Title: Traité élémentaire de chimie, tome 1
Author: Antoine Laurent Lavoisier
Release date: July 3, 2016 [eBook #52487]
Language: French
Credits: Produced by Claudine Corbasson and the Online Distributed
Proofreading Team at http://www.pgdp.net (This file was
produced from images generously made available by The
Internet Archive/American Libraries.)
TOME PREMIER.
TRAITÉ
ÉLÉMENTAIRE
DE CHIMIE,
PRÉSENTÉ DANS UN ORDRE NOUVEAU
ET D'APRÈS LES DÉCOUVERTES MODERNES;
Avec Figures:
Par M. Lavoisier, de l'Académie des Sciences, de la Société Royale de Médecine, des Sociétés d'Agriculture de Paris & d'Orléans, de la Société Royale de Londres, de l'Institut de Bologne, de la Société Helvétique de Basle, de celles de Philadelphie, Harlem, Manchester, Padoue, &c.
TOME PREMIER.
A PARIS,
Chez Cuchet, Libraire, rue & hôtel Serpente.
M. DCC. LXXXIX.
Sous le Privilège de l'Académie des Sciences & de la Société Royale de Médecine.
v
Je n'avois pour objet lorsque j'ai entrepris cet ouvrage, que de donner plus de développement au Mémoire que j'ai lu à la séance publique de l'Académie des Sciences du mois d'Avril 1787, sur la nécessité de réformer & de perfectionner la Nomenclature de la Chimie.
C'est en m'occupant de ce travail, que j'ai mieux senti que je ne l'avois encore fait jusqu'alors, l'évidence des principes qui ont été posés par l'Abbé de Condillac dans sa logique, & dans quelques autres de ses ouvrages. Il y établit que nous ne pensons qu'avec le secours des mots; que les langues sont de véritables méthodes analytiques; que l'algèbre la plus simple, la plus exacte & la mieux adaptée à son objet de toutes les manières de s'énoncer, est à-la-fois une langue & une méthode vj analytique; enfin que l'art de raisonner se réduit à une langue bien faite. Et en effet tandis que je croyois ne m'occuper que de Nomenclature, tandis que je n'avois pour objet que de perfectionner le langage de la Chimie, mon ouvrage s'est transformé insensiblement entre mes mains, sans qu'il m'ait été possible de m'en défendre, en un Traité élémentaire de Chimie.
L'impossibilité d'isoler la Nomenclature de la science & la science de la Nomenclature, tient à ce que toute science physique est nécessairement formée de trois choses: la série des faits qui constituent la science; les idées qui les rappellent; les mots qui les expriment. Le mot doit faire naître l'idée; l'idée doit peindre le fait: ce sont trois empreintes d'un même cachet; & comme ce sont les mots qui conservent les idées & qui les transmettent, il en résulte qu'on ne peut perfectionner le langage sans perfectionner la science, ni la science sans le langage, & que quelque certains que fussent vij les faits, quelque justes que fussent les idées qu'ils auroient fait naître, ils ne transmettroient encore que des impressions fausses, si nous n'avions pas des expressions exactes pour les rendre.
La première partie de ce Traité fournira à ceux qui voudront bien le méditer, des preuves fréquentes de ces vérités; mais comme je me suis vu forcé d'y suivre un ordre qui differe essentiellement de celui qui a été adopté jusqu'à présent dans tous les ouvrages de Chimie, je dois compte des motifs qui m'y ont déterminé.
C'est un principe bien constant, & dont la généralité est bien reconnue dans les mathématiques, comme dans tous les genres de connoissances, que nous ne pouvons procéder pour nous instruire, que du connu à l'inconnu. Dans notre première enfance nos idées viennent de nos besoins; la sensation de nos besoins fait naître l'idée des objets propres à les satisfaire, & insensiblement par une suite de sensations, d'observations & d'analyses, il se forme une génération successive viij d'idées toutes liées les unes aux autres, dont un observateur attentif peut même jusqu'à un certain point, retrouver le fil & l'enchaînement, & qui constituent l'ensemble de ce que nous savons.
Lorsque nous nous livrons pour la première fois à l'étude d'une science, nous sommes par rapport à cette science, dans un état très-analogue à celui dans lequel sont les enfans, & la marche que nous avons à suivre est précisément celle que suit la nature dans la formation de leurs idées. De même que dans l'enfant l'idée est un effet de la sensation, que c'est la sensation qui fait naître l'idée; de même aussi pour celui qui commence à se livrer à l'étude des sciences physiques, les idées ne doivent être qu'une conséquence, une suite immédiate d'une expérience ou d'une observation.
Qu'il me soit permis d'ajouter que celui qui entre dans la carrière des sciences, est dans une situation moins avantageuse que l'enfant même qui acquiert ses premières idées; si l'enfant s'est trompé sur ix les effets salutaires ou nuisibles des objets qui l'environnent, la nature lui donne des moyens multipliés de se rectifier. A chaque instant le jugement qu'il a porté se trouve redressé par l'expérience. La privation ou la douleur viennent à la suite d'un jugement faux; la jouissance & le plaisir à la suite d'un jugement juste. On ne tarde pas avec de tels maîtres à devenir conséquent, & on raisonne bientôt juste quand on ne peut raisonner autrement sous peine de privation ou de souffrance.
Il n'en est pas de même dans l'étude & dans la pratique des sciences; les faux jugemens que nous portons, n'intéressent ni notre existence, ni notre bien-être; aucun intérêt physique ne nous oblige de nous rectifier: l'imagination au contraire qui tend à nous porter continuellement au-delà du vrai; l'amour-propre & la confiance en nous-mêmes, qu'il sait si bien nous inspirer, nous sollicitent à tirer des conséquences qui ne dérivent pas immédiatement des faits: en sorte que nous sommes en quelque façon intéressés x à nous séduire nous-mêmes. Il n'est donc pas étonnant que dans les sciences physiques en général, on ait souvent supposé au lieu de conclure; que les suppositions transmises d'âge en âge, soient devenues de plus en plus imposantes par le poids des autorités qu'elles ont acquises, & qu'elles ayent enfin été adoptées & regardées comme des vérités fondamentales, même par de très-bons esprits.
Le seul moyen de prévenir ces écarts, consiste à supprimer ou au moins à simplifier autant qu'il est possible le raisonnement, qui est de nous & qui seul peut nous égarer; à le mettre continuellement à l'épreuve de l'expérience; à ne conserver que les faits qui ne sont que des données de la nature, & qui ne peuvent nous tromper; à ne chercher la vérité que dans l'enchaînement naturel des expériences & des observations, de la même manière que les Mathématiciens parviennent à la solution d'un problême par le simple arrangement des données, & en réduisant le raisonnement à des opérations si simples, xj à des jugemens si courts, qu'ils ne perdent jamais de vue l'évidence qui leur sert de guide.
Convaincu de ces vérités, je me suis imposé la loi de ne procéder jamais que du connu à l'inconnu, de ne déduire aucune conséquence qui ne dérive immédiatement des expériences & des observations, & d'enchaîner les faits & les vérités chimiques dans l'ordre le plus propre à en faciliter l'intelligence aux commençans. Il étoit impossible qu'en m'assujétissant à ce plan, je ne m'écartasse pas des routes ordinaires. C'est en effet un défaut commun à tous les cours & à tous les traités de Chimie, de supposer dès les premiers pas des connoissances que l'Elève ou le Lecteur ne doivent acquérir que dans les leçons subséquentes. On commence dans presque tous par traiter des principes des corps; par expliquer la table des affinités, sans s'appercevoir qu'on est obligé de passer en revue dès le premier jour les principaux phénomènes de la Chimie, de se servir d'expressions qui xij n'ont point été définies, & de supposer la science acquise par ceux auxquels on se propose de l'enseigner. Aussi est-il reconnu qu'on n'apprend que peu de chose dans un premier cours de Chimie; qu'une année suffit à peine pour familiariser l'oreille avec le langage, les yeux avec les appareils, & qu'il est presqu'impossible de former un Chimiste en moins de trois ou quatre ans.
Ces inconvéniens tiennent moins à la nature des choses qu'à la forme de l'enseignement, & c'est ce qui m'a déterminé à donner à la Chimie une marche qui me paroît plus conforme à celle de la nature. Je ne me suis pas dissimulé qu'en voulant éviter un genre de difficultés je me jettois dans un autre, & qu'il me seroit impossible de les surmonter toutes; mais je crois que celles qui restent n'appartiennent point à l'ordre que je me suis prescrit; qu'elles sont plutôt une suite de l'état d'imperfection où est encore la Chimie. Cette science présente des lacunes nombreuses qui interrompent la série xiij des faits, & qui exigent des raccordemens embarrassans & difficiles. Elle n'a pas, comme la Géométrie élémentaire, l'avantage d'être une science complette & dont toutes les parties sont étroitement liées entr'elles; mais en même tems sa marche actuelle est si rapide; les faits s'arrangent d'une manière si heureuse dans la doctrine moderne, que nous pouvons espérer, même de nos jours, de la voir s'approcher beaucoup du degré de perfection qu'elle est susceptible d'atteindre.
Cette loi rigoureuse, dont je n'ai pas dû m'écarter, de ne rien conclure au-delà de ce que les expériences présentent, & de ne jamais suppléer au silence des faits, ne m'a pas permis de comprendre dans cet Ouvrage la partie de la Chimie la plus susceptible, peut-être, de devenir un jour une science exacte: c'est celle qui traite des affinités chimiques ou attractions électives. M. Geoffroy, M. Gellert, M. Bergman, M. Schéele, M. de Morveau, M. Kirwan & beaucoup d'autres ont déjà rassemblé une multitude de faits xiv particuliers, qui n'attendent plus que la place qui doit leur être assignée; mais les données principales manquent, ou du moins celles que nous avons ne sont encore ni assez précises ni assez certaines, pour devenir la base fondamentale sur laquelle doit reposer une partie aussi importante de la Chimie. La science des affinités est d'ailleurs à la Chimie ordinaire ce que la Géométrie transcendante est à la Géométrie élémentaire, & je n'ai pas cru devoir compliquer par d'aussi grandes difficultés des Elémens simples & faciles qui seront, à ce que j'espère, à la portée d'un très-grand nombre de Lecteurs.
Peut-être un sentiment d'amour-propre a-t-il, sans que je m'en rendisse compte à moi-même, donné du poids à ces réflexions. M. de Morveau est au moment de publier l'article Affinité de l'Encyclopédie méthodique, & j'avois bien des motifs pour redouter de travailler en concurrence avec lui.
On ne manquera pas d'être surpris de xv ne point trouver dans un Traité élémentaire de Chimie, un Chapitre sur les parties constituantes & élémentaires des corps: mais je ferai remarquer ici que cette tendance que nous avons à vouloir que tous les corps de la nature ne soient composés que de trois ou quatre élémens, tient à un préjugé qui nous vient originairement des philosophes grecs. L'admission de quatre élémens qui, par la variété de leurs proportions, composent tous les corps que nous connoissons, est une pure hypothèse imaginée long tems avant qu'on eût les premières notions de la Physique expérimentale & de la Chimie. On n'avoit point encore de faits, & l'on formoit des systêmes; & aujourd'hui que nous avons rassemblé des faits, il semble que nous nous efforcions de les repousser, quand ils ne quadrent pas avec nos préjugés; tant il est vrai que le poids de l'autorité de ces pères de la philosophie humaine se fait encore sentir, & qu'elle pesera sans doute encore sur les générations à venir. xvj
Une chose très-remarquable, c'est que tout en enseignant la doctrine des quatre élémens, il n'est aucun Chimiste qui par la force des faits n'ait été conduit à en admettre un plus grand nombre. Les premiers Chimistes qui ont écrit depuis le renouvellement des Lettres, regardoient le soufre & le sel comme des substances élémentaires qui entroient dans la combinaison d'un grand nombre de corps: ils reconnoissoient donc l'existence de six élémens, au lieu de quatre. Beccher admettoit trois terres, & c'étoit de leur combinaison & de la différence des proportions que résultoit, suivant lui, la différence qui existe entre les substances métalliques. Stahl a modifié ce systême: tous les Chimistes qui lui ont succédé se sont permis d'y faire des changemens, même d'en imaginer d'autres, mais tous se sont laissé entraîner à l'esprit de leur siècle, qui se contentoit d'assertions sans preuves, ou du moins qui regardoit souvent comme telles de très-légères probabilités. xvij
Tout ce qu'on peut dire sur le nombre & sur la nature des élémens se borne suivant moi à des discussions purement métaphysiques: ce sont des problêmes indéterminés qu'on se propose de résoudre, qui sont susceptibles d'une infinité de solutions, mais dont il est très-probable qu'aucune en particulier n'est d'accord avec la nature. Je me contenterai donc de dire que si par le nom d'élémens, nous entendons désigner les molécules simples & indivisibles qui composent les corps, il est probable que nous ne les connoissons pas: que si au contraire nous attachons au nom d'élémens ou de principes des corps l'idée du dernier terme auquel parvient l'analyse, toutes les substances que nous n'avons encore pu décomposer par aucun moyen, sont pour nous des élémens; non pas que nous puissions assurer que ces corps que nous regardons comme simples, ne soient pas eux-mêmes composés de deux ou même d'un plus grand nombre de principes, mais puisque ces principes ne se séparent xviij jamais, ou plutôt puisque nous n'avons aucun moyen de les séparer, ils agissent à notre égard à la manière des corps simples, & nous ne devons les supposer composés qu'au moment où l'expérience & l'observation nous en auront fourni la preuve.
Ces réflexions sur la marche des idées, s'appliquent naturellement au choix des mots qui doivent les exprimer. Guidé par le travail que nous avons fait en commun en 1787, M. de Morveau, M. Berthollet, M. de Fourcroy & moi sur la Nomenclature de la Chimie; j'ai désigné autant que je l'ai pu les substances simples par des mots simples, & ce sont elles que j'ai été obligé de nommer les premières. On peut se rappeller que nous nous sommes efforcés de conserver à toutes ces substances les noms qu'elles portent dans la société: nous ne nous sommes permis de les changer que dans deux cas; le premier à l'égard des substances nouvellement découvertes & qui n'avoient point encore été nommées, ou xix du moins pour celles qui ne l'avoient été que depuis peu de tems, & dont les noms encore nouveaux n'avoient point été sanctionnés par une adoption générale: le second lorsque les noms adoptés soit par les anciens, soit par les modernes, nous ont paru entraîner des idées évidemment fausses; lorsqu'ils pouvoient faire confondre la substance qu'ils désignoient avec d'autres, qui sont douées de propriétés différentes ou opposées. Nous n'avons fait alors aucune difficulté de leur en substituer d'autres que nous avons empruntés principalement du Grec: nous avons fait en sorte qu'ils exprimassent la propriété la plus générale, la plus caractéristique de la substance; & nous y avons trouvé l'avantage de soulager la mémoire des commençans qui retiennent difficilement un mot nouveau lorsqu'il est absolument vuide de sens, & de les accoutumer de bonne heure à n'admettre aucun mot sans y attacher une idée.
