use of an integer label as an actual parameter will
cause an incorrect program to be compiled.

2. A GO TO statement with an undefined switch designator as
the designational expression will cause incorrect operation of the final
program.

3. Type restrictions:

(a) The exponentiation expression x ↑ y will have type
real unless x is of type integer and y is a non-negative integer constant.
This differs slightly from the definition in the Algol report but will
generally cause no difficulty.

(b) In the construction

<if clause> <simple arithmetic expression>

else <arithmetic expression>

the arithmetic expressions must have the same type, or else an incorrect
program will be compiled. For example, in the statement

x := if a < b then z else w

z and w should both be declared real or both integer.

(c) In a procedure call (procedure statement or function
call) each actual parameter having an arithmetic value must have the same
type as the corresponding formal parameter in the procedure declaration.
The type of the formal parameter is that designated in the specification
part if it appears there. If a formal parameter representing an arithmetic
quantity does not appear in the specification part, it is assumed to be
specified real. Full use of specifications is desirable for descriptive
purposes and for optimization.

Caution. Restriction (c) is more likely to cause errors than
the other restrictions. It is very easy to write P(1,2) when the parameters
of P are specified real, but incorrect coding will result. The call
P(1.0,2.0) works correctly.

4. Standard procedure names (see section VI) used as parameters
in procedure calls will cause an incorrect program to be compiled. A call,
therefore, such as

P(sin)

is incorrect. Note, however, that a call of the type

Q(sin(x))

causes no trouble. The case P(sin) can be programmed in another way.

Make the declaration

real procedure sin 1 (t); real t;

sin 1 := sin(t).

The call

P(sin 1)

is then correct.

5. Arrays called by value are not handled. If an array
identifier appears in the value part, an incorrect program will be
compiled.

6. “Dynamic” own arrays are not handled. This means that all
own arrays are treated as having constant subscript bounds; this constitutes
one possible interpretation of the Algol 60 report. An own array may be
declared with variable subscript bounds, but only one allocation of
storage will be made, and if the bounds change, this will be ignored.

7. Recursive procedures are not handled. This restriction
encompasses all cases of a function designator appearing in the actual
parameter part of a call of the same function, unless that function is
a standard function. Thus f(f(x)) is not permitted in general, but
sin(sin(x)) is allowed.

III. Modes of Operation of the Compiler

There are two distinct modes of operation: ALGO and ALDAP.

ALGO is a compile-and-execute mode in which the two phases
cannot be separated. The Algol program is translated into a machine
language program in core memory, and execution of the program immediately
and automatically follows. There is no assembly program phase.

ALDAP makes use of the CODAP assembly program facilities.
It is possible to compile procedures separately and reference them from
an Algol program. The procedures may be written in Algol, CODAP or
Fortran. This provision is made possible with the aid of the external
declaration discussed in section V.

The ALGO mode provides significantly faster compilation than
the ALDAP mode for most programs. The target programs produced in the
two modes are essentially the same. In the ALGO mode, program checkout
may be done at the Algol language level. In the ALDAP mode, checkout
may also be done at the machine and assembly language levels, and
modifications may be made at these levels.

IV. Input-Output and Intermediate Tape

There are seven standard procedures for input-output, five
for intermediate tape, and three for checking tape conditions. Two
declarations, format and list, are additions to the language.

Input-Output

The input-output procedures are: READ, PAGE, PRINT, WRITE,
PUNCH, INPUT, and OUTPUT.

READ

The READ procedure is used to input numbers and Boolean values.
A READ statement has the form

READ (V1, V2, ..., Vn)

where n is any positive integer and each Vk is a variable. For example,
the statement

READ (X, Y, A[1], B[1])

will input values into the four variables listed. For inputing values
into an array, a statement such as the following might be used:

for I := 1 step 1 until 100 do READ (A[I]) .

The READ procedure inputs numbers and truth values. A number
must be a legal Algol number (although an E may be substituted for the
symbol ₁₀). For input into a Boolean variable, the truth values true and
false are accepted; also, a non-negative number or a plus sign is
interpreted as false and a negative number or a minus sign is interpreted
as true. A blank is read as zero.

With the READ procedure, the type of a number on a data card
does not have to be the same as the type of the variable to which it is
assigned. Any necessary type conversions are done automatically. If
N is the next number in the data, the statement

READ (V)

is equivalent to the statement

V := N .

The data cards are free field. The number of values per card,
the length of numbers, and the number of spaces are arbitrary. A comma,
however, must follow each number, including the last one on the last
data card.

In reading a value into a subscripted variable, the current
value of the subscript expression is not affected by that READ statement.
For example, in the statement

READ (I, A[I])

the old value of I is used in A[I].

The READ procedure will input data from the standard input
medium only.

PAGE

The PAGE procedure is used to cause a page ejection on the
standard output medium. PAGE has no parameters. It is called by simply
writing

PAGE .

Lists and the List Declaration

The input and output procedures described in the rest of this
section, as well as the binary read and write procedures, make use of
the concept of a list. A list[1] is a sequence of expressions. An
example is

U + V, C[0], if B then X else Y .

It may be inconvenient in some cases to write down all of the
expressions explicitly. The
loop expression[1]
may be used as a shorthand
device in a list. It is an Algol-like construction of which the
following is an example:

for I := 1 step 1 until 1000 do A[I] .