A l'égard des corps qui sont formés de la réunion de plusieurs substances simples, xx nous les avons désignés par des noms composés comme le sont les substances elles-mêmes; mais comme le nombre des combinaisons binaires est déjà très-considérable, nous serions tombés dans le désordre & dans la confusion, si nous ne nous fussions pas attachés à former des classes. Le nom de classes & de genres est dans l'ordre naturel des idées, celui qui rappelle la propriété commune à un grand nombre d'individus: celui d'espèces au contraire, est celui qui ramène l'idée aux propriétés particulières à quelques individus.
Ces distinctions ne sont pas faites comme on pourroit le penser, seulement par la métaphysique; elles le sont par la nature. Un enfant, dit l'Abbé de Condillac, appelle du nom d'arbre le premier arbre que nous lui montrons. Un second arbre qu'il voit ensuite lui rappelle la même idée; il lui donne le même nom; de même à un troisième, à un quatrième, & voilà le mot d'arbre donné d'abord à un individu, qui devient pour lui un nom xxj de classe ou de genre, une idée abstraite qui comprend tous les arbres en général. Mais lorsque nous lui aurons fait remarquer que tous les arbres ne servent pas aux mêmes usages, que tous ne portent pas les mêmes fruits, il apprendra bientôt à les distinguer par des noms spécifiques & particuliers. Cette logique est celle de toutes les sciences; elle s'applique naturellement à la Chimie.
Les acides, par exemple, sont composés de deux substances de l'ordre de celles que nous regardons comme simples, l'une qui constitue l'acidité & qui est commune à tous; c'est de cette substance que doit être emprunté le nom de classe ou de genre: l'autre qui est propre à chaque acide, qui les différencie les uns des autres, & c'est de cette substance que doit être emprunté le nom spécifique.
Mais dans la plupart des acides, les deux principes constituans, le principe acidifiant & le principe acidifié, peuvent exister dans des proportions différentes, qui constituent toutes des points d'équilibre ou de xxij saturation; c'est ce qu'on observe dans l'acide sulfurique & dans l'acide sulfureux; nous avons exprimé ces deux états du même acide en faisant varier la terminaison du nom spécifique.
Les substances métalliques qui ont été exposées à l'action réunie de l'air & du feu, perdent leur éclat métallique, augmentent de poids & prennent une apparence terreuse; elles sont dans cet état composées, comme les acides, d'un principe qui est commun à toutes, & d'un principe particulier propre à chacune: nous avons dû également les classer sous un nom générique dérivé du principe commun, & le nom que nous avons adopté est celui d'oxide; nous les avons ensuite différenciées les unes des autres par le nom particulier du métal auquel elles appartiennent.
Les substances combustibles qui, dans les acides & dans les oxides métalliques, sont un principe spécifique & particulier, sont susceptibles de devenir à leur tour un principe commun à un grand nombre xxiij de substances. Les combinaisons sulfureuses ont été long-temps les seules connues en ce genre: on sait aujourd'hui, d'après les expériences de MM. Vandermonde, Monge & Berthollet, que le charbon se combine avec le fer, & peut-être avec plusieurs autres métaux; qu'il en résulte, suivant les proportions, de l'acier, de la plombagine, &c. On sait également, d'après les expériences de M. Pelletier, que le phosphore se combine avec un grand nombre de substances métalliques. Nous avons encore rassemblé ces différentes combinaisons sous des noms génériques dérivés de celui de la substance commune, avec une terminaison qui rappelle cette analogie, & nous les avons specifiées par un autre nom dérivé de leur substance propre.
La nomenclature des êtres composés de trois substances simples, présentoit un peu plus de difficultés en raison de leur nombre, & sur-tout parce qu'on ne peut exprimer la nature de leurs principes constituans, sans employer des noms plus composés. xxiv Nous avons eu à considérer dans les corps qui forment cette classe, tels que les sels neutres, par exemple, 1o. le principe acidifiant qui est commun à tous; 2o. le principe acidifiable qui constitue leur acide propre; 3o. la base saline, terreuse, ou métallique qui détermine l'espèce particulière de sel. Nous avons emprunté le nom de chaque classe de sels de celui du principe acidifiable, commun à tous les individus de la classe; nous avons ensuite distingué chaque espèce par le nom de la base saline, terreuse, ou métallique, qui lui est particulière.
Un sel, quoique composé des trois mêmes principes, peut être cependant dans des états très-différens, par la seule différence de leur proportion. La nomenclature que nous avons adoptée auroit été défectueuse si elle n'eût pas exprimé ces différens états, & nous y sommes principalement parvenus par des changemens de terminaison que nous avons rendu uniformes pour un même état des différens sels. xxv
Enfin nous sommes arrivés au point que par le mot seul, on reconnoît sur le champ quelle est la substance combustible qui entre dans la combinaison dont il est question; si cette substance combustible est combinée avec le principe acidifiant, & dans quelle proportion; dans quel état est cet acide; à quelle base il est uni; s'il y a saturation exacte; si c'est l'acide, ou bien la base qui est en excès.
On conçoit qu'il n'a pas été possible de remplir ces différentes vues sans blesser quelquefois des usages reçus, & sans adopter des dénominations qui ont paru dures & barbares dans le premier moment; mais nous avons observé que l'oreille s'accoutumoit promptement aux mots nouveaux, sur-tout lorsqu'ils se trouvoient liés à un systême général & raisonné. Les noms, au surplus, qui s'employoient avant nous, tels que ceux de poudre d'algaroth, de sel alembroth, de pompholix, d'eau phagédénique, de turbith minéral, de colcothar, & beaucoup d'autres, ne sont ni moins durs, ni moins extraordinaires; xxvj il faut une grande habitude & beaucoup de mémoire pour se rappeller les substances qu'ils expriment, & sur-tout pour reconnoître à quel genre de combinaison ils appartiennent. Les noms d'huile de tartre par défaillance, d'huile de vitriol, de beurre d'arsenic & d'antimoine, de fleurs de zinc, &c. sont plus impropres encore, parce qu'ils font naître des idées fausses; parce qu'il n'existe, à proprement parler, dans le règne minéral, & sur-tout dans le règne métallique, ni beurres, ni huiles, ni fleurs; enfin parce que les substances qu'on désigne sous ces noms trompeurs, sont de violens poisons.
On nous a reproché lorsque nous avons publié notre Essai de Nomenclature chimique, d'avoir changé la langue que nos maîtres ont parlée, qu'ils ont illustrée & qu'ils nous ont transmise; mais on a oublié que c'étoient Bergman & Macquer qui avoient eux-mêmes sollicité cette réforme. Le savant Professeur d'Upsal, M. Bergman, écrivoit à M. de Morveau, dans les derniers temps de sa vie: ne faites xxvij grace à aucune dénomination impropre: ceux qui savent déjà entendront toujours; ceux qui ne savent pas encore, entendront plus tôt.
Peut-être seroit-on plus fondé à me reprocher de n'avoir donné dans l'Ouvrage que je présente au Public, aucun historique de l'opinion de ceux qui m'ont précédé; de n'avoir présenté que la mienne sans discuter celle des autres. Il en est résulté que je n'ai pas toujours rendu à mes confrères, encore moins aux Chimistes étrangers, la justice qu'il étoit dans mon intention de leur rendre: mais je prie le Lecteur de considérer que si l'on accumuloit les citations dans un ouvrage élémentaire, si l'on s'y livroit à de longues discussions sur l'historique de la science & sur les travaux de ceux qui l'ont professée, on perdroit de vue le véritable objet qu'on s'est proposé, & l'on formeroit un ouvrage d'une lecture tout-à-fait fastidieuse pour les commençans. Ce n'est ni l'histoire de la science, ni celle de l'esprit humain qu'on doit faire dans xxviij un traité élémentaire: on ne doit y chercher que la facilité, la clarté; on en doit soigneusement écarter tout ce qui pourroit tendre à détourner l'attention. C'est un chemin qu'il faut continuellement applanir, dans lequel il ne faut laisser subsister aucun obstacle qui puisse apporter le moindre retard. Les sciences présentent déjà par elles-mêmes assez de difficultés, sans en appeller encore qui leur sont étrangères. Les Chimistes s'appercevront facilement d'ailleurs que je n'ai presque fait usage dans la première partie que des expériences qui me sont propres. Si quelquefois il a pu m'échapper d'adopter, sans les citer, les expériences ou les opinions de M. Berthollet, de M. de Fourcroy, de M. de la Place, de M. Monge, & de ceux en général qui ont adopté les mêmes principes que moi, c'est que l'habitude de vivre ensemble, de nous communiquer nos idées, nos observations, notre manière de voir, a établi entre nous une sorte de communauté d'opinions dans laquelle il nous est souvent difficile à nous-mêmes xxix de distinguer ce qui nous appartient plus particulièrement.
Tout ce que je viens d'exposer sur l'ordre que je me suis efforcé de suivre dans la marche des preuves & des idées, n'est applicable qu'à la première partie de cet ouvrage: c'est elle seule qui contient l'ensemble de la doctrine que j'ai adoptée; c'est à elle seule que j'ai cherché à donner la forme véritablement élémentaire.
La seconde partie est principalement formée des tableaux de la nomenclature des sels neutres. J'y ai joint seulement des explications très-sommaires, dont l'objet est de faire connoître les procédés les plus simples pour obtenir les différentes espèces d'acides connus: cette seconde partie ne contient rien qui me soit propre; elle ne présente qu'un abrégé très-concis de résultats extraits de différens ouvrages.
Enfin j'ai donné dans la troisième partie une description détaillée de toutes les opérations relatives à la Chimie moderne. Un ouvrage de ce genre paroissoit desiré xxx depuis long-temps, & je crois qu'il sera de quelqu'utilité. En général la pratique des expériences, & sur-tout des expériences modernes, n'est point assez répandue; & peut-être si, dans les différens Mémoires que j'ai donnés à l'Académie, je me fusse étendu davantage sur le détail des manipulations, me serois-je fait plus facilement entendre, & la science auroit-elle fait des progrès plus rapides. L'ordre des matières dans cette troisième partie m'a paru à-peu-près arbitraire, & je me suis seulement attaché à classer dans chacun des huit chapitres qui la composent, les opérations qui ont ensemble le plus d'analogie. On s'appercevra aisément que cette troisième partie n'a pu être extraite d'aucun ouvrage, & que dans les articles principaux, je n'ai pu être aidé que de ma propre expérience.
Je terminerai ce Discours préliminaire en transcrivant littéralement quelques passages de M. l'Abbé de Condillac, qui me paroissent peindre avec beaucoup de vérité l'état où étoit la Chimie dans des xxxj temps très-rapprochés du nôtre[1]. Ces passages qui n'ont point été faits exprès, n'en acquerront que plus de force, si l'application en paroît juste.
«Au lieu d'observer les choses que nous voulions connoître, nous avons voulu les imaginer. De supposition fausse en supposition fausse, nous nous sommes égarés parmi une multitude d'erreurs; & ces erreurs étant devenues des préjugés, nous les avons prises par cette raison pour des principes: nous nous sommes donc égarés de plus en plus. Alors nous n'avons su raisonner que d'après les mauvaises habitudes que nous avions contractées. L'art d'abuser des mots sans les bien entendre a été pour nous l'art de raisonner........ Quand les choses sont parvenues à ce point, quand les erreurs se sont ainsi accumulées, il n'y a qu'un moyen de remettre l'ordre dans la faculté de penser; c'est d'oublier tout ce que nous avons appris, xxxij de reprendre nos idées à leur origine, d'en suivre la génération, & de refaire, comme dit Bacon, l'entendement humain.
»Ce moyen est d'autant plus difficile, qu'on se croit plus instruit. Aussi des Ouvrages où les sciences seroient traitées avec une grande netteté, une grande précision, un grand ordre, ne seroient-ils pas à la portée de tout le monde. Ceux qui n'auroient rien étudié les entendroient mieux que ceux qui ont fait de grandes études, & sur-tout que ceux qui ont écrit beaucoup sur les sciences».
M. l'Abbé de Condillac ajoute à la fin du chapitre V:
«Mais enfin les sciences ont fait des progrès, parce que les Philosophes ont mieux observé, & qu'ils ont mis dans leur langage la précision & l'exactitude qu'ils avoient mises dans leurs observations; ils ont corrigé la langue, & l'on a mieux raisonné».
xxxiij
Discours préliminaire, | page v |
PREMIERE PARTIE. De la formation des fluides aériformes & de leur décomposition; de la combustion des corps simples & de la formation des acides. |
|
Chap. I. Des combinaisons du calorique & de la formation des fluides élastiques aériformes, | 1 |
Chap. II. Vues générales sur la formation & la constitution de l'atmosphère de la terre, | 28 |
Chap. III. Analyse de l'air de l'atmosphère: sa résolution en deux fluides élastiques, l'un respirable, l'autre non respirable, | 33 |
xxxivChap. IV. Nomenclature des différentes parties constitutives de l'air de l'atmosphère, | 51 |
Chap. V. De la décomposition du gaz oxigène par le soufre, le phosphore & le charbon, & de la formation des acides en général, | 57 |
Chap. VI. De la nomenclature des Acides en général, & particulièrement de ceux tirés du salpêtre & du sel marin, | 70 |
Chap. VII. De la décomposition du Gaz oxygène par les métaux, & de la formation des Oxides métalliques, | 82 |
Chap. VIII. Du principe radical de l'Eau, & de sa décomposition par le charbon & par le fer, | 87 |
Chap. IX. De la quantité de Calorique qui se dégage des différentes espèces de combustion, | 103 |
Combustion du Phosphore, | 107 |
Combustion du Charbon, | 108 |
Combustion du Gaz hydrogène, | 109 |
Formation de l'Acide nitrique, | ibid. |
Combustion de la Bougie, | 112 |
Combustion de l'Huile d'olive, | 113 |
Chap. X. De la combinaison des Substances combustibles les unes avec les autres, | 116 |
xxxvChap. XI. Considérations sur les Oxides & les Acides à plusieurs bases, & sur la composition des matières végétales & animales, | 123 |
Chap. XII. De la décomposition des matières végétales & animales par l'action du feu, | 132 |
Chap. XIII. De la décomposition des Oxides végétaux par la fermentation vineuse, | 139 |
Chap. XIV. De la fermentation putride, | 153 |
Chap. XV. De la fermentation acéteuse, | 159 |
Chap. XVI. De la formation des Sels neutres, & des différentes bases qui entrent dans leur composition, | 162 |
De la Potasse, | 164 |
De la Soude, | 169 |
De l'Ammoniaque, | 170 |
De la Chaux, de la Magnésie, de la Baryte & de l'Alumine, | 172 |
Des Substances métalliques, | 173 |
Chap. XVII. Suite des réflexions sur les bases salifiables, & sur la formation des Sels neutres, | 176 |
SECONDE PARTIE. De la Combinaison des Acides avec les bases salifiables, & de la Formation des Sels neutres. |
|
xxxvjAvertissement, | 189 |
Tableau des Substances simples, | 192 |
Observations, | 193 |
Tableau des Radicaux ou bases oxidables & acidifiables, composés, qui entrent dans les combinaisons à la manière des substances simples, | 196 |
Observations, | 197 |
Observations sur les combinaisons de la lumière & du calorique avec différentes substances, | 200 |
Tableau des combinaisons binaires de l'oxygène avec les substances métalliques & non métalliques oxidables & acidifiables, | 203 |
Observations, | ibid. |
Tableau des combinaisons de l'Oxygène avec les radicaux composés, | 208 |
Observations, | 209 |
xxxvijTableau des combinaisons binaires de l'Azote avec les substances simples, | 212 |
Observations, | 213 |
Tableau des combinaisons binaires de l'Hydrogène avec les substances simples, | 216 |
Observations, | 217 |
Tableau des combinaisons binaires du Soufre non oxygéné avec les substances simples, | 220 |
Observations, | 221 |
Tableau des combinaisons binaires du Phosphore non oxygéné avec les substances simples, | 222 |
Observations, | 223 |
Tableau des combinaisons binaires du Charbon non oxygéné avec les substances simples, | 226 |
Observations, | 227 |
Observations sur les radicaux muriatique, fluorique & boracique, & sur leurs combinaisons, | 229 |
Observations sur la combinaison des métaux les uns avec les autres, | 230 |
Tableau des combinaisons de l'Azote ou Radical nitrique, porté à l'état d'acide nitreux par la combinaison d'une suffisante quantité d'oxygène, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 231 |
xxxviijTableau des combinaisons de l'Azote complettement saturé d'oxigène, & porté à l'état d'acide nitrique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 232 |
Observations, | 233 |
Tableau des combinaisons de l'Acide sulfurique ou Soufre oxygéné avec les bases salifiables dans l'ordre de leur affinité avec cet acide, par la voie humide, | 238 |
Observations, | 240 |
Tableau des combinaisons de l'Acide sulfureux avec les bases salifiables dans l'ordre de leur affinité avec cet acide, | 243 |
Observations, | 244 |
Tableau des combinaisons du Phosphore qui a reçu un premier degré d'oxygénation, & qui a été porté à l'état d'Acide phosphoreux, avec les bases salifiables dans l'ordre de leur affinité avec cet acide, | 246 |
Tableau des combinaisons du Phosphore saturé d'oxygène, ou Acide phosphorique avec les substances salifiables dans l'ordre de leur affinité avec cet acide, | 247 |
Observations, | 248 |
xxxixTableau des combinaisons du Radical carbonique oxygéné, ou Acide carbonique avec les bases salifiables dans l'ordre de leur affinité avec cet acide, | 250 |
Observations, | 251 |
Tableau des combinaisons du Radical muriatique oxygéné, ou Acide muriatique avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 253 |
Tableau des combinaisons de l'Acide muriatique oxigéné avec les différentes bases salifiables avec lesquelles il est susceptible de s'unir, | 254 |
Observations, | 255 |
Tableau des combinaisons de l'Acide nitro-muriatique avec les bases salifiables, rangées par ordre alphabétique, attendu que les affinités de cet acide ne sont point assez connues, | 258 |
Observations, | 259 |
Tableau des combinaisons du Radical fluorique oxigéné, ou Acide fluorique avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 261 |
Observations, | 262 |
xlTableau des combinaisons du Radical boracique oxigéné, avec les différentes bases salifiables auxquelles il est susceptible de s'unir dans l'ordre de leur affinité avec cet acide, | 264 |
Observations, | 265 |
Tableau des combinaisons de l'Arsenic oxygéné, ou Acide arsenique avec les bases salifiables dans l'ordre de leur affinité avec cet acide, | 268 |
Observations, | 269 |
Tableau des combinaisons du Molybdène oxygéné, ou Acide molybdique avec les bases salifiables, par ordre alphabétique, | 272 |
Observations, | 273 |
Tableau des combinaisons du Tungstène oxygéné, ou Acide tungstique avec les bases salifiables, | 274 |
Observations, | 275 |
Tableau des combinaisons du Radical tartareux oxygéné, ou Acide tartareux avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 277 |
Observations, | 278 |
Tableau des combinaisons du Radical malique oxygéné, ou Acide malique avec les bases salifiables par ordre alphabétique, | 281 |
Observations, | 282 |
xljTableau des combinaisons du Radical citrique oxygéné, ou Acide citrique avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 284 |
Observations, | 285 |
Tableau des combinaisons du Radical pyro-ligneux oxygéné, ou Acide pyro-ligneux avec les bases salifiables dans l'ordre de leur affinité avec cet acide, | 286 |
Observations, | 287 |
Tableau des combinaisons du Radical pyro-tartareux oxygéné, ou Acide pyro-tartareux avec les différentes bases salifiables dans l'ordre de leur affinité avec cet acide, | 288 |
Observations, | 289 |
Tableau des combinaisons du Radical pyro-muqueux oxygéné, ou Acide pyro-muqueux avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 290 |
Observations, | 291 |
Tableau des combinaisons du Radical oxalique oxygéné, ou Acide oxalique avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 292 |
Observations, | 293 |
xlijTableau des combinaisons du Radical acéteux oxygéné, par un premier degré d'oxigénation avec les bases salifiables, suivant l'ordre de leur affinité avec cet acide, | 295 |
Observations, | 295 |
Tableau des combinaisons du Radical acéteux oxygéné par un second degré d'oxygénation, ou Acide acétique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 298 |
Observations, | 299 |
Tableau des combinaisons du Radical succinique oxygéné, ou Acide succinique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 300 |
Observations, | 301 |
Tableau des combinaisons du Radical benzoïque oxygéné, ou Acide benzoïque, avec les différentes bases salifiables, rangées par ordre alphabétique, | 302 |
Observations, | 303 |
Tableau des combinaisons du Radical camphorique oxygéné, ou Acide camphorique, avec les bases salifiables, par ordre alphabétique, | 304 |
Observations, | 305 |
xliijTableau des combinaisons du Radical gallique oxygéné, ou Acide gallique, avec les bases salifiables rangées par ordre alphabétique, | 306 |
Observations, | 307 |
Tableau des combinaisons du Radical lactique oxygéné, ou Acide lactique, avec les bases salifiables, par ordre alphabétique, | 308 |
Observations, | 309 |
Tableau des combinaisons du Radical saccholactique oxygéné, ou Acide saccholactique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 310 |
Observations, | 311 |
Tableau des combinaisons du Radical formique oxygéné, ou Acide formique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 312 |
Observations, | 313 |
Tableau des combinaisons du Radical bombique oxygéné, ou Acide bombique, avec les substances salifiables, par ordre alphabétique, | 314 |
Observations, | 315 |
xlivTableau des combinaisons du Radical sébacique oxygéné, ou Acide sébacique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 316 |
Observations, | 317 |
Tableau des combinaisons du Radical lithique oxygéné, ou Acide lithique, avec les bases salifiables, rangées par ordre alphabétique, | 318 |
Observations, | 319 |
Tableau des combinaisons du Radical prussique oxygéné, ou Acide prussique, avec les bases salifiables, dans l'ordre de leur affinité avec cet acide, | 320 |
Observations, | 322 |
TRAITÉ
ÉLÉMENTAIRE
DE CHIMIE.
PREMIERE PARTIE.
De la formation des fluides aériformes & de leur décomposition; de la combustion des corps simples & de la formation des acides.
Des combinaisons du calorique & de la formation des fluides élastiques aériformes.
C'est un phénomène constant dans la nature & dont la généralité a été bien établie par Boerhaave, que lorsqu'on échauffe un corps 2 quelconque, solide ou fluide, il augmente de dimension dans tous les sens. Les faits sur lesquels on s'est fondé pour restreindre la généralité de ce principe, ne présentent que des résultats illusoires, ou du moins dans lesquels se compliquent des circonstances étrangères qui en imposent: mais lorsqu'on est parvenu à séparer les effets, & à les rapporter chacun à la cause à laquelle ils appartiennent, on s'apperçoit que l'écartement des molécules par la chaleur, est une loi générale & constante de la Nature.
Si après avoir échauffé jusqu'à un certain point un corps solide, & en avoir ainsi écarté de plus en plus toutes les molécules, on le laisse refroidir, ces mêmes molécules se rapprochent les unes des autres dans la même proportion, suivant laquelle elles avoient été écartées; le corps repasse par les mêmes degrés d'extension qu'il avoit parcourus; & si on le ramène à la même température qu'il avoit en commençant l'expérience, il reprend sensiblement le volume qu'il avoit d'abord. Mais comme nous sommes bien éloignés de pouvoir obtenir un degré de froid absolu, comme nous ne connoissons aucun degré de refroidissement que nous ne puissions supposer susceptible d'être augmenté, il en résulte que nous n'avons 3 pas encore pu parvenir à rapprocher le plus qu'il est possible, les molécules d'aucun corps, & que par conséquent les molécules d'aucun corps ne se touchent dans la Nature; conclusion très-singulière & à laquelle cependant il est impossible de se refuser.
On conçoit que les molécules des corps étant ainsi continuellement sollicitées par la chaleur à s'écarter les unes des autres, elles n'auroient aucune liaison entr'elles, & qu'il n'y auroit aucun corps solide, si elles n'étoient retenues par une autre force qui tendît à les réunir, & pour ainsi dire à les enchaîner; & cette force, quelle qu'en soit la cause, a été nommée attraction.
Ainsi les molécules des corps peuvent être considérées comme obéissant à deux forces, l'une répulsive, l'autre attractive, entre lesquelles elles sont en équilibre. Tant que la dernière de ces forces, l'attraction, est victorieuse, le corps demeure dans l'état solide; si au contraire l'attraction est la plus foible, si la chaleur a tellement écarté les unes des autres les molécules du corps, qu'elles soient hors de la sphère d'activité de leur attraction, elles perdent l'adhérence qu'elles avoient entr'elles & le corps cesse d'être un solide.
L'eau nous présente continuellement un 4 exemple de ces phénomènes: au-dessous de zéro du thermomètre françois, elle est dans l'état solide, & elle porte le nom de glace; au-dessus de ce même terme, ses molécules cessent d'être retenues par leur attraction réciproque, & elle devient ce qu'on appelle un liquide: enfin, au-dessus de 80 degrés, ses molécules obéissent à la répulsion occasionnée par la chaleur; l'eau prend l'état de vapeur ou de gaz, & elle se transforme en un fluide aériforme.
On en peut dire autant de tous les corps de la Nature; ils sont ou solides, ou liquides, ou dans l'état élastique & aériforme, suivant le rapport qui existe entre la force attractive de leurs molécules & la force répulsive de la chaleur, ou, ce qui revient au même, suivant le degré de chaleur auquel ils sont exposés.
Il est difficile de concevoir ces phénomènes sans admettre qu'ils sont l'effet d'une substance réelle & matérielle, d'un fluide très-subtil qui s'insinue à travers les molécules de tous les corps & qui les écarte: & en supposant même que l'existence de ce fluide fût une hypothèse, on verra dans la suite qu'elle explique d'une manière très-heureuse les phénomènes de la Nature.
Cette substance, quelle qu'elle soit, étant la cause de la chaleur; ou en d'autres termes 5 la sensation que nous appellons chaleur, étant l'effet de l'accumulation de cette substance, on ne peut pas, dans un langage rigoureux, la désigner par le nom de chaleur; parce que la même dénomination ne peut pas exprimer la cause & l'effet. C'est ce qui m'avoit déterminé, dans le Mémoire que j'ai publié en 1777, (Recueil de l'Académie, page 420,) à la désigner sous le nom de fluide igné & de matière de la chaleur. Depuis, dans le travail que nous avons fait en commun M. de Morveau, M. Berthollet, M. de Fourcroy & moi, sur la réforme du langage chimique, nous avons cru devoir bannir ces périphrases qui allongent le discours, qui le rendent plus traînant, moins précis, moins clair, & qui souvent même ne comportent pas des idées suffisamment justes. Nous avons en conséquence désigné la cause de la chaleur, le fluide éminemment élastique qui la produit, par le nom de calorique. Indépendamment de ce que cette expression remplit notre objet dans le systême que nous avons adopté, elle a encore un autre avantage, c'est de pouvoir s'adapter à toutes sortes d'opinions; puisque rigoureusement parlant, nous ne sommes pas même obligés de supposer que le calorique soit une matière réelle: il suffit, comme on le sentira mieux par la lecture de ce qui 6 va suivre, que ce soit une cause répulsive quelconque qui écarte les molécules de la matière, & on peut ainsi en envisager les effets d'une manière abstraite & mathématique.
La lumière est-elle une modification du calorique, ou bien le calorique est-il une modification de la lumière? C'est sur quoi il est impossible de prononcer dans l'état actuel de nos connoissances. Ce qu'il y a de certain, c'est que dans un systême où l'on s'est fait une loi de n'admettre que des faits, & où l'on évite autant qu'il est possible de rien supposer au-delà de ce qu'ils présentent, on doit provisoirement désigner par des noms différens, ce qui produit des effets différens. Nous distinguerons donc la lumière du calorique; mais nous n'en conviendrons pas moins que la lumière & le calorique ont des qualités qui leur sont communes, & que dans quelques circonstances ils se combinent à peu près de la même manière, & produisent une partie des mêmes effets.
Ce que je viens de dire suffiroit déjà pour bien déterminer l'idée qu'on doit attacher au mot de calorique. Mais il me reste une tâche plus difficile à remplir, c'est de donner des idées justes de la manière dont le calorique agit sur les corps. Puisque cette matière subtile pénètre à travers les pores de toutes les 7 substances que nous connoissons, puisqu'il n'existe pas de vases à travers lesquels elle ne s'échappe, & qu'il n'en est par conséquent aucun qui puisse la contenir sans perte; on ne peut en connoître les propriétés que par des effets qui, la plupart, sont fugitifs & difficiles à saisir. C'est sur les choses qu'on ne peut ni voir, ni palper, qu'il est sur-tout important de se tenir en garde contre les écarts de l'imagination, qui tend toujours à s'élancer au-delà du vrai, & qui a bien de la peine à se renfermer dans le cercle étroit que les faits lui circonscrivent.
Nous venons de voir que le même corps devenoit solide ou liquide, ou fluide aériforme, suivant la quantité de calorique dont il étoit pénétré, ou, pour parler d'une manière plus rigoureuse, suivant que la force répulsive du calorique étoit égale à l'attraction de ses molécules, ou qu'elle étoit plus forte, ou plus foible qu'elle.