This is equivalent to the list

A[1], A[2], ..., A[1000] .

The entity following do in a loop expression may itself be a list, but
this list must be enclosed in parentheses if it contains more than one
member.

The loop expression

for I := 1 step 1 until 1000 do (A[I], B[I])

is equivalent to the list

A[1], B[1], A[2], B[2], ..., A[1000], B[1000] .

The loop expression

for I := 1 step 1 until 10 do (A[I], for J := 1

step 1 until 20 do B[I,J])

is equivalent to the list

A[1], B[1,1], B[1,2], ..., B[1,20],

A[2], B[2,1], B[2,2], ..., B[2,20],

....................................

A[10], B[10,1], B[10,2], ..., B[10,20] .

A list may be given a name through a list declaration. A list
declaration has the form

list identifier := list .

Examples are:

list L := X, A + B

list M := for I := 1 step 1 until N do A[I] .

A list identifier may itself appear in a list. One of the above examples
might be written with the aid of the following declaration:

list L := for J := 1 step 1 until 20 do B[I,J] .

The loop expression is then

for I:= 1 step 1 until 10 do (A[I], L) .

A list declaration obeys the same rules of syntax and scope as do other
declarations.

A list identifier may be used as an actual parameter of a
procedure call, with the requirement that the corresponding formal
parameter be specified list. However, an actual list may appear as a
parameter only in calls of the standard procedures, as described.

PRINT

The PRINT procedure is used to output numbers in a simple,
rigid manner. A PRINT statement has the form

PRINT (list),

where list is described above. An example of a PRINT statement is

PRINT (A, if N = 0 then S else T).

A PRINT statement always puts out at least one line printer
image. A line may contain up to 6 numbers, each of which is in scientific
notation with 10 decimal places. Each number is right-justified in a
field of 20 columns. (The format is 6E20.10.) The above PRINT statement
will output two numbers in the first forty spaces, and the rest
of the line will be blank. A PRINT statement such as

PRINT (for I := 1 step 1 until 10 do A[I])

will output one line of 6 numbers followed by one line of 4 numbers.
Single spacing between lines is automatic.

The PRINT procedure always outputs on the standard output
medium.

WRITE

The WRITE procedure is used to output strings. Examples of
WRITE statements are:

WRITE ('TABLE')

WRITE (if D < 0 then 'TRUE' else 'FALSE') .

Each parameter must be a string expression (see Appendix A for definition
of string expression). There may be any number of parameters, but each
string will appear on a separate line. If a string is too long to go
on one line, it will be continued on the next line. A string should not

contain another string. Lines are single spaced. Each WRITE statement
causes at least one line printer image to be put out.

The WRITE procedure always outputs on the standard output
medium.

PUNCH

The PUNCH procedure is used to output numbers on punched cards
in a form which can be input by the READ procedure. Each number punched
will be followed by a comma. Each card punched may contain up to four
numbers. Each number will be of type real, but since the READ procedure
makes any necessary type conversions this is unimportant. A PUNCH statement
has the same form as a PRINT statement. Each PUNCH statement causes
at least one card image to be put out.

The PUNCH procedure always outputs on the standard punch medium.

Formats and the Format Declaration

The two input and output procedures remaining to be described
make use of formats. The formats are exactly those used in Fortran, and
readers unfamiliar with Fortran will find it necessary to refer to the
Control Data Fortran-62 Reference Manual for details on the use of formats.

A format is treated as a string. Formats will be written, for
example, as follows:

'(6E20.10)'

'(1H0, 9X, 5HTABLE, I3)' .

Note that the parentheses are part of the format, and both parentheses
and string quotes are required.

As will be indicated below, a format string may appear
explicitly in an INPUT or OUTPUT statement. If the same format string

is used more than once, however, it may be convenient to give it a name
through a format declaration. A format declaration has the form

format Identifier := '(Fortran format)' .

Examples are:

format F := '(6E20.10)'

format G := '(1H0, 9X, 5HTABLE, I3)' .

A format declaration obeys the same rules of syntax and scope as do
other declarations.

Format identifiers may be used as parameters, and format is a
specifier.

INPUT

The INPUT procedure is used to input numbers and Hollerith
information in accordance with Fortran-type formats. An INPUT statement
has one of the forms

INPUT (M,F,list)

INPUT (M,F)

where:

(1) M is the logical unit designation. M may be any arithmetic
expression. If it is not integral-valued, the action

M := entier (M + 0.5)

will take place. The standard input unit is 50.

(2) F is a format expression. It may be an actual format
string, a format identifier, a conditional format expression, or any
variable which contains the starting address of a format string.
Caution. In the case of a conditional format expression, format strings
and format identifiers should not be mixed. For example, (a) and (b)

below are permitted, but (c) will cause an incorrect program to be
compiled:

(a) if B then '(E20.7)' else '(E20.6)'

(b) if B then F1 else F2

(c) if B then F1 else '(E20.6)' .

(3) list is as defined previously. Of course, for INPUT all
expressions must be variables.

The following are examples of an INPUT statement:

INPUT (50, '(4E20.8)', N, for I := 1 step 1 until N do A[I]).

INPUT (if A < B then M else N, F, X, Y, Z) .

Each INPUT statement causes at least one card image to be read.

Note that the INPUT procedure does not make type checks
between the data and the program variables. A floating point number,
for example, is stored as such regardless of the type of the variable to
which it is assigned.

Caution. It is strongly recommended that not both READ and INPUT be used
in the same program. Each buffers ahead one card image. Furthermore,
each INPUT statement causes at least one card image to be read while a
READ statement may not cause a new card image to be read. Mixing the
two statements will require quite careful use of blank cards in the data
to allow for the buffering.

OUTPUT

The OUTPUT procedure is used to output numbers and Hollerith
information in accordance with Fortran-type formats. An OUTPUT statement
has one of the forms

OUTPUT (M,F)

OUTPUT (M,F,list)

where M, F, and list are as indicated above. The following are examples
of OUTPUT statements:

OUTPUT (51, '(5HTABLE)')

OUTPUT (51, '(1H0,9X,10E10.2)', for I := 1 step 1 until 100 do A[I]) .

Each OUTPUT statement causes at least one line printer image
to be put out. The standard output unit is 51, and the standard punch
unit is 52.

Intermediate Tape Procedures

There are five standard procedures for making use of magnetic
tape for auxiliary storage:

BINREAD, BINWRITE, ENDFILE, REWIND and BACKUP.

BINREAD

A BINREAD statement has the form

BINREAD (M, list)

where M and list are the same as for INPUT. Each BINREAD statement
causes the designated unit to move forward one logical record, reading
in binary format into the variables of the list. If fewer variables
appear in the list than are on the record, only those values are read
and the tape moves on to the end of the record. If more variables
appear in the list than are on the record, this is treated as an error
and the program is terminated.

The following is an example of a BINREAD statement:

BINREAD (6, for I := 1 step 1 until 1000 do A[I]) .

BINWRITE

A BINWRITE statement has the form

BINWRITE (M, list)

where M and list are the same as for OUTPUT. Each BINWRITE statement
causes the values of the list expressions to be written in one logical
record in binary format on the designated unit.

ENDFILE

An ENDFILE statement has the form

ENDFILE (M)

where M is a unit designation as before. The statement causes an end-of-file
record to be written on the designated unit.

REWIND

A REWIND statement has the form

REWIND (M)

where M is a unit designation as before. The statement causes the
designated unit to be rewound to the load point.

BACKUP

A BACKUP statement has the form

BACKUP (M)

where M is a unit designation as before. The statement causes the designated
unit to be backspaced one logical record of binary information or
one physical record of BCD information.

Tape-Checking Procedures

The checking procedures are: EOF, READERR, and WRITERR. These
are Boolean procedures.

EOF

An EOF call has the form

EOF (M)

where M is a logical unit designation as before. It yields the value
true if the previous read operation encountered an end-of-file or the
previous write operation encountered an end-of-tape; otherwise it yields
the value false.

An example of the use of an EOF call is:

if EOF(6) then goto ALARM .

READERR

A READERR call has the form

READERR (M)

where M is a logical unit designation as before. It yields the value
true if the previous read operation produced a parity error; otherwise
it yields the value false.

READERR should not be used for testing the operation of a READ
statement. The READ procedure has its own facilities for checking,
making multiple attempts in case of errors, and terminating the program
if necessary.

WRITERR

A WRITERR call has the form

WRITERR (M)

where M is a logical unit designation as before. It yields the value
true if the previous write operation produced a parity error; otherwise
it yields the value false.

V. The External Declaration

An external declaration is required for each nonstandard
library procedure or procedure compiled separately from the calling
program, whether in Algol, Fortran or CODAP. Standard Algol procedures
are described in Section VI. Note that a CODAP subroutine must take
account of the special structure of the Algol calling sequence as
described in Appendix C or be treated as a Fortran subprogram. The use
of Fortran subprograms is described in Appendix G.

The external declaration has one of the following forms:

external I1, ..., In

real external I1, ..., In

integer external I1, ..., In

Boolean external I1, ..., In

where each Ik is an identifier and n is any positive integer. A type
declarator preceding the declarator external signifies a function procedure
having that type. Note that no information about parameters
appears in an external declaration. See Appendix A for syntactical
definition.

In the ALGO mode, LIB cards must be included in the job deck
for nonstandard library routines, in addition to the external declarations.
Details are found in Section VIII.

VI. Standard Procedures

Certain procedures are used without being declared. These
include the standard functions listed in the Algol 60 report and the
input-output and intermediate tape procedures. The complete list is as
follows:

ABS

SIGN

SQRT

SIN

COS

ARCTAN

LN

EXP

ENTIER

EOF

READERR

WRITERR

FORTRANF

FTNF

READ

PAGE

PRINT

WRITE

PUNCH

INPUT

OUTPUT

BINREAD

BINWRITE

ENDFILE

REWIND

BACKUP

FORTRAN

FTN

These procedures are global to the program. They behave as
though declared in a fictitious block surrounding the entire program.

VII. Error Checking and Diagnostics

In a complete compilation the compiler makes two passes on the
Algol source program. If errors which the compiler cannot correct are
detected in the first pass, then the second, or translation, pass will
not be made. The following types of errors are detected:

	1. syntactical error

	2. undeclared identifier

	3. identifier declared twice in the same block head

	4. misspelled delimiter (corrected in many cases)

	5. missing escape symbol (corrected unless both are missing for the same delimiter, in which case the delimiter is treated as an identifier).