Mais s'il n'existoit que ces deux forces, les corps ne seroient liquides qu'à un degré indivisible du thermomètre, & ils passeroient brusquement de l'état de solide à celui de fluide élastique aériforme. Ainsi l'eau, par exemple, à l'instant même où elle cesse d'être glace, commenceroit à bouillir; elle se transformeroit en un fluide aériforme, & ses molécules s'écarteroient 8 indéfiniment dans l'espace: s'il n'en est pas ainsi, c'est qu'une troisième force, la pression de l'atmosphère, met obstacle à cet écartement, & c'est par cette raison que l'eau demeure dans l'état fluide depuis zéro jusqu'à 80 degrés du thermomètre françois; la quantité de calorique qu'elle reçoit dans cet intervalle est insuffisante pour vaincre l'effort occasionné par la pression de l'atmosphère.
On voit donc que, sans la pression de l'atmosphère, nous n'aurions pas de liquide constant; nous ne verrions les corps dans cet état qu'au moment précis où ils se fondent: la moindre augmentation de chaleur qu'ils recevroient ensuite, en écarteroit sur le champ les parties & les disperseroit. Il y a plus, sans la pression de l'atmosphère, nous n'aurions pas, à proprement parler, de fluides aériformes. En effet, au moment où la force de l'attraction seroit vaincue par la force répulsive du calorique, les molécules s'éloigneroient indéfiniment, sans que rien limitât leur écartement, si ce n'est leur propre pesanteur qui les rassembleroit pour former une atmosphère.
De simples réflexions sur les expériences les plus connues, suffisent pour faire appercevoir la vérité de ce que je viens d'énoncer. Elle se trouve d'ailleurs confirmée d'une manière évidente 9 par l'expérience qui suit, dont j'ai déjà donné le détail à l'Académie en 1777. (Voyez Mém. page 426.)
On remplit d'éther sulfurique[2] un petit vase de verre étroit, A, planche VII, fig. 17, monté sur son pied P. Ce vase ne doit pas avoir plus de douze à quinze lignes de diamètre & environ deux pouces de hauteur. On couvre ce vase avec une vessie humectée, qu'on assujettit autour du col du vase par un grand nombre de tours de gros fil bien serrés: pour plus grande sûreté, on remet une seconde vessie par-dessus la première, & on l'assujettit de la même manière. Ce vase doit être tellement rempli d'éther qu'il ne reste aucune portion d'air entre la liqueur & la vessie; on le place ensuite sous le récipient BCD, d'une machine pneumatique dont le haut B doit être garni d'une boëte à cuir, traversée par une tige EF, dont l'extrêmité F se termine en une pointe ou lame très-aigue: à ce même récipient doit être adapté un baromètre GH.
10
Lorsque tout est ainsi disposé, on fait le vuide sous le récipient; puis en faisant descendre la tige pointue EF, on crève la vessie. Aussi-tôt l'éther commence à bouillir avec une étonnante rapidité, il se vaporise & se transforme en un fluide élastique aériforme, qui occupe tout le récipient. Si la quantité d'éther est assez considérable pour que, la vaporisation finie, il en reste encore quelques goutes dans la fiole, le fluide élastique qui s'est produit est susceptible de soutenir le baromètre adapté à la machine pneumatique à huit ou dix pouces environ pendant l'hiver, & à vingt & vingt-cinq pendant les chaleurs de l'été. On peut, pour rendre cette expérience plus complette, introduire un petit thermomètre dans le vase A qui contient l'éther, & on s'apperçoit qu'il descend considérablement pendant tout le tems que dure la vaporisation.
On ne fait autre chose, dans cette expérience, que de supprimer le poids de l'atmosphère, qui, dans l'état ordinaire, pèse sur la surface de l'éther, & les effets qui en résultent prouvent évidemment deux choses: la première, qu'au degré de température dans lequel nous vivons, l'éther seroit constamment dans l'état d'un fluide aériforme, si la pression de l'atmosphère n'y mettoit obstacle. La seconde, que 11 ce passage de l'état liquide à l'état aériforme, est accompagné d'un refroidissement considérable, par la raison que pendant la vaporisation, une partie du calorique, qui étoit dans un état de liberté, ou au moins d'équilibre dans les corps environnans, se combine avec l'éther pour le porter à l'état de fluide aériforme.
La même expérience réussit avec tous les fluides évaporables, tels que l'esprit-de-vin ou alkool, l'eau & le mercure même; avec cette différence cependant que l'atmosphère d'alkool qui se forme sous le récipient, ne peut soutenir le baromètre adapté à la machine pneumatique, en hiver, qu'à un pouce au-dessus de son niveau, & à quatre ou cinq en été; que l'eau ne le soutient qu'à quelques lignes, & le mercure à quelques fractions de ligne. Il y a donc moins de fluide vaporisé lorsqu'on opère avec l'alkool, que lorsqu'on opère avec l'éther; moins encore avec l'eau, & sur-tout avec le mercure: par conséquent moins de calorique employé & moins de refroidissement; ce qui cadre parfaitement avec le résultat des expériences.
Un autre genre d'expérience prouve encore d'une manière aussi évidente que l'état aériforme est une modification des corps & qu'elle 12 dépend du degré de température & de pression qu'ils éprouvent.
Nous avons fait voir, M. de la Place & moi, dans un Mémoire que nous avons lu à l'Académie en 1777, mais qui n'a pas été imprimé, que lorsque l'éther étoit soumis à une pression de 28 pouces de mercure, c'est-à-dire, à une pression égale à celle de l'atmosphère, il entroit en ébullition à 32 ou 33 degrés du thermomètre de mercure. M. de Luc, qui a fait des recherches analogues sur l'esprit-de-vin, a reconnu qu'il entroit en ébullition à 67 degrés. Enfin, tout le monde sait que l'eau commence à bouillir à 80 degrés. L'ébullition n'étant autre chose que la vaporisation d'un fluide, ou le moment de son passage de l'état liquide à celui d'un fluide élastique aériforme, il étoit évident qu'en tenant constamment de l'éther à une température supérieure à 33 degrés & au degré habituel de pression de l'atmosphère, on devoit l'obtenir dans l'état d'un fluide aériforme; que la même chose devoit arriver à l'esprit-de-vin au-dessus de 67 degrés, & à l'eau au-dessus de 80, c'est ce qui s'est trouvé parfaitement confirmé par les expériences suivantes[3].
13
J'ai rempli avec de l'eau à 35 ou 36 degrés du thermomètre un grand vase ABCD, planche VII, figure 15; je le suppose transparent pour mieux faire sentir ce qui se passe dans son intérieur; on peut encore tenir les mains assez long-temps dans de l'eau à ce degré sans s'incommoder. J'y ai plongé des bouteilles à gouleau renversé F, G, qui s'y sont emplies, après quoi je les ai retournées de manière qu'elles eussent leur gouleau en en-bas, & appliqué contre le fond du vase.
Les choses étant ainsi disposées, j'ai introduit de l'éther sulfurique dans un très-petit matras, dont le col abc étoit doublement recourbé; j'ai plongé ce matras dans l'eau du vase ABCD, & j'ai engagé, comme on le voit représenté dans la figure 15, l'extrêmité de son col abc, dans le gouleau d'une des bouteilles F: dès que l'éther a commencé à ressentir l'impression de la chaleur, il est entré en ébullition; & le calorique qui s'est combiné avec lui, l'a transformé en un fluide élastique aériforme, dont j'ai rempli successivement plusieurs bouteilles F, G.
Ce n'est point ici le lieu d'examiner la nature & les propriétés de ce fluide aériforme, qui est très-inflammable; mais sans anticiper sur des connoissances que je ne dois pas supposer 14 au lecteur, j'observerai, en me fixant sur l'objet qui nous occupe dans ce moment, que l'éther, d'après cette expérience, est tout près de ne pouvoir exister dans la planette que nous habitons que dans l'état aériforme; que si la pesanteur de notre atmosphère n'équivaloit qu'à une colonne de 20 ou 24 pouces de mercure au lieu de 28, nous ne pourrions obtenir l'éther dans l'état liquide, au moins pendant l'été; que la formation de l'éther seroit par conséquent impossible sur les montagnes un peu élevées, & qu'il se convertiroit en gaz à mesure qu'il seroit formé, à moins qu'on n'employât des ballons très-forts pour le condenser & qu'on ne joignît le refroidissement à la pression. Enfin, que le degré de la chaleur du sang étant à peu près celui où l'éther passe de l'état liquide à l'état aériforme, il doit se vaporiser dans les premières voies, & qu'il est très-vraisemblable que les propriétés de ce médicament tiennent à cet effet, pour ainsi dire, mécanique.
Ces expériences réussissent encore mieux avec l'éther nitreux, parce qu'il se vaporise à un degré de chaleur moindre que l'éther sulfurique. A l'égard de l'alkool ou esprit-de-vin, l'expérience pour l'obtenir dans l'état aériforme, présente un peu plus de difficulté, parce que ce fluide n'étant susceptible de se vaporiser qu'à 15 67 degrés du thermomètre de Réaumur, il faut que l'eau du bain soit entretenue presque bouillante, & qu'à ce degré il n'est plus possible d'y plonger les mains.
Il étoit évident que la même chose devoit arriver à l'eau; que ce fluide devoit également se transformer en gaz en l'exposant à un degré de chaleur supérieur à celui qui le fait bouillir; mais quoique convaincus de cette vérité, nous avons cru cependant, M. de la Place & moi, devoir la confirmer par une expérience directe, & en voici le résultat. Nous avons rempli de mercure une jarre de verre A, planche VII, figure 5, dont l'ouverture étoit retournée en en-bas, & nous avons passé dessous une soucoupe B, également remplie de mercure. Nous avons introduit dans cette jarre environ deux gros d'eau, qui ont gagné le haut CD de la jarre, & qui se sont rangés au-dessus de la surface du mercure; puis nous avons plongé le tout dans une grande chaudière de fer EFGH, placée sur un fourneau GHIK: cette chaudière étoit remplie d'eau salée en ébullition, dont la température excédoit 85 degrés du thermomètre; on sait, en effet, que l'eau chargée de sels est susceptible de prendre un degré de chaleur supérieur de plusieurs degrés à celui 16 de l'eau bouillante. Dès que les 2 gros d'eau, placés dans la partie supérieure CD de la jarre ou tube, ont eu atteint la température de 80 degrés ou environ, ils sont entrés en ébullition, & au lieu d'occuper, comme ils le faisoient, le petit espace ACD, ils se sont convertis en un fluide aériforme, qui l'a remplie toute entière: le mercure est même descendu un peu au-dessous de son niveau, & la jarre auroit été renversée si elle n'avoit été très-épaisse, par conséquent fort pesante, & si elle n'avoit d'ailleurs été assujettie à la soucoupe par du fil de fer. Si-tôt qu'on retiroit la jarre du bain d'eau salée, l'eau se condensoit & le mercure remontoit; mais elle reprenoit l'état aériforme quelques instans après que l'appareil avoit été replongé.
Voilà donc un certain nombre de substances qui se transforment en fluides aériformes à des degrés de chaleur très-voisins de ceux dans lesquels nous vivons. Nous verrons bientôt qu'il en est d'autres, tels que l'acide marin ou muriatique, l'alkali volatil ou ammoniaque, l'acide carbonique ou air fixe, l'acide sulfureux, &c. qui demeurent constamment dans l'état aériforme, au degré habituel de chaleur & de pression de l'atmosphère.
Tous ces faits particuliers, dont il me seroit 17 facile de multiplier les exemples, m'autorisent à faire un principe général de ce que j'ai déjà annoncé plus haut, que presque tous les corps de la Nature sont susceptibles d'exister dans trois états différens; dans l'état de solidité, dans l'état de liquidité, & dans l'état aériforme, & que ces trois états d'un même corps dépendent de la quantité de calorique qui lui est combinée. Je désignerai dorénavant ces fluides aériformes sous le nom générique de gaz; & je dirai en conséquence que, dans toute espèce de gaz, on doit distinguer le calorique, qui fait en quelque façon l'office de dissolvant, & la substance qui est combinée avec lui & qui forme sa base.
C'est à ces bases des différens gaz qui sont encore peu connues, que nous avons été obligés de donner des noms. Je les indiquerai dans le Chapitre IV de cet Ouvrage, après que j'aurai rendu compte de quelques phénomènes qui accompagnent l'échauffement & le refroidissement des corps, & que j'aurai donné des idées plus précises sur la constitution de notre atmosphère.
Nous avons vu que les molécules de tous les corps de la Nature étoient dans un état d'équilibre entre l'attraction, qui tend à les rapprocher & à les réunir, & les efforts du calorique 18 qui tend à les écarter. Ainsi non-seulement le calorique environne de toutes parts les corps, mais encore il remplit les intervalles que leurs molécules laissent entr'elles. On se formera une idée de ces dispositions, si l'on se figure un vase rempli de petites balles de plomb & dans lequel on verse une substance en poudre très-fine, telle que du sablon: on conçoit que cette substance se répandra uniformément dans les intervalles que les balles laissent entr'elles & les remplira. Les balles, dans cet exemple, sont au sablon ce que les molécules des corps sont au calorique; avec cette différence que, dans l'exemple cité, les balles se touchent, au lieu que les molécules des corps ne se touchent pas, & qu'elles sont toujours maintenues à une petite distance les unes des autres par l'effort du calorique.
Si à des balles dont la figure est ronde, on substituoit des hexaèdres, des octaèdres, ou des corps d'une figure régulière quelconque & d'une égale solidité, la capacité des vuides qu'ils laisseroient entr'eux ne seroit plus la même & l'on ne pourroit plus y loger une aussi grande quantité de sablon. La même chose arrive à l'égard de tous les corps de la Nature; les intervalles que leurs molécules laissent entr'elles ne sont pas tous d'une égale capacité: cette capacité 19 dépend de la figure de ces molécules, de leur grosseur, & de la distance les unes des autres à laquelle elles sont maintenues, suivant le rapport qui existe entre leur force d'attraction, & la force répulsive qu'exerce le calorique.
C'est dans ce sens qu'on doit entendre cette expression: capacité des corps pour contenir la matière de la chaleur; expression fort juste, introduite par les Physiciens Anglois, qui ont eu les premiers des notions exactes à cet égard. Un exemple de ce qui se passe dans l'eau & quelques réflexions sur la manière dont ce fluide mouille & pénètre les corps, rendra ceci plus intelligible: on ne sauroit trop s'aider dans les choses abstraites de comparaisons sensibles.