The program listing and any diagnostics always appear on the
standard output medium. In the case of a syntactical error, a message
will appear in the program listing one or several lines below the error.
The location of the error in the program will be further pinpointed in
the line of symbols immediately below the error message. This line will
be a short portion of the program with the last symbol in the line being
the one which indicates the error. For example, a declaration might be
out of place as follows:

.

.

.

x := a + b; 'INTEGER' K;

**** LAST CHARACTER INDICATES SYNTACTICAL ERROR.

x := a + b; INTEGER

.

.

.

In some cases the line below the message may differ slightly from the
corresponding string of symbols above; for example, an identifier might
be rendered by Ident. It is possible for a single syntactical error to
cause more than one diagnostic.

A few syntactical errors are corrected by the compiler, and
a message is put out to this effect. An example is a semicolon
immediately preceding else.

According to the comment conventions of Algol, any string of
symbols following end and not containing end, else or a semicolon is

treated as comment. As a result, the omission of one of these symbols
following end does not always cause an error in compilation but will
cause a portion of the program to be skipped over by the compiler. Thus
for example, in

... x := a + b end for i := 1 step 1 ...

the FOR statement will be skipped at least in part. The compiler will
put out a caution message in this and some other cases, but it will not
change the program.

If an identifier is not declared (or possibly declared in the
wrong place), a message is put out below the program listing together
with the undeclared identifier.

The compiler does not check the type of identifiers. Therefore,
such errors as a Boolean variable in an arithmetic expression, or the
brackets of a subscripted variable replaced by parentheses, are not
detected, and an incorrect program may be compiled.

VIII. Running Programs

The Algol program is punched on cards in the hardware representation
described in Appendix B. The format is essentially free field:
spaces have no significance except within escape symbols and string
quotes. Only the first 72 columns, however, are interpreted by the
compiler. The remaining columns may be used for identification purposes.
Care must be taken when a string is continued onto the next card, as
the continuation will begin in column 1. The program listing will have
the same format as the cards.

In the following discussion the symbol Ø signifies the letter
O where necessary for emphasis, and the symbol Δ signifies a 7-9 punch
in card column 1.

ALGOL Control System

The compiler operates under the ALGOL Control System. This
system is a subordinate control routine of the Master Control System of
the CO-OP Monitor Programming System. ALGOL is quite similar to the
subordinate control routine COOP.

ALGOL is called with an MCS (Master Control System) card having
ALGOL punched beginning in column 2. Other details of this card are
available in descriptions of the CO-OP Monitor. It should be noted in
selecting a standard recovery procedure that the concept of COMMON is
not used in Algol.

Following the MCS card will be a control card giving
instructions to the control routine ALGOL. It will name one of the
following routines: ALGO, ALDAP, EXECUTE, BINARY, FORTRAN, REWIND or
DEFINE. These will be discussed below.

EOP Card

The EOP (end-of-program) card has the characters 'EØP' punched
in columns 10-14.

In the ALGO mode, one EOP card must be used to terminate the
program.

In the ALDAP mode, one EOP card must be used to terminate each
Algol program or Algol procedure being compiled separately.

Compile and Execute: ALGO

The ALGO mode of running an Algol program is the simplest and
the fastest. It will be the more suitable for a large number of programs.
Unless the programmer has special reasons for using the ALDAP mode, the
ALGO mode is recommended.

The Algol program must be self-contained except for standard
procedures and library procedures on the library-systems tape. The job
deck must have the following cards in the specified order:

	1. MCS control card.

	The subordinate control routine name must be ALGØL.

	2. ALGOL control card.

	This will appear as

	ΔALGØ. or ΔALGØ,t. where t is an integer specifying a time limit in minutes for compilation and execution.

	(The period is required on every control card.)

	3. LIB cards.

	If necessary. One LIB card is required for each non-standard library procedure called in the program, namely those declared external. The format of a LIB card is as follows: the characters LIB punched in columns 10-12 and the name of a library entry point beginning in column 20. There may be no more than 20 LIB cards.

	4. PROGRAM card.

	If desired. This may be used to identify the program. Its format is described in the next paragraph.

	5. Algol program deck.

	6. EOP card.

	7. Data.

	If required.

PROGRAM Card

The PROGRAM card is optional. It is useful for identification
purposes, and in the ALDAP mode it serves to name the program entry
point.

The format of the card is free field. The characters PRØGRAM
must appear followed by the program name, which must be alphanumeric.

Compile/Execute: ALDAP

The ALDAP mode is used to compile an Algol program or procedure
to a relocatable binary or a CODAP format. Execution is
optional. For compilation only, the program deck may consist of any
mixture of Algol programs and procedures, any number of which may be
in CODAP. If execution is desired, part or all of the program deck
may have been previously compiled, so that the deck may have Algol,
CODAP and relocatable binary cards.

ALDAP Control Statement

The format of the ALDAP statement is:

ΔALDAP,L,B,n.

where

	L is a program listing key,

	B is a punched card output key,

	n is a logical unit number.

A period may terminate the statement at any point, with remaining fields
treated as zero.

If the program listing key (L) is a 1, an assembled listing of
the CODAP object code will be produced on the standard output medium.
If the key is zero or blank, no such listing will be produced. A listing

of the Algol program and any diagnostics will always be produced on the
standard output medium.