Si l'on plonge dans l'eau des morceaux de différens bois, égaux en volume, d'un pied cube, par exemple; ce fluide s'introduira peu à peu dans leurs pores; ils se gonfleront & augmenteront de poids: mais chaque espèce de bois admettra dans ses pores une quantité d'eau différente; les plus légers & les plus poreux en logeront davantage; ceux qui seront compactes & serrés, n'en laisseront pénétrer qu'une très-petite quantité: enfin, la proportion d'eau qu'ils recevront dépendra encore de la nature des molécules constituantes du bois, de l'affinité plus ou moins grande qu'elles auront 20 avec l'eau, & les bois très-résineux, par exemple, quoique très-poreux, en admettront très-peu. On pourra donc dire que les différentes espèces de bois ont une capacité différente pour recevoir de l'eau; on pourra même connoître, par l'augmentation de poids, la quantité qu'ils en auront absorbée; mais comme on ignorera la quantité d'eau qu'ils contenoient avant leur immersion, il ne sera pas possible de connoître la quantité absolue qu'ils en contiendront en en sortant.
Les mêmes circonstances ont lieu à l'égard des corps qui sont plongés dans le calorique; en observant cependant que l'eau est un fluide incompressible, tandis que le calorique est doué d'une grande élasticité, ce qui signifie en d'autres termes que les molécules du calorique ont une grande tendance à s'écarter les unes des autres, quand une force quelconque les a obligées de se rapprocher, & l'on conçoit que cette circonstance doit apporter des changemens très-notables dans les résultats.
Les choses amenées à ce point de clarté & de simplicité, il me sera aisé de faire entendre quelles sont les idées qu'on doit attacher à ces expressions; calorique libre, & calorique combiné, quantité spécifique de calorique contenue dans les différens corps, capacité pour 21 contenir le calorique, chaleur latente, chaleur sensible, toutes expressions qui ne sont point synonimes; mais qui, d'après ce que je viens d'exposer, ont un sens strict & déterminé. C'est ce sens que je vais chercher encore à fixer par quelques définitions.
Le calorique libre est celui qui n'est engagé dans aucune combinaison. Comme nous vivons au milieu d'un systême de corps avec lesquels le calorique a de l'adhérence, il en résulte que nous n'obtenons jamais ce principe dans l'état de liberté absolue.
Le calorique combiné est celui qui est enchaîné dans les corps par la force d'affinité ou d'attraction, & qui constitue une partie de leur substance, même de leur solidité.
On entend par cette expression calorique spécifique des corps, la quantité de calorique respectivement nécessaire pour élever d'un même nombre de degrés la température de plusieurs corps égaux en poids. Cette quantité de calorique dépend de la distance des molécules des corps, de leur adhérence plus ou moins grande; & c'est cette distance, ou plutôt l'espace qui en résulte, qu'on a nommé, comme je l'ai déjà observé, capacité pour contenir le calorique.
La chaleur, considérée comme sensation, ou en d'autres termes, la chaleur sensible, 22 n'est que l'effet produit sur nos organes par le passage du calorique qui se dégage des corps environnans. En général nous n'éprouvons de sensation que par un mouvement quelconque, & l'on pourroit poser comme un axiome, point de mouvement, point de sensation. Ce principe général s'applique naturellement au sentiment du froid & du chaud: lorsque nous touchons un corps froid, le calorique qui tend à se mettre en équilibre dans tous les corps, passe de notre main dans le corps que nous touchons, & nous éprouvons la sensation du froid. L'effet contraire arrive lorsque nous touchons un corps chaud; le calorique passe du corps à notre main, & nous avons la sensation de la chaleur. Si le corps & la main sont du même degré de température, ou à peu près, nous n'éprouvons aucune sensation, ni de froid, ni de chaud, parce qu'alors il n'y a point de mouvement, point de transport de calorique, & qu'encore une fois il n'y a pas de sensation sans un mouvement qui l'occasionne.
Lorsque le thermomètre monte, c'est une preuve qu'il y a du calorique libre qui se répand dans les corps environnans: le thermomètre, qui est au nombre de ces corps, en reçoit sa part, en raison de sa masse, & de la capacité qu'il a lui-même pour contenir le 23 calorique. Le changement qui arrive dans le thermomètre, n'annonce donc qu'un déplacement de calorique, qu'un changement arrivé à un systême de corps dont il fait partie; il n'indique tout au plus que la portion de calorique qu'il a reçue, mais il ne mesure pas la quantité totale qui a été dégagée, déplacée ou absorbée. Le moyen le plus simple & le plus exact pour remplir ce dernier objet est celui imaginé par M. de la Place, & qui est décrit dans les Mémoires de l'Académie, année 1780, page 364. On en trouve aussi une explication sommaire à la fin de cet Ouvrage. Il consiste à placer le corps, ou la combinaison d'où se dégage le calorique, au milieu d'une sphère creuse de glace: la quantité de glace fondue est une expression exacte de la quantité de calorique qui s'est dégagée. On peut, à l'aide de l'appareil que nous avons fait construire d'après cette idée, connoître, non pas comme on l'a prétendu, la capacité qu'ont les corps pour contenir le calorique, mais le rapport des augmentations ou diminutions que reçoivent ces capacités, par des nombres déterminés de degrés du thermomètre. Il est facile, avec le même appareil, & par diverses combinaisons d'expériences, de connoître la quantité de calorique nécessaire pour convertir les 24 corps solides en liquides & ceux-ci en fluides aériformes, & réciproquement, ce que les fluides élastiques abandonnent de calorique quand ils redeviennent liquides, & ceux-ci quand ils redeviennent solides. On pourra donc parvenir un jour, lorsque les expériences auront été assez multipliées, à déterminer le rapport de calorique qui constitue chaque espèce de gaz. Je rendrai compte, dans un Chapitre particulier, des principaux résultats que nous avons obtenus en ce genre.
Il me reste, en finissant cet article, à dire un mot sur la cause de l'élasticité des gaz & des fluides en vapeurs. Il n'est pas difficile d'appercevoir que cette élasticité tient à celle du calorique, qui paroît être le corps éminemment élastique de la nature. Rien de plus simple que de concevoir qu'un corps devient élastique en se combinant avec un autre qui est lui-même doué de cette propriété. Mais il faut convenir que c'est expliquer l'élasticité par l'élasticité; qu'on ne fait par-là que reculer la difficulté, & qu'il reste toujours à expliquer ce que c'est que l'élasticité, & pourquoi le calorique est élastique. En considérant l'élasticité dans un sens abstrait, elle n'est autre chose que la propriété qu'ont les molécules d'un corps de s'éloigner les unes des autres, lorsqu'on les a forcées de 25 s'approcher. Cette tendance qu'ont les molécules du calorique à s'écarter, a lieu même à de fort grandes distances. On en sera convaincu si l'on considère que l'air est susceptible d'un grand degré de compression; ce qui suppose que ses molécules sont déjà très-éloignées les unes des autres: car la possibilité de se rapprocher, suppose une distance au moins égale à la quantité du rapprochement. Or ces molécules de l'air qui sont déjà très-éloignées entr'elles tendent encore à s'éloigner davantage: en effet, si on fait le vuide de Boyle dans un très-vaste récipient, les dernières portions d'air qui y restent se répandent uniformément dans toute la capacité du vase, quelque grand qu'il soit, elles le remplissent en entier & pressent contre ses parois: or cet effet ne peut s'expliquer qu'en supposant que les molécules font un effort en tout sens pour s'écarter, & l'on ne connoît point la distance à laquelle ce phénomène s'arrête.
Il y a donc une véritable répulsion entre les molécules des fluides élastiques; ou du moins les choses se passent de la même manière que si cette répulsion avoit lieu, & on auroit quelque droit d'en conclure que les molécules du calorique se repoussent les unes les autres. Cette force de répulsion une fois admise, les 26 explications relatives à la formation des fluides aériformes ou gaz deviendroient fort simples: mais il faut convenir en même temps qu'une force répulsive, entre des molécules très-petites, qui agit à de grandes distances est difficile à concevoir.
Il paroîtroit peut-être plus naturel de supposer que les molécules du calorique s'attirent plus entr'elles que ne le font les molécules des corps, & qu'elles ne les écartent que pour obéir à la force d'attraction qui les oblige de se réunir. Il se passe quelque chose d'analogue à ce phénomène, quand on plonge une éponge sèche dans de l'eau: elle se gonfle; ses molécules s'écartent les unes des autres, & l'eau remplit tous les intervalles. Il est clair que cette éponge en se gonflant a acquis plus de capacité pour contenir de l'eau, qu'elle n'en avoit auparavant. Mais peut-on dire que l'introduction de l'eau entre ses molécules leur ait communiqué une force répulsive qui tende à les écarter les unes des autres? Non, sans doute: il n'y a au contraire que des forces attractives qui agissent dans ce cas, & ces forces sont, 1o. la pesanteur de l'eau & l'action qu'elle exerce en tout sens, comme tous les fluides; 2o. la force attractive des molécules de l'eau les unes à l'égard des autres; 3o. la force 27 attractive des molécules de l'éponge entr'elles; enfin, l'attraction réciproque des molécules de l'eau & de celles de l'éponge. Il est aisé de concevoir que c'est de l'intensité & du rapport de toutes ces forces, que dépend l'explication du phénomène. Il est probable que l'écartement des molécules des corps par le calorique, tient de même à une combinaison de différentes forces attractives, & c'est le résultat de ces forces que nous cherchons à exprimer d'une manière plus concise & plus conforme à l'état d'imperfection de nos connoissances, lorsque nous disons que le calorique communique une force répulsive aux molécules des corps.
28
Vues générales sur la formation & la constitution de l'atmosphère de la terre.
Les considérations que je viens de présenter sur la formation des fluides élastiques aériformes ou gaz, jettent un grand jour sur la manière dont se sont formées, dans l'origine des choses, les atmosphères des planètes, & notamment celle de la terre. On conçoit que cette dernière doit être le résultat & le mélange 1o. de toutes les substances susceptibles de se vaporiser ou plutôt de rester dans l'état aériforme, au degré de température dans lequel nous vivons, & à une pression égale au poids d'une colonne de mercure de 28 pouces de hauteur; 2o. de toutes les substances fluides ou concrètes susceptibles de se dissoudre dans cet assemblage de différens gaz.
Pour mieux fixer nos idées relativement à cette matière sur laquelle on n'a point encore assez réfléchi, considérons un moment ce qui arriveroit aux différentes substances qui composent le globe, si la température en étoit brusquement changée. Supposons, par exemple, que la terre se trouvât transportée tout à coup dans une région 29 beaucoup plus chaude du systême solaire; dans la région de mercure, par exemple, où la chaleur habituelle est probablement fort supérieure à celle de l'eau bouillante: bientôt l'eau, tous les fluides susceptibles de se vaporiser à des degrés voisins de l'eau bouillante, & le mercure lui-même, entreroient en expansion; ils se transformeroient en fluides aériformes ou gaz, qui deviendroient parties de l'atmosphère. Ces nouvelles espèces d'air se mêleroient avec celles déjà existantes, & il en résulteroit des décompositions réciproques, des combinaisons nouvelles, jusqu'à ce que les différentes affinités se trouvant satisfaites, les principes qui composeroient ces différens airs ou gaz, arrivassent à un état de repos. Mais une considération qui ne doit pas échapper, c'est que cette vaporisation même auroit des bornes: en effet à mesure que la quantité des fluides élastiques augmenteroit, la pesanteur de l'atmosphère s'accroîtroit en proportion: or, puisqu'une pression quelconque est un obstacle à la vaporisation, puisque les fluides les plus évaporables peuvent résister, sans se vaporiser, à une chaleur très-forte, quand on y oppose une pression proportionnellement plus forte encore; enfin, puisque l'eau elle-même & tous les liquides, peuvent éprouver dans la machine de 30 Papin, une chaleur capable de les faire rougir, on conçoit que la nouvelle atmosphère arriveroit à un degré de pesanteur tel, que l'eau qui n'auroit pas été vaporisée jusqu'alors, cesseroit de bouillir, & resteroit dans l'état de liquidité; en sorte que même dans cette supposition, comme dans toute autre de même genre, la pesanteur de l'atmosphère seroit limitée & ne pourroit pas excéder un certain terme. On pourroit porter ces réflexions beaucoup plus loin, & examiner ce qui arriveroit aux pierres, aux sels, & à la plus grande partie des substances fusibles qui composent le globe: on conçoit qu'elles se ramolliroient, qu'elles entreroient en fusion & formeroient des fluides; mais ces dernières considérations sortent de mon objet, & je me hâte d'y rentrer.
Par un effet contraire, si la terre se trouvoit tout à coup placée dans des régions très-froides, l'eau qui forme aujourd'hui nos fleuves & nos mers, & probablement le plus grand nombre des fluides que nous connoissons, se transformeroit en montagnes solides, en rochers très-durs, d'abord diaphanes, homogènes & blancs comme le cristal de roche; mais qui, avec le temps, se mêlant avec des substances de différente nature, deviendroient des pierres opaques diversement colorées. 31
L'air, dans cette supposition, ou au moins une partie des substances aériformes qui le composent, cesseroient sans doute d'exister dans l'état de vapeurs élastiques, faute d'un degré de chaleur suffisant; elles reviendroient donc à l'état de liquidité, & il en résulteroit de nouveaux liquides dont nous n'avons aucune idée.
Ces deux suppositions extrêmes font voir clairement 1o. que solidité, liquidité, élasticité, sont trois états différens de la même matière, trois modifications particulières, par lesquelles presque toutes les substances peuvent successivement passer, & qui dépendent uniquement du degré de chaleur auquel elles sont exposées, c'est-à-dire, de la quantité de calorique dont elles sont pénétrées; 2o. qu'il est très-probable que l'air est un fluide naturellement en vapeurs, ou pour mieux dire, que notre atmosphère est un composé de tous les fluides susceptibles d'exister dans un état de vapeurs & d'élasticité constante, au degré habituel de chaleur & de pression que nous éprouvons; 3o. qu'il ne seroit pas par conséquent impossible qu'il se rencontrât dans notre atmosphère des substances extrêmement compactes, des métaux même, & qu'une substance métallique, par exemple, qui seroit un peu plus volatile que le mercure, seroit dans ce cas. 32
On sait que parmi les fluides que nous connoissons, les uns, comme l'eau & l'alkool ou esprit-de-vin, sont susceptibles de se mêler les uns avec les autres dans toutes proportions: les autres, au contraire, comme le mercure, l'eau & l'huile, ne peuvent contracter que des adhérences momentanées, ils se séparent les uns des autres lorsqu'ils ont été mêlangés, & se rangent en raison de leur gravité spécifique. La même chose doit, ou au moins peut arriver dans l'atmosphère: il est possible, il est même probable qu'il s'est formé dans l'origine & qu'il se forme tous les jours des gaz qui ne sont que difficilement miscibles à l'air de l'atmosphère & qui s'en séparent; si ces gaz sont plus légers, ils doivent se rassembler dans les régions élevées, & y former des couches qui nagent sur l'air atmosphérique. Les phénomènes qui accompagnent les météores ignés me portent à croire qu'il existe ainsi dans le haut de l'atmosphère une couche d'un fluide inflammable, & que c'est au point de contact de ces deux couches d'air que s'opèrent les phénomènes de l'aurore boréale & des autres météores ignés. Je me propose de développer mes idées à cet égard dans un Mémoire particulier.
33
Analyse de l'air de l'atmosphère: sa résolution en deux fluides élastiques, l'un respirable, l'autre non-respirable.
Telle est donc à priori la constitution de notre atmosphère; elle doit être formée de la réunion de toutes les substances susceptibles de demeurer dans l'état aériforme au degré habituel de température & de pression que nous éprouvons. Ces fluides forment une masse de nature à peu près homogène, depuis la surface de la terre jusqu'à la plus grande hauteur à laquelle on soit encore parvenu, & dont la densité décroît en raison inverse des poids dont elle est chargée; mais comme je l'ai dit, il est possible que cette première couche soit recouverte d'une ou de plusieurs autres de fluides très-différens.
Il nous reste maintenant à déterminer quel est le nombre & quelle est la nature des fluides élastiques qui composent cette couche inférieure que nous habitons; & c'est sur quoi l'expérience va nous éclairer. La Chimie moderne a fait à cet égard un grand pas; & les détails dans lesquels je vais entrer feront connoître 34 que l'air de l'atmosphère est peut-être de toutes les substances de cet ordre, celle dont l'analyse est la plus exactement & la plus rigoureusement faite.
La Chimie présente en général deux moyens pour déterminer la nature des parties constituantes d'un corps, la composition & la décomposition. Lors, par exemple, que l'on a combiné ensemble de l'eau & de l'esprit-de-vin ou alkool, & que par le résultat de ce mêlange on a formé l'espèce de liqueur qui porte le nom d'eau-de-vie dans le commerce, on a droit d'en conclure que l'eau-de-vie est un composé d'alkool & d'eau: mais on peut arriver à la même conclusion par voie de décomposition, & en général on ne doit être pleinement satisfait en Chimie qu'autant qu'on a pu réunir ces deux genres de preuves.
On a cet avantage dans l'analyse de l'air de l'atmosphère; on peut le décomposer & le recomposer; & je me bornerai à rapporter ici les expériences les plus concluantes qui aient été faites à cet égard. Il n'en est presque aucunes qui ne me soient devenues propres, soit parce que je les ai faites le premier, soit parce que je les ai répétées sous un point de vue nouveau, sous celui d'analyser l'air de l'atmosphère.
35
J'ai pris, planche II, figure 14, un matras A de 36 pouces cubiques environ de capacité dont le col BCDE étoit très-long, & avoit six à sept lignes de grosseur intérieurement. Je l'ai courbé, comme on le voit représenté, planche IV, figure 2, de manière qu'il pût être placé dans un fourneau MMNN, tandis que l'extrêmité E de son col iroit s'engager sous la cloche FG, placée dans un bain de mercure RRSS. J'ai introduit dans ce matras quatre onces de mercure très-pur, puis en suçant avec un siphon que j'ai introduit sous la cloche FG, j'ai élevé le mercure jusqu'en LL: j'ai marqué soigneusement cette hauteur avec une bande de papier collé, & j'ai observé exactement le baromètre & le thermomètre.
Les choses ainsi préparées, j'ai allumé du feu dans le fourneau MMNN, & je l'ai entretenu presque continuellement pendant douze jours, de manière que le mercure fut échauffé presqu'au degré nécessaire pour le faire bouillir.
Il ne s'est rien passé de remarquable pendant tout le premier jour: le mercure quoique non bouillant, étoit dans un état d'évaporation continuelle; il tapissoit l'intérieur des vaisseaux de goutelettes, d'abord très-fines, qui alloient ensuite en augmentant, & qui, lorsqu'elles avoient acquis un certain volume, retomboient 36 d'elles-mêmes au fond du vase, & se réunissoient au reste du mercure. Le second jour, j'ai commencé à voir nager sur la surface du mercure de petites parcelles rouges, qui, pendant quatre ou cinq jours ont augmenté en nombre & en volume, après quoi elles ont cessé de grossir & sont restées absolument dans le même état. Au bout de douze jours voyant que la calcination du mercure ne faisoit plus aucun progrès, j'ai éteint le feu & j'ai laissé refroidir les vaisseaux. Le volume de l'air contenu tant dans le matras que dans son col & sous la partie vuide de la cloche, réduit à une pression de 28 pouces & à 10 degrés du thermomètre, étoit avant l'opération de 50 pouces cubiques environ. Lorsque l'opération a été finie, ce même volume à pression & à température égale, ne s'est plus trouvé que de 42 à 43 pouces: il y avoit eu par conséquent une diminution de volume d'un sixième environ. D'un autre côté ayant rassemblé soigneusement les parcelles rouges qui s'étoient formées, & les ayant séparées autant qu'il étoit possible du mercure coulant dont elles étoient baignées, leur poids s'est trouvé de 45 grains.
J'ai été obligé de répéter plusieurs fois cette calcination du mercure en vaisseaux clos, parce qu'il est difficile, dans une seule & même expérience, 37 de conserver l'air dans lequel on a opéré, & les molécules rouges ou chaux de mercure qui s'est formé. Il m'arrivera souvent de confondre ainsi, dans un même récit, le résultat de deux ou trois expériences de même genre.
L'air qui restoit après cette opération & qui avoit été réduit aux cinq sixièmes de son volume, par la calcination du mercure, n'étoit plus propre à la respiration ni à la combustion; car les animaux qu'on y introduisoit y périssoient en peu d'instans, & les lumières s'y éteignoient sur le champ, comme si on les eût plongées dans de l'eau.
D'un autre côté, j'ai pris les 45 grains de matière rouge qui s'étoit formée pendant l'opération; je les ai introduits dans une très-petite cornue de verre à laquelle étoit adapté un appareil propre à recevoir les produits liquides & aériformes qui pourroient se séparer: ayant allumé du feu dans le fourneau, j'ai observé qu'à mesure que la matière rouge étoit échauffée sa couleur augmentoit d'intensité. Lorsqu'ensuite la cornue a approché de l'incandescence, la matière rouge a commencé à perdre peu à peu de son volume, & en quelques minutes elle a entièrement disparu; en même temps il s'est condensé dans le petit récipient 41 grains 1/2 de mercure coulant, & il a passé sous la cloche 38 7 à 8 pouces cubiques d'un fluide élastique beaucoup plus propre que l'air de l'atmosphère à entretenir la combustion & la respiration des animaux.
Ayant fait passer une portion de cet air dans un tube de verre d'un pouce de diamètre & y ayant plongé une bougie, elle y répandoit un éclat éblouissant; le charbon au lieu de s'y consommer paisiblement comme dans l'air ordinaire, y brûloit avec flamme & une sorte de décrépitation, à la manière du phosphore, & avec une vivacité de lumière que les yeux avoient peine à supporter. Cet air que nous avons découvert presque en même temps, M. Priestley, M. Schéele & moi, a été nommé par le premier, air déphlogistiqué; par le second, air empiréal. Je lui avois d'abord donné le nom d'air éminemment respirable: depuis, on y a substitué celui d'air vital. Nous verrons bientôt ce qu'on doit penser de ces dénominations.
En réfléchissant sur les circonstances de cette expérience, on voit que le mercure en se calcinant absorbe la partie salubre & respirable de l'air, ou, pour parler d'une manière plus rigoureuse, la base de cette partie respirable; que la portion d'air qui reste est une espèce de mofète, incapable d'entretenir la combustion 39 & la respiration: l'air de l'atmosphère est donc composé de deux fluides élastiques de nature différente & pour ainsi dire opposée.
Une preuve de cette importante vérité, c'est qu'en recombinant les deux fluides élastiques qu'on a ainsi obtenus séparément, c'est-à-dire, les 42 pouces cubiques de mofète, ou air non respirable, & les 8 pouces cubiques d'air respirable, on reforme de l'air, en tout semblable à celui de l'atmosphère, & qui est propre à peu près au même degré, à la combustion, à la calcination des métaux, & à la respiration des animaux.
Quoique cette expérience fournisse un moyen infiniment simple d'obtenir séparément les deux principaux fluides élastiques qui entrent dans la composition de notre atmosphère, elle ne nous donne pas des idées exactes sur la proportion de ces deux fluides. L'affinité du mercure pour la partie respirable de l'air, ou plutôt pour sa base, n'est pas assez grande pour qu'elle puisse vaincre entièrement les obstacles qui s'opposent à cette combinaison. Ces obstacles sont l'adhérence des deux fluides constitutifs de l'air de l'atmosphère & la force d'affinité qui unit la base de l'air vital au calorique: en conséquence la calcination du mercure finie, ou au moins portée aussi loin qu'elle 40 peut l'être, dans une quantité d'air déterminée, il reste encore un peu d'air respirable combiné avec la mofète, & le mercure ne peut en séparer cette dernière portion. Je ferai voir dans la suite que la proportion d'air respirable & d'air non respirable qui entre dans la composition de l'air atmosphérique est dans le rapport de 27 à 73, au moins dans les climats que nous habitons: je discuterai en même temps les causes d'incertitude qui existent encore sur l'exactitude de cette proportion.
Puisqu'il y a décomposition de l'air dans la calcination du mercure, puisqu'il y a fixation & combinaison de la base de la partie respirable avec le mercure, il résulte des principes que j'ai précédemment exposés, qu'il doit y avoir dégagement de calorique & de lumière; & l'on ne sauroit douter que ce dégagement n'ait lieu en effet: mais deux causes empêchent qu'il ne soit rendu sensible dans l'expérience dont je viens de rendre compte. La première, parce que la calcination durant pendant plusieurs jours, le dégagement de chaleur & de lumière, réparti sur un aussi long intervalle de temps, est infiniment foible pour chaque instant en particulier: la seconde, parce que l'opération se faisant dans un fourneau & à l'aide du feu, la chaleur occasionnée par la calcination 41 se confond avec celle du fourneau. Je pourrois ajouter que la partie respirable de l'air, ou plutôt sa base, en se combinant avec le mercure, n'abandonne pas la totalité du calorique qui lui étoit uni, qu'une partie demeure engagée dans la nouvelle combinaison; mais cette discussion & les preuves que je serois obligé de rapporter, ne seroient pas à leur place ici.
Il est au surplus aisé de rendre sensible le dégagement de la chaleur & de la lumière en opérant d'une manière plus prompte la décomposition de l'air. Le fer, qui a beaucoup plus d'affinité que le mercure avec la base de la partie respirable de l'air, en fournit un moyen. Tout le monde connoît aujourd'hui la belle expérience de M. Ingenhouz sur la combustion du fer. On prend un bout de fil de fer très-fin BC, planche IV, figure 17, tourné en spirale, on fixe l'une de ses extrêmités B, dans un bouchon de liége A, destiné à boucher la bouteille DEFG. On attache à l'autre extrêmité de ce fil de fer, un petit morceau d'amadoue C. Les choses ainsi disposées, on emplit avec de l'air dépouillé de sa partie non respirable, la bouteille DEFG. On allume l'amadoue C, puis on l'introduit promptement, ainsi que le fil de fer BC dans la bouteille, & on la bouche 42 comme on le voit dans la figure que je viens de citer.
Aussi-tôt que l'amadoue est plongée dans l'air vital, elle commence à brûler avec un éclat éblouissant; elle communique l'inflammation au fer, qui brûle lui même en répandant de brillantes étincelles, lesquelles tombent au fond de la bouteille, en globules arrondis qui deviennent noirs en se refroidissant, & qui conservent un reste de brillant métallique. Le fer ainsi brûlé, est plus cassant & plus fragile, que ne le seroit le verre lui-même; il se réduit facilement en poudre & est encore attirable à l'aimant, moins cependant qu'il ne l'étoit avant sa combustion.
M. Ingenhouz n'a examiné ni ce qui arrivoit au fer, ni ce qui arrivoit à l'air dans cette opération, en sorte que je me suis trouvé obligé de la répéter avec des circonstances différentes & dans un appareil plus propre à répondre à mes vues.
J'ai rempli une cloche A, planche IV, fig. 3, de six pintes environ de capacité d'air pur, autrement dit, de la partie éminemment respirable de l'air. J'ai transporté, à l'aide d'un vase très-plat, cette cloche sur un bain de mercure contenu dans le bassin BC; après quoi j'ai séché soigneusement avec du papier gris la surface du mercure, 43 tant dans l'intérieur qu'à l'extérieur de la cloche. Je me suis muni, d'un autre côté, d'une petite capsule de porcelaine D, plate & évasée, dans laquelle j'ai placé de petits coupeaux de fer tournés en spirale, & que j'ai arrangés de la manière qui m'a paru la plus favorable pour que la combustion se communiquât à toutes les parties. A l'extrêmité d'un de ces coupeaux, j'ai attaché un petit morceau d'amadoue, & j'y ai ajouté un fragment de phosphore, qui pesoit à peine un seizième de grain. J'ai introduit la capsule sous la cloche en soulevant un peu cette dernière. Je n'ignore pas que par cette manière de procéder, il se mêle une petite portion d'air commun avec l'air de la cloche; mais ce mêlange, qui est peu considérable lorsqu'on opère avec adresse, ne nuit point au succès de l'expérience.
Lorsque la capsule D est introduite sous la cloche, on succe une partie de l'air qu'elle contient, afin d'élever le mercure dans son intérieur jusqu'en EF; on se sert à cet effet d'un siphon GHI, qu'on passe par-dessous, & pour qu'il ne se remplisse pas de mercure, on tortille un petit morceau de papier à son extrêmité. Il y a un art pour élever ainsi en suçant le mercure sous la cloche: si on se contentoit d'aspirer l'air avec le poumon, on n'atteindroit qu'à une 44 très-médiocre élévation, par exemple, d'un pouce ou d'un pouce & demi tout au plus, tandis que par l'action des muscles de la bouche on élève, sans se fatiguer, ou au moins sans risquer de s'incommoder, le mercure jusqu'à 6 à 7 pouces.
Après que tout a été ainsi préparé, on fait rougir au feu un fer recourbé MN, planche IV, figure 16, destiné à ces sortes d'expériences; on le passe par-dessous la cloche & avant qu'il ait eu le temps de se refroidir, on l'approche du petit morceau de phosphore contenu dans la capsule de porcelaine D: aussi-tôt le phosphore s'allume, il communique son inflammation à l'amadoue, & celle-ci la communique au fer. Quand les copeaux ont été bien arrangés, tout le fer brûle jusqu'au dernier atôme, en répandant une lumière blanche, brillante, & semblable à celle qu'on observe dans les étoiles d'artifice Chinois. La grande chaleur qui s'opère pendant cette combustion, liquéfie le fer, & il tombe en globules ronds de grosseur différente, dont le plus grand nombre reste dans la capsule, & dont quelques-uns sont lancés au dehors & nagent sur la surface du mercure.