If the punched card output key (B) is a 1, a relocatable binary
deck will be produced on the standard punch medium. If the key is a 2,
a CODAP symbolic deck will be produced on the standard punch medium.
If the key is a 3, both a symbolic deck and a relocatable binary deck
will be produced on the standard punch medium, with the symbolic deck
appearing first. If the key is zero or blank, no deck will be produced.

The logical unit number (n) specifies the unit which is to be
the load-and-go tape if it is one of the integers 1-49 or 56. If n is
some other integer or blank, no load-and-go tape will be written. The
load-and-go tape is required when execution of the program is to follow.

Examples:

	(a) ΔALDAP, 1, 1, 56.

This statement will cause the Algol/CODAP deck to be compiled, an
assembled listing to be produced on the standard output medium, a
relocatable binary deck to be produced on the standard punch medium,
and a load-and-go tape written on logical unit 56.

	(b) ΔALDAP, 1.

This statement will cause the Algol/CODAP deck to be compiled, and an
assembled listing to be produced on the standard output medium.

Job Deck: ALDAP Compilation/Execution

For compilation only of an Algol/CODAP program deck, the
job deck should contain the following cards in the specified order:

	1. MCS control card.

	With ALGØL as the subordinate control routine name.

	2. ALGOL control card.

	With the appropriate ALDAP control statement.

	3. PROGRAM card.

	If desired.

	4. Program deck.

	Any mixture of Algol and CODAP programs and procedures, with all their subroutines except the standard procedures and those on the library-systems tape. Each Algol program or procedure must be terminated by an EOP card.

	5. FINIS card.

	This card contains the characters FINIS punched in columns 10-14. It signals the end of all compilations.

For compilation and execution of an Algol/CODAP program deck,
a load-and-go tape must be requested in the ALDAP control statement. If
no relocatable binary cards follow the last subprogram to be compiled,
then the program deck must be terminated by an EOP card which is in
addition to the EOP card or END card (the latter for a CODAP
subprogram) which terminates the last program or procedure. The FINIS
card then follows this additional EOP card. An EOP card always causes
a TRA card image to be written on the load-and-go tape.

The control statements EXECUTE, BINARY, FORTRAN, REWIND and
DEFINE may be used as described in the “CO-OP Monitor Programmer’s
Guide”. BINARY is useful for loading a relocatable binary deck onto the
load-and-go tape prior to compilation of an Algol calling program, where
the subprogram in relocatable form might have the same name as a library
routine. If the Algol program preceded the relocatable deck, the library
routine would be fetched by the loader and an error indication given.

The CO-OP control statements LOAD and EXECUTER are not used
by ALGOL.

Examples

Each of the following examples describes a job deck which
illustrates a different way of compiling and executing the same Algol
program. The program calls a library procedure with entry point named
BESSEL, and the program contains at least one other procedure. On the
MCS card only the first field is indicated, as the others may vary from
one installation to another.

Example 1

This job uses the ALGØ mode.

ΔALGØL,

ΔALGØ.

LIB BESSEL

PRØGRAM SAMPLE

Algol Program (with external declaration of BESSEL)

'EØP'

Data

Example 2

This job uses the ALDAP mode, compiling the entire program at
once. The ALDAP control statement calls for an assembled listing, a
binary deck, and a load-and-go tape on logical unit 56. The execute
card gives a two minute time limit on the execution.

ΔALGØL,

ΔALDAP,1,1,56.

PRØGRAM SAMPLE

Algol Program (with external declaration of BESSEL)

'EØP'

'EØP'

FINIS

ΔEXECUTE,2.

Data

Example 3

This job consists simply of the execution of the relocatable
program deck obtained in example 2.

ΔALGØL,

ΔEXECUTE,2.

Relocatable Deck

Data

Example 4

This example is similar to example 2. Here the main program
and one of its procedures are to be compiled separately.

ΔALGØL,

ΔALDAP,1,1,56.

PRØGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the procedure being compiled separately)

'EØP'

Algol Procedure

'EØP'

'EØP'

FINIS

ΔEXECUTE,2.

Data

Example 5

In this example the procedure which was compiled separately
in example 4 is being compiled by itself, i.e., the calling program is
not in the deck at all. Of course there is no execution in this case.
Note that no load-and-go tape is requested and only one EOP card is
used. There cannot be a PROGRAM card.

ΔALGØL,

ΔALDAP,1,1.

Algol Procedure

'EØP'

FINIS

Example 6

Here the procedure compiled by itself in example 5 appears in
the program deck in relocatable binary form, while the calling program
is in the Algol language.

ΔALGØL,

ΔALDAP,1,1,56.

PRØGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the procedure in relocatable form)

'EØP'

FINIS

ΔEXECUTE,2.

Relocatable Deck

Data

The relocatable deck here must be terminated by two TRA cards. One of
these is generated by the compiler when it processes the EOP card which
must terminate the procedure for compilation, as in example 5. The
second TRA card can be obtained by using a second EOP card, as in
example 2. Alternatively, the second TRA card can be added to the
relocatable deck before execution. Note that this second TRA card must
not be used when the relocatable deck is loaded by a BINARY control
statement. This is illustrated in the next example.

Example 7

In this case the previously compiled procedure has the same
name as a routine on the library-systems tape.

ΔALGØL,

ΔBINARY,56.

Relocatable Deck (terminated by one TRA card)

ΔALDAP,1,1,56.