Dans le premier instant de la combustion il y a une légère augmentation dans le volume de l'air, en raison de la dilatation occasionnée 45 par la chaleur: mais bientôt une diminution rapide succède à la dilatation; le mercure remonte dans la cloche, & lorsque la quantité de fer est suffisante, & que l'air avec lequel on opère est bien pur, on parvient à l'absorber presqu'en entier.
Je dois avertir ici qu'à moins qu'on ne veuille faire des expériences de recherches, il vaut mieux ne brûler que des quantités médiocres de fer. Quand on veut pousser trop loin l'expérience & absorber presque tout l'air, la capsule D qui nage sur le mercure, se rapproche trop de la voûte de la cloche, & la grande chaleur jointe au refroidissement subit, occasionné par le contact du mercure, fait éclater le verre: le poids de la colonne de mercure qui vient à tomber rapidement, dès qu'il s'est fait une félure à la cloche, occasionne un flot qui fait jaillir une grande partie de ce fluide hors du bassin. Pour éviter ces inconvéniens & être sûr du succès de l'expérience, on ne doit guère brûler plus d'un gros & demi de fer sous une cloche de huit pintes de capacité. Cette cloche doit être forte, afin de résister au poids de mercure qu'elle est destinée à contenir.
Il n'est pas possible de déterminer à la fois dans cette expérience, le poids que le fer acquiert, & les changemens arrivés à l'air. Si c'est 46 l'augmentation de poids du fer & son rapport avec l'absorption de l'air, dont on cherche à connoître la quantité, on doit avoir soin de marquer très-exactement sur la cloche, avec un trait de diamant, la hauteur du mercure avant & après l'expérience; on passe ensuite sous la cloche le siphon GH, planche IV, figure 3, garni d'un papier qui empêche qu'il ne s'emplisse de mercure. On met le pouce sur l'extrêmité G, & on rend l'air peu à peu en soulevant le pouce. Lorsque le mercure est descendu à son niveau, on enlève doucement la cloche; on détache de la capsule les globules de fer qui y sont contenus; on rassemble soigneusement ceux qui pourroient s'être éclaboussés & qui nagent sur le mercure, & on pèse le tout. Ce fer est dans l'état de ce que les anciens Chimistes ont nommé éthiops martial; il a une sorte de brillant métallique; il est très-cassant, très-friable, & se réduit en poudre sous le marteau & sous le pilon. Lorsque l'opération a bien réussi, avec 100 grains de fer on obtient 135 à 136 grains d'éthiops. On peut donc compter sur une augmentation de poids au moins de 35 livres par quintal.
Si l'on a donné à cette expérience toute l'attention qu'elle mérite, l'air se trouve diminué d'une quantité en poids exactement égale à celle dont le fer est augmenté. Si donc on a 47 brûlé 100 grains de fer & que l'augmentation de poids que ce métal a acquise ait été de 35 grains, la diminution du volume de l'air est assez exactement de 70 pouces cubiques à raison d'un demi-grain par pouce cube. On verra dans la suite de ces Mémoires, que le poids de l'air vital est en effet, assez exactement, d'un demi-grain par pouce cube.
Je rappellerai ici une dernière fois que dans toutes les expériences de ce genre, on ne doit point oublier de ramener par le calcul le volume de l'air au commencement & à la fin de l'expérience à celui qu'on auroit eu à 10 degrés du thermomètre, & à une pression de 28 pouces: j'entrerai dans quelques détails sur la manière de faire ces corrections, à la fin de cet Ouvrage.
Si c'est sur la qualité de l'air restant dans la cloche, qu'on se propose de faire des expériences, on opère d'une manière un peu différente. On commence alors, après que la combustion est faite & que les vaisseaux sont refroidis, par retirer le fer & la capsule qui le contenoit en passant la main sous la cloche à travers le mercure: ensuite on introduit sous cette même cloche, de la potasse ou alkali caustique, dissous dans l'eau, du sulfure de potasse, ou telle autre substance qu'on juge à propos, pour examiner l'action qu'elles exercent 48 sur l'air. Je reviendrai dans la suite sur ces moyens d'analyse de l'air, quand j'aurai fait connoître la nature de ces différentes substances, dont je ne parle qu'accidentellement dans ce moment. On finit par introduire sous cette même cloche, autant d'eau qu'il est nécessaire pour déplacer tout le mercure; après quoi on passe dessous un vaisseau ou espèce de capsule très-platte avec laquelle on la transporte dans l'appareil pneumato-chimique ordinaire à l'eau, où l'on opère plus en grand & avec plus de facilité.
Lorsqu'on a employé du fer très-doux & très-pur, & que la portion respirable de l'air dans lequel s'est faite la combustion, étoit exempte de tout mêlange d'air non respirable, l'air qui reste après la combustion, se trouve aussi pur qu'il l'étoit avant la combustion; mais il est rare que le fer ne contienne pas une petite quantité de matière charbonneuse: l'acier sur-tout en contient toujours. Il est de même extrêmement difficile d'obtenir la portion respirable de l'air parfaitement pure, elle est presque toujours mêlée d'une petite portion de la partie non respirable, mais cette espèce de mofète ne trouble en rien le résultat de l'expérience, & elle se retrouve à la fin en même quantité qu'au commencement.
49
J'ai annoncé qu'on pouvoit déterminer de deux manières la nature des parties constituantes de l'air de l'atmosphère; par voie de décomposition & par voie de composition. La calcination du mercure nous a fourni l'exemple de l'une & de l'autre, puisqu'après avoir enlevé à la partie respirable sa base par le mercure, nous la lui avons rendue pour reformer de l'air en tout semblable à celui de l'atmosphère. Mais on peut également opérer cette composition de l'air en empruntant de différens règnes les matériaux qui doivent le former. On verra dans la suite que lorsqu'on dissout des matières animales dans de l'acide nitrique, il se dégage une grande quantité d'un air qui éteint les lumières, qui est nuisible pour les animaux, & qui est en tout semblable à la partie non respirable de l'air de l'atmosphère. Si à 73 parties de ce fluide élastique on en ajoute 27 d'air éminemment respirable tiré du mercure, réduit en chaux rouge par la calcination, on forme un fluide élastique parfaitement semblable à celui de l'atmosphère & qui en a toutes les propriétés.
Il y a beaucoup d'autres moyens de séparer la partie respirable de l'air de la partie non respirable; mais je ne pourrois les exposer ici sans emprunter des notions, qui, dans 50 l'ordre des connoissances, appartiennent aux Chapitres suivans. Les expériences d'ailleurs que j'ai rapportées, suffisent pour un Traité Elémentaire; & dans ces sortes de matières, le choix des preuves est plus important que leur nombre.
Je terminerai cet article en indiquant une propriété qu'a l'air de l'atmosphère & qu'ont en général tous les fluides élastiques ou gaz que nous connoissons; c'est celle de dissoudre l'eau. La quantité d'eau qu'un pied cube d'air de l'atmosphère peut dissoudre, est suivant les expériences de M. de Saussure, de 12 grains: d'autres fluides élastiques, tels que l'acide carbonique, paroissent en dissoudre davantage; mais on n'a point fait encore d'expériences exactes pour en déterminer la quantité. Cette eau que contiennent les fluides élastiques aériformes, donne lieu dans quelques expériences à des phénomènes particuliers qui méritent beaucoup d'attention, & qui ont souvent jetté les Chimistes dans de grandes erreurs.
51
Nomenclature des différentes parties constitutives de l'air de l'atmosphère.
Jusqu'ici j'ai été forcé de me servir de périphrases pour désigner la nature des différentes substances qui composent notre atmosphère, & j'ai adopté provisoirement ces expressions, partie respirable, partie non respirable de l'air. Les détails dans lesquels je vais entrer, exigent que je prenne une marche plus rapide, & qu'après avoir cherché à donner des idées simples des différentes substances qui entrent dans la composition de l'air de l'atmosphère, je les exprime également par des mots simples.
La température de la planette que nous habitons se trouvant très-voisine du degré où l'eau passe de l'état liquide à l'état solide, & réciproquement, & ce phénomène s'opérant fréquemment sous nos yeux, il n'est pas étonnant que dans toutes les langues, au moins dans les climats où l'on éprouve une sorte d'hiver, on ait donné un nom à l'eau devenue solide par l'absence du calorique.
Mais il n'a pas dû en être de même de l'eau réduite à l'état de vapeur par une plus grande 52 addition de calorique. Ceux qui n'ont pas fait une étude particulière de ces objets, ignorent encore, qu'à un degré un peu supérieur à celui de l'eau bouillante, l'eau se transforme en un fluide élastique aériforme, susceptible comme tous les gaz, d'être reçu & contenu dans des vaisseaux, & qui conserve sa forme gazeuse tant qu'il éprouve une température supérieure à 80 degrés, jointe à une pression égale à celle d'une colonne de 28 pouces de mercure. Ce phénomène ayant échappé à la multitude, aucune langue n'a désigné l'eau dans cet état par un nom particulier; & il en est de même de tous les fluides, & en général, de toutes les substances qui ne sont point susceptibles de se vaporiser au degré habituel de température & de pression dans lequel nous vivons.
Par une suite de la même cause on n'a point donné de nom à la plupart des fluides aériformes dans l'état liquide ou concret; on ignoroit que ces fluides fussent le résultat de la combinaison d'une base avec le calorique; & comme on ne les avoit jamais vus dans l'état de liquide ni de solide, leur existence sous cette forme étoit inconnue même des Physiciens.
Nous n'avons pas jugé qu'il nous fût permis de changer des noms reçus & consacrés dans la société par un antique usage. Nous avons 53 donc attaché au mot d'eau & de glace, leur signification vulgaire; nous avons de même exprimé par le mot d'air la collection des fluides élastiques qui composent notre atmosphère; mais nous ne nous sommes pas cru obligés au même respect pour des dénominations très-modernes nouvellement proposées par les Physiciens. Nous avons pensé que nous étions en droit de les rejetter & de leur en substituer d'autres moins propres à induire en erreur; & lors même que nous nous sommes déterminés à les adopter, nous n'avons fait aucune difficulté de les modifier & d'y attacher des idées mieux arrêtées & plus circonscrites.
C'est principalement du Grec que nous avons tiré les mots nouveaux, & nous avons fait en sorte que leur étymologie rappelât l'idée des choses que nous nous proposions d'indiquer; nous nous sommes attachés sur-tout à n'admettre que des mots courts, & autant qu'il étoit possible, qui fussent susceptibles de former des adjectifs & des verbes.
D'après ces principes, nous avons conservé à l'exemple de M. Macquer, le nom de gaz employé par Vanhelmont, & nous avons rangé sous cette dénomination, la classe nombreuse des fluides élastiques aériformes, en faisant cependant une exception pour l'air de l'atmosphère. 54 Le mot gaz est donc pour nous un nom générique, qui désigne le dernier degré de saturation d'une substance quelconque par le calorique; c'est l'expression d'une manière d'être des corps. Il s'agissoit ensuite de spécifier chaque espèce de gaz, & nous y sommes parvenus en empruntant un second nom de celui de sa base. Nous appellerons donc gaz aqueux, l'eau combinée avec le calorique, & dans l'état de fluide élastique aériforme: la combinaison de l'éther avec le calorique, sera le gaz éthéré; celle de l'esprit-de-vin avec le calorique, sera le gaz alkoolique; nous aurons de même le gaz acide muriatique, le gaz ammoniaque, & ainsi de tous les autres. Je m'étendrai davantage sur cet article quand il sera question de nommer les différentes bases.
On a vu que l'air de l'atmosphère étoit principalement composé de deux fluides aériformes ou gaz, l'un respirable, susceptible d'entretenir la vie des animaux, dans lequel les métaux se calcinent & les corps combustibles peuvent brûler; l'autre qui a des propriétés absolument opposées, que les animaux ne peuvent respirer, qui ne peut entretenir la combustion, &c. Nous avons donné à la base de la portion respirable de l'air le nom d'oxygène, en le dérivant de deux mots Grecs οξυς, 55 acide, & γεινομαι, j'engendre, parce qu'en effet une des propriétés les plus générales de cette base est de former des acides, en se combinant avec la plupart des substances. Nous appellerons donc gaz oxygène la réunion de cette base avec le calorique: sa pesanteur dans cet état est assez exactement d'un demi-grain poids de marc, par pouce cube, ou d'une once & demie par pied cube, le tout à 10 degrés de température, & à 28 pouces du baromètre.
Les propriétés chimiques de la partie non respirable de l'air de l'atmosphère n'étant pas encore très-bien connues, nous nous sommes contentés de déduire le nom de sa base de la propriété qu'a ce gaz de priver de la vie les animaux qui le respirent: nous l'avons donc nommé azote, de l'α privatif des Grecs, & de ζοη, vie, ainsi la partie non respirable de l'air sera le gaz azotique. Sa pesanteur est d'une once, 2 gros, 48 grains le pied cube, ou de 0,4444 grain le pouce cube.
Nous ne nous sommes pas dissimulé que ce nom présentoit quelque chose d'extraordinaire; mais c'est le sort de tous les noms nouveaux; ce n'est que par l'usage qu'on se familiarise avec eux. Nous en avons d'ailleurs cherché long-temps un meilleur, sans qu'il nous ait été possible de le rencontrer: nous avions été 56 tentés d'abord de le nommer gaz alkaligène, parce qu'il est prouvé, par les expériences de M. Berthollet, comme on le verra dans la suite, que ce gaz entre dans la composition de l'alkali volatil ou ammoniaque: mais d'un autre côté, nous n'avons point encore la preuve qu'il soit un des principes constitutifs des autres alkalis: il est d'ailleurs prouvé qu'il entre également dans la combinaison de l'acide nitrique; on auroit donc été tout aussi fondé à le nommer principe nitrigène. Enfin nous avons dû rejetter un nom qui comportoit une idée systématique, & nous n'avons pas risqué de nous tromper en adoptant celui d'azote & de gaz azotique, qui n'exprime qu'un fait ou plutôt qu'une propriété, celle de priver de la vie les animaux qui respirent ce gaz.
J'anticiperois sur des notions réservées pour des articles subséquens, si je m'étendois davantage sur la nomenclature des différentes espèces de gaz. Il me suffit d'avoir donné ici, non la dénomination de tous, mais la méthode de les nommer tous. Le mérite de la nomenclature que nous avons adoptée, consiste principalement en ce que la substance simple étant nommée, le nom de tous ses composés découle nécessairement de ce premier mot.
57
De la décomposition du gaz oxygène par le soufre, le phosphore & le charbon, & de la formation des acides en général.
Un des principes qu'on ne doit jamais perdre de vue dans l'art de faire des expériences, est de les simplifier le plus qu'il est possible & d'en écarter toutes les circonstances qui peuvent en compliquer les effets. Nous n'opérerons donc pas, dans les expériences qui vont faire l'objet de ce Chapitre, sur de l'air de l'atmosphère, qui n'est point une substance simple. Il est bien vrai que le gaz azotique, qui fait une partie du mêlange qui le constitue, paroît être purement passif dans les calcinations & les combustions: mais, comme il les rallentit, & comme il n'est pas impossible même qu'il en altère les résultats dans quelques circonstances, il m'a paru nécessaire de bannir cette cause d'incertitude.