PRØGRAM SAMPLE

Algol Program (with external declaration of both BESSEL and the procedure in relocatable form)

'EØP'

'EØP'

FINIS

ΔEXECUTE, 2.

Data

The logical unit number on the BINARY control statement must agree with
that which specifies the load-and-go tape in the ALDAP control statement.

APPENDIX A

Adjuncts to Algol 60

List Entities

The delimiter list is a declarator and a specifier.

<list identifier> ::= <identifier>

<loop expression> ::= <for clause> <arithmetic expression>

| <for clause> <loop expression>

| <for clause> (<list>)

<list element> ::= <arithmetic expression>

| <loop expression>

| <list identifier>

<list> ::= <list element>

| <list>, <list element>

<list declaration> ::= list <list identifier> := <list>

Format Entities

The delimiter format is a declarator and a specifier.

<format identifier> ::= <identifier>

<simple format expression> ::='(<Fortran format>[2])'

| <format identifier>

<format expression> ::= <simple format expression>

| <if clause> <simple format expression>

else <format expression>

<format declaration> ::= format <format identifier> := <format expression>

String Expression

<string expression> ::= <string>

| <if clause> <string>

else <string expression>

External Declaration

The delimiter external is a declarator.

<external identifier> ::= <identifier>

<external list> ::= <external identifier>

| <external identifier>, <external list>

<external declaration> ::= external <external list>

| <type> external <external list>

APPENDIX B

Hardware Representation

One keypunch character is reserved as an “escape symbol”,
which we shall here suppose is the apostrophe. This symbol is used to
delineate word delimiters and truth values, which are written in boldface
type in Algol reference language and publication language and
indicated by underlining in this manual. The hardware representation
of a word delimiter such as begin is therefore 'BEGIN'.
No distinction
is made between upper and lower case letters in the hardware language.

The transliteration rules for the non-word delimiters are
comprised in the following table. This assumes a 48 character hardware
set and is consistent with the usage in the ALCOR group. For some
basic symbols alternatives are tolerated, as indicated.

	Reference 	Hardware 	Tolerated Hardware

	< 	'LS' 	'LESS'

	≤ 	'LQ' 	'LSEQ', 'NOTGREATER', 'NOT GREATER'

	= 	'EQ' 	'EQUAL'

	≥ 	'GQ' 	'GREQ', 'NOTLESS', 'NOT LESS'

	> 	'GR' 	'GREATER'

	≠ 	'NQ' 	'NTEQ', 'NOTEQUAL', 'NOT EQUAL'

	¬ 	'NOT'

	∧ 	'AND'

	∨ 	'OR'

	⊃ 	'IMP' 	'IMPLIES', 'IMPL'

	≡ 	'EQV' 	'EQUIV'

	₁₀ 	' 	'E','T'

	× 	*

	↑ 	** 	'POWER'

	÷ 	// 	'DIV'

	: 	..

	; 	$.,

	:= 	= 	.=, ..=

	[(/

] 	/)

	‘ 	" 	'('

	’ 	" 	')'

In the case of the string quotes, the tolerated symbols are required for
the inner strings of a nest of strings.

Actually, the compiler can tolerate many other spellings of
word delimiters because of its facility for correcting misspellings.

The delimiter go to is accepted with or without the space
between the two words, but it is treated as a single delimiter: 'GOTO'
or 'GO TO'.

The compiler can also accept a 64 character hardware representation:
the full set available on the line printer. In preparing
programs, overpunching is used on the 48 character keypunch in this case.
The table below indicates the keypunching rules in use at Oak Ridge
National Laboratory.

	Reference 	Hardware

	< 	1-8 punch

	≤ 	1-5 punch

	≥ 	1-9 punch

	> 	2-7 punch

	≠ 	2-6 punch

	∧ 	3-7 punch

	∨ 	2-4 punch

	₁₀ 	1-6 punch

	↑ 	2-5 punch

	÷ 	3-5 punch

	: 	2-8 punch

	; 	2-9 punch

	[3-6 punch

] 	3-4 punch

The other basic symbols are either in the 48 character set or are
replaced by word delimiters as above. The symbol := is treated as two
symbols in the 64 character set, and = is punched as such.

APPENDIX C

Structure of Procedure Calling Sequence

The following information is necessary for the user writing a
non-Algol procedure to be called from an Algol program. The calling
sequence differs from that found in many other languages.

The first word of the non-Algol procedure must have a simple
jump instruction in its upper half, and the exit line is provided by a
jump to this first word. The entry automatically causes the proper
return address to be placed in the address portion of the first half-word.

Upon entry to the procedure, index register six contains an
address which is used to reference each parameter. To establish linkage
with the first parameter, the instruction

LDA 6 0

is performed. This brings into the accumulator a word of one of the
following types:

1. SLJ 0 ENA V

2. SLJ 0 RTJ L

In case (1), V is the address of the parameter. In case (2), L is the
starting address of a piece of coding for computing the address of the
parameter and leaving it in the accumulator (if the parameter is an
expression, the address in the accumulator will be that of a temporary
containing its value). Case (1) always holds if the parameter is a
simple variable, string, array identifier, switch identifier, or
procedure identifier. In case (2) the same temporary will be used for
all the expressions.

Both cases can be provided for by setting aside two locations
for each parameter in the procedure body and placing the instruction

SLJ *-1

in the upper half of each second location. Then after

LDA 6 0

mentioned above,

STA RES1,

where RES1 is the first reserved location for the first parameter, makes
the two locations into a closed subroutine. After this, the instruction

RTJ RES1

causes the address of the first parameter to be placed in the accumulator
anytime it is performed. This accommodates expressions called by name.

In general, the Kth parameter is referenced as above, but
beginning with

LDA 6 (K - 1).

This description does not apply to the standard procedures, each of
which has its own special calling sequence.

APPENDIX D

Internal Representation of Strings

The address representing a string is that of the first word of
string characters. Each left string quote is represented internally by
the word

00 ... 03454 ,

and each right string quote by

00 ... 05474 .

The characters of the string which are not string quotes are packed in
BCD eight characters per word. These words are in the natural order,
the first immediately following the left string quote and the last
immediately followed by the right string quote. If the last word before
a right quote is not full, the rest of that word is filled out with
zeros (not BCD blanks).

APPENDIX E

Program Efficiency

The following information may be of interest to programmers
desiring an efficient program:

1. The FOR statement is defined with more generality than
is useful in most programs. In particular, the
arithmetic expressions in the FOR clause are allowed
to change in value during execution of the FOR statement.
The compiler does not attempt to determine which
FOR statements make use of this flexibility and treats
all of them in the most general way. Therefore, in a
statement such as

for I := 1 step M + N until abs(A - B) do ... ,

the expression M + N is evaluated twice for each iteration,
and the expression abs(A - B) is evaluated once for each
iteration. If M, N, A, and B do not change in the loop,
this is unnecessary. Such inefficiency can be avoided
by programming in a slightly different way. The above
example can be written as follows:

T1 := M + N; T2 := abs(A - B) ;

for I := 1 step T1 until T2 do

2. The concept of call by value is a device applied to procedures
to eliminate unneeded flexibility in procedure
calls. If a parameter having a value is referenced more
than once in the procedure body and the flexibility of
call by name is not needed, then the program is more
efficient if the parameter is included in the value
part of the procedure heading. If such a parameter
is referenced only once, it is more efficient if it
is not included in the value part.

3. Array identifiers which are parameters should be specified.

APPENDIX F

Controversial Features of Algol 60

A few features of the language have been subject to more than
one interpretation. Fortunately, the vast majority of programs will not
involve these ambiguities, but for the few that do it will be necessary
to know what decisions the compiler makes. This appendix indicates these
decisions for the more controversial areas.

1. Side effects in function designators. The evaluation
of primaries in expressions is not strictly left to
right allowing for precedence rules. In particular,
the value of a variable in an expression is never
stored in a temporary simply to preserve its value
from change by the evaluation of a function designator
in the expression. Otherwise, the evaluation
does proceed from left to right and according to
precedence rules, including the referencing of
formal parameters and the calculation of the address
of subscripted variables. All function designators
are evaluated in Boolean expressions.

2. Own variables and arrays in procedures. The own
quantities local to the body of a procedure which is
called from more than one point in a program record
the history of the procedure as opposed to a history
of each point of reference. In other words, only one
copy of the own quantities is preserved.

APPENDIX G

Fortran Subprograms in an Algol Program

The standard procedures FORTRAN, FORTRANF, FTN, and FTNF are
used to call compiled Fortran subroutines and functions from within an
Algol program. Each procedure has one parameter which is a call of the
desired Fortran subprogram. The Fortran subprogram must be declared
external as described in Section V.

The use of these procedures simply causes a Fortran calling
sequence to be generated by the compiler. Of course the subprogram
could be written in CODAP as well as Fortran, provided it is designed
to link through a Fortran-type calling sequence.

The procedures are used as follows:

	FORTRAN—generates a Fortran 62 calling sequence for a subroutine

	FORTRANF—generates a Fortran 62 calling sequence for a function

	FTN—generates a Fortran 63 calling sequence for a subroutine

	FTNF—generates a Fortran 63 calling sequence for a function

Each of these procedures is standard, i.e., available without declaration.
FORTRANF and FTNF are used in expressions.

Examples:

x := FTNF (ALPHA(T,A[0,0]))

FORTRAN (SUB(I + J)) .

The following restrictions must be observed: labels, procedures
with no parameters, standard procedure names, and array names cannot be
used as arguments of a call of a Fortran subprogram. However, in the
case of an array, the subscripted variable which is the first element of

the array will satisfy a Fortran subroutine which has an array name as
a formal parameter. The name of the Fortran subprogram cannot be a
formal parameter. Literals must be enclosed in string quotes.

Footnotes

[1]See Appendix A for syntactical definition.

[2]For definition of Fortran format, see Control Data Fortran-62 Reference Manual.

Acknowledgment

The author was greatly assisted in the preparation of this
document by several persons who have contributed labors or advice to
the construction of the compiler. These include N. B. Alexander and
A. A. Grau, also K. A. Wolf of Control Data Corporation, and especially
R. G. Stueland of Control Data Corporation.

ORNL-3460

UC-32—Mathematics and Computers

TID-4500 (23rd ed.)

INTERNAL DISTRIBUTION

	1. Biology Library

	2-4. Central Research Library

	5. Reactor Division Library

	6-7. ORNL--Y-12 Technical Library Document Reference Section

	8-27. Laboratory Records Department

	28. Laboratory Records, ORNL R.C.

	29. R. K. Adams

	30. Nancy Alexander

	31. E. D. Arnold

	32. Don Arnurius

	33. George J. Atta

	34. Susie E. Atta

	35. S. J. Ball

	36. J. E. Bigelow

	37. R. E. Biggers

	38. Craig Brandon

	39. J. C. Bresee

	40-41. L. L. Bumgarner

	42. W. R. Burrus

	43. H. P. Carter

	44. D. K. Cavin

	45. Arline Culkowski

	46. W. Davis, Jr.

	47. H. J. de Bruin

	48. P. B. DeNee

	49. A. C. Downing

	50. L. C. Emerson

	51. Margaret Emmett

	52. R. L. Ferguson

	53. B. R. Fish

	54. P. A. Haas

	55. M. Feliciano

	56. Barbara Ann Flores

	57. T. B. Fowler

	58. R. E. Funderlic (K-25)

	59. D. A. Gardiner

	60. C. D. Griffies

	61. D. A. Griffin

	62. D. G. Gosslee

	63. M. T. Harkrider

	64. M. C. Hill

	65. A. S. Householder

	66. W. H. Jordan

	67. H. W. Joy

	68. F. B. K. Kam

	69. George Kidd

	70. L. J. King

	71. Ann Klein

	72. K. A. Kraus

	73. C. E. Larson

	74. M. E. LaVerne

	75. Elmon Leach

	76. R. P. Leinius

	77-78. M. P. Lietzke

	79. Erlie McDaniel

	80. C. D. Martin

	81. K. O. Martin

	82. Betty F. Maskewitz

	83. R. P. Milford

	84. F. L. Miller, Jr.

	85. R. V. Miskell

	86. S. E. Moore

	87. J. F. Murdock

	88. C. W. Nestor, Jr.

	89. V. K. Pare

	90. Carl E. Parker

	91. S. K. Penny

	92. A. M. Perry

	93. D. C. Ramsey

	94. M. T. Robinson

	95. R. M. Rush

	96. Y. Shima

	97. J. E. Simpkins

	98. M. J. Skinner

	99. C. D. Scott

	100. C. D. Susano

	101. J. A. Swartout

	102. M. E. Tsagaris

	103. D. K. Trubey

	104. J. S. Watson

	105. A. M. Weinberg

	106. M. E. Whatley

	107. C. S. Williams

	108. H. A. Wright

	109. Y-12 Central Files

	110. J. H. Zeigler (K-25)

	111. H. Zeldes

EXTERNAL DISTRIBUTION

	112. T. H. Elrod, Control Data Corporation, Computer Division, 3330 Hillview Avenue, Palo Alto, California

	113. A. A. Grau, Department of Mathematics, Northwestern University, Evanston, Illinois

	114. R. G. Stueland, Control Data Corporation, Computer Division, 3330 Hillview Avenue, Palo Alto, California

	115. K. A. Wolf, Control Data Corporation, Programing Systems, 501 Park Avenue, Minneapolis 15, Minnesota

	116. R. A. Zemlin, Control Data Corporation, Computer Division, 3330 Hillview Avenue, Palo Alto, California

	117. Research and Development Division, AEC, ORO

	118-728. Given distribution as shown in TID-4500 (23rd ed.) under Mathematics and Computers category (75 copies--OTS)

Transcriber’s Notes

	In the HTML version, represented code in a monospaced font, with keywords in boldface as in the Revised Report.

	Corrected a few palpable typos.

	Created an original cover image, using elements from the printed book, for free and unrestricted use with this eBook.

*** END OF THE PROJECT GUTENBERG EBOOK THE OAK RIDGE ALGOL COMPILER FOR THE CONTROL DATA CORPORATION 1604 ***

Updated editions will replace the previous one—the old editions will
be renamed.

Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works

1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:

 This eBook is for the use of anyone anywhere in the United States and most
 other parts of the world at no cost and with almost no restrictions
 whatsoever. You may copy it, give it away or re-use it under the terms
 of the Project Gutenberg License included with this eBook or online
 at www.gutenberg.org. If you
 are not located in the United States, you will have to check the laws
 of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:

 	• You pay a royalty fee of 20% of the gross profits you derive from
 the use of Project Gutenberg™ works calculated using the method
 you already use to calculate your applicable taxes. The fee is owed
 to the owner of the Project Gutenberg™ trademark, but he has
 agreed to donate royalties under this paragraph to the Project
 Gutenberg Literary Archive Foundation. Royalty payments must be paid
 within 60 days following each date on which you prepare (or are
 legally required to prepare) your periodic tax returns. Royalty
 payments should be clearly marked as such and sent to the Project
 Gutenberg Literary Archive Foundation at the address specified in
 Section 4, “Information about donations to the Project Gutenberg
 Literary Archive Foundation.”

 	• You provide a full refund of any money paid by a user who notifies
 you in writing (or by e-mail) within 30 days of receipt that s/he
 does not agree to the terms of the full Project Gutenberg™
 License. You must require such a user to return or destroy all
 copies of the works possessed in a physical medium and discontinue
 all use of and all access to other copies of Project Gutenberg™
 works.

 	• You provide, in accordance with paragraph 1.F.3, a full refund of
 any money paid for a work or a replacement copy, if a defect in the
 electronic work is discovered and reported to you within 90 days of
 receipt of the work.

 	• You comply with all other terms of this agreement for free
 distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.

Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

OEBPS/340823848578094382_cover.jpg