J'exposerai donc, dans les expériences dont je vais rendre compte, le résultat des combustions tel qu'il a lieu dans l'air vital ou gaz oxigène pur, & j'avertirai seulement des différences 58 qu'elles présentent quand le gaz oxygène est mêlé de différentes proportions de gaz azotique.
J'ai pris une cloche de cristal A, planche IV, figure 3, de cinq à six pintes de capacité; je l'ai emplie de gaz oxygène sur de l'eau, après quoi je l'ai transportée sur le bain de mercure au moyen d'une capsule de verre que j'ai passée par dessous; j'ai ensuite seché la surface du mercure & j'y ai introduit 61 grains 1/4 de phosphore de Kunkel, que j'ai divisés dans deux capsules de porcelaine, semblables à celle qu'on voit en D, figure 3, sous la cloche A; & pour pouvoir allumer chacune de ces deux portions séparément, & que l'inflammation ne se communiquât pas de l'une à l'autre, j'ai recouvert l'une des deux avec un petit carreau de verre. Lorsque tout a été ainsi préparé, j'ai élevé le mercure dans la cloche à la hauteur EF, en suçant avec un siphon de verre GHI, même figure, qu'on introduit par-dessous la cloche: pour qu'il ne se remplisse pas en passant à travers le mercure, on tortille à son extrêmité I, un petit morceau de papier. Puis avec un fer recourbé rougi au feu, représenté figure 16, j'ai allumé successivement le phosphore des deux capsules, en commençant par celle qui n'étoit point recouverte avec un carreau de verre. 59
La combustion s'est faite avec une grande rapidité, avec une flamme brillante & un dégagement considérable de chaleur & de lumière. Il y a eu dans le premier instant une dilatation considérable du gaz oxygène, occasionnée par la chaleur; mais bientôt le mercure a remonté au-dessus de son niveau, & il y a eu une absorption considérable: en même temps tout l'intérieur de la cloche s'est tapissé de flocons blancs, légers, qui n'étoient autre chose que de l'acide phosphorique concret.
La quantité de gaz oxygène employée, étoit, toutes corrections faites, au commencement de l'expérience, de 162 pouces cubiques; elle s'est trouvée à la fin seulement de 23 pouces 1/4: la quantité de gaz oxygène absorbée avoit donc été de 138 pouces 3/4 ou de 69,375 grains.
La totalité du phosphore n'étoit pas brûlée; il en restoit dans les capsules quelques portions, qui, lavées, pour en séparer l'acide, & séchées, se sont trouvées peser environ 16 grains 1/4: ce qui réduit à peu près à 45 grains la quantité de phosphore brûlée: je dis à peu près, parce qu'il ne seroit pas impossible qu'il n'y eût eu un ou deux grains d'erreur sur le poids du phosphore restant après la combustion.
Ainsi dans cette opération, 45 grains de 60 phosphore se sont combinés avec 69,375 grains d'oxygène; & comme rien de pesant ne passe à travers le verre, on a droit d'en conclure que le poids de la substance quelconque qui a résulté de cette combinaison & qui s'étoit rassemblée en flocons blancs, devoit s'élever à la somme du poids de l'oxygène & de celui du phosphore, c'est-à-dire, à 114,375 grains. On verra bientôt que ces flocons blancs ne sont autre chose qu'un acide concret. En réduisant ces quantités au quintal, on trouve qu'il faut employer 154 liv. d'oxygène pour saturer 100 liv. de phosphore, & qu'il en résulte 254 liv. de flocons blancs ou acide phosphorique concret.
Cette expérience prouve d'une manière évidente, qu'à un certain degré de température, l'oxygène a plus d'affinité avec le phosphore qu'avec le calorique; qu'en conséquence le phosphore décompose le gaz oxygène, qu'il s'empare de sa base, & qu'alors le calorique, qui devient libre, s'échappe & se dissipe en se répartissant dans les corps environnans.
Mais quelque concluante que fût cette expérience, elle n'étoit pas encore suffisamment rigoureuse: en effet, dans l'appareil que j'ai employé & que je viens de décrire, il n'est pas possible de vérifier le poids des flocons 61 blancs ou de l'acide concret qui s'est formé; on ne peut le conclure que par voie de calcul & en le supposant égal à la somme du poids de l'oxygène & du phosphore: or quelqu'évidente que fût cette conclusion, il n'est jamais permis en Physique & en Chimie, de supposer ce qu'on peut déterminer par des expériences directes. J'ai donc cru devoir refaire cette expérience un peu plus en grand, & avec un appareil différent.
J'ai pris un grand ballon de verre A, planche IV, figure 4, dont l'ouverture EF avoit trois pouces de diamètre. Cette ouverture se recouvroit avec une plaque de cristal usée à l'émeril, laquelle étoit percée de deux trous pour le passage des tuyaux yyy, xxx.
Avant de fermer le ballon avec sa plaque, j'y ai introduit un support BC surmonté d'une capsule de porcelaine D, qui contenoit 150 grains de phosphore: tout étant ainsi disposé, j'ai adapté la plaque de cristal sur l'ouverture du matras, & j'ai lutté avec du lut gras, que j'ai recouvert avec des bandes de linge imbibées de chaux & de blanc d'œuf: lorsque ce lut a été bien séché, j'ai suspendu tout cet appareil au bras d'une balance, & j'en ai déterminé le poids à un grain ou un grain & demi près. J'ai ensuite adapté le tuyau xxx, 62 à une petite pompe pneumatique, & j'ai fait le vuide; après quoi ouvrant un robinet adapté au tuyau yyy, j'ai introduit du gaz oxygène dans le ballon. J'observerai que ce genre d'expérience se fait avec assez de facilité & sur-tout avec beaucoup d'exactitude, au moyen de la machine hydro-pneumatique dont nous avons donné la description, M. Meusnier & moi, dans les Mémoires de l'Académie, année 1782, page 466, & dont on trouvera une explication dans la dernière Partie de cet Ouvrage; qu'on peut à l'aide de cet instrument, auquel M. Meusnier a fait depuis des additions & des corrections importantes, connoître d'une manière rigoureuse, la quantité de gaz oxygène introduite dans le ballon, & celle qui s'est consommée pendant le cours de l'opération.
Lorsque tout a été ainsi disposé, j'ai mis le feu au phosphore avec un verre ardent. La combustion a été extrêmement rapide, accompagnée d'une grande flamme & de beaucoup de chaleur: à mesure qu'elle s'opéroit, il se formoit une grande quantité de flocons blancs qui s'attachoient sur les parois intérieures du vase, & qui bientôt l'ont obscurci entièrement. L'abondance des vapeurs étoit même telle, que quoiqu'il rentrât continuellement de nouveau gaz oxygène qui auroit dû entretenir la 63 combustion, le phosphore s'est bientôt éteint. Ayant laissé refroidir parfaitement tout l'appareil, j'ai commencé par m'assurer de la quantité de gaz oxygène qui avoit été employée, & par peser le ballon avant de l'ouvrir. J'ai ensuite lavé, séché & pesé la petite quantité de phosphore qui étoit restée dans la capsule, & qui étoit de couleur jaune d'ocre, afin de la déduire de la quantité totale de phosphore employée dans l'expérience. Il est clair qu'à l'aide de ces différentes précautions, il m'a été facile de constater, 1o. le poids du phosphore brûlé; 2o. celui des flocons blancs obtenus par la combustion; 3o. le poids du gaz oxygène qui s'étoit combiné avec le phosphore. Cette expérience m'a donné à peu près les mêmes résultats que la précédente: il en a également résulté que le phosphore en brûlant, absorboit un peu plus d'une fois & demie son poids d'oxygène, & j'ai acquis de plus la certitude que le poids de la nouvelle substance produite étoit égal à la somme du poids du phosphore brûlé & de l'oxygène qu'il avoit absorbé: ce qu'il étoit au surplus facile de prévoir à priori.
Si le gaz oxygène qu'on a employé dans cette expérience étoit pur, le résidu qui reste après la combustion est également pur; ce qui prouve qu'il ne s'échappe rien du phosphore 64 qui puisse altérer la pureté de l'air, & qu'il n'agit qu'en enlevant au calorique sa base, c'est-à-dire, l'oxygène qui y étoit uni.
J'ai dit plus haut que si on brûloit un corps combustible quelconque dans une sphère creuse de glace ou dans tout autre appareil construit sur le même principe, la quantité de glace fondue pendant la combustion, étoit une mesure exacte de la quantité de calorique dégagé. On peut consulter à cet égard le Mémoire que nous avons donné en commun à l'Académie, M. de la Place & moi, année 1780, page 355. Ayant soumis la combustion du phosphore à cette épreuve, nous avons reconnu qu'une livre de phosphore en brûlant, fondoit un peu plus de 100 liv. de glace.
La combustion du phosphore réussit également dans l'air de l'atmosphère, avec ces deux différences seulement, 1o. que la combustion est beaucoup moins rapide, attendu qu'elle est rallentie par la grande proportion de gaz azotique qui se trouve mêlé avec le gaz oxygène: 2o. que le cinquième de l'air, tout au plus, est seulement absorbé, parce que cette absorption se faisant toute aux dépens du gaz oxygène, la proportion du gaz azotique devient telle vers la fin de l'opération, que la combustion ne peut plus avoir lieu. 65
Le phosphore par sa combustion, soit dans l'air ordinaire, soit dans le gaz oxygène, se transforme, comme je l'ai déjà dit, en une matière blanche floconneuse très-légère, & il acquiert des propriétés toutes nouvelles: d'insoluble qu'il étoit dans l'eau, non-seulement il devient soluble, mais il attire l'humidité contenue dans l'air avec une étonnante rapidité, & il se résout en une liqueur beaucoup plus dense que l'eau, & d'une pesanteur spécifique beaucoup plus grande. Dans l'état de phosphore, & avant sa combustion, il n'avoit presqu'aucun goût; par sa réunion avec l'oxygène il prend un goût extrêmement aigre & piquant: enfin, de la classe des combustibles, il passe dans celle des substances incombustibles, & il devient ce qu'on appelle un acide.
Cette conversibilité d'une substance combustible en un acide par l'addition de l'oxygène, est, comme nous le verrons bientôt, une propriété commune à un grand nombre de corps: or en bonne logique, on ne peut se dispenser de désigner sous un nom commun toutes les opérations qui présentent des résultats analogues; c'est le seul moyen de simplifier l'étude des Sciences, & il seroit impossible d'en retenir tous les détails, si on ne s'attachoit à les classer. Nous nommerons donc oxygénation la 66 conversion du phosphore en un acide, & en général la combinaison d'un corps combustible quelconque avec l'oxygène.
Nous adopterons également l'expression d'oxygéner, & je dirai en conséquence qu'en oxygénant le phosphore, on le convertit en un acide.
Le soufre est également un corps combustible, c'est-à-dire, qui a la propriété de décomposer l'air, & d'enlever l'oxygène au calorique. On peut s'en assurer aisément par des expériences toutes semblables à celles que je viens de détailler pour le phosphore; mais je dois avertir qu'il est impossible, en opérant de la même manière sur le soufre, d'obtenir des résultats aussi exacts que ceux qu'on obtient avec le phosphore; par la raison que l'acide qui se forme par la combustion du soufre est difficile à condenser, que le soufre lui-même brûle avec beaucoup de difficulté, & qu'il est susceptible de se dissoudre dans les différens gaz. Mais ce que je puis assurer, d'après mes expériences, c'est que le soufre en brûlant, absorbe de l'air; que l'acide qui se forme est beaucoup plus pesant que n'étoit le soufre; que son poids est égal à la somme du poids du soufre, & de l'oxygène qu'il a absorbé; enfin, que cet acide est pesant, incombustible, susceptible de se combiner avec 67 l'eau en toutes proportions: il ne reste d'incertitude que sur la quantité de soufre & d'oxygène qui constituent cet acide.
Le charbon, que tout jusqu'à présent porte à faire regarder comme une substance combustible simple, a également la propriété de décomposer le gaz oxygène & d'enlever sa base au calorique: mais l'acide qui résulte de cette combustion ne se condense pas au degré de pression & de température dans lequel nous vivons; il demeure dans l'état de gaz, & il faut une grande quantité d'eau pour l'absorber. Cet acide, au surplus, a toutes les propriétés communes aux acides, mais dans un degré plus foible, & il s'unit comme eux à toutes les bases susceptibles de former des sels neutres.
On peut opérer la combustion du charbon, comme celle du phosphore, sous une cloche de verre A, planche IV, figure 3, remplie de gaz oxygène, & renversée dans du mercure: mais comme la chaleur d'un fer chaud & même rouge, ne suffiroit pas pour l'allumer, on ajoute par-dessus le charbon, un petit fragment d'amadoue & un petit atome de phosphore. On allume facilement le phosphore avec un fer rouge; l'inflammation se communique ensuite à l'amadoue, puis au charbon.
On trouve le détail de cette expérience, 68 Mémoires de l'Académie, année 1781, page 448. On y verra qu'il faut 72 parties d'oxygène en poids, pour en saturer 28 de charbon, & que l'acide aériforme qui est produit, a une pesanteur justement égale à la somme des poids du charbon & de l'oxygène qui ont servi à le former. Cet acide aériforme a été nommé air fixe, ou air fixé par les premiers Chimistes qui l'ont découvert; ils ignoroient alors si c'étoit de l'air semblable à celui de l'atmosphère ou un autre fluide élastique, vicié & gâté par la combustion; mais puisqu'il est constant aujourd'hui que cette substance aériforme est un acide, qu'il se forme comme tous les autres acides, par l'oxygénation d'une base, il est aisé de voir que le nom d'air fixe ne lui convient point.
Ayant essayé, M. de la Place & moi, de brûler du charbon dans l'appareil propre à déterminer la quantité de calorique dégagée, nous avons trouvé qu'une livre de charbon en brûlant, fondoit 96 liv. 6 onces de glace: 2 liv. 9 onces, 1 gros, 10 grains d'oxygène se combinent avec le charbon dans cette opération, & il se forme 3 liv. 9 onces, 1 gros, 10 grains de gaz acide: ce gaz pèse 0,695 grain le pouce cube, ce qui donne 34242 pouces cubiques pour le volume total de gaz acide qui se 69 forme par la combustion d'une livre de charbon.
Je pourrois multiplier beaucoup plus les exemples de ce genre, & faire voir par une suite de faits nombreux, que la formation des acides s'opère par l'oxygénation d'une substance quelconque; mais la marche que je me suis engagé à suivre & qui consiste à ne procéder que du connu à l'inconnu, & à ne présenter au Lecteur que des exemples puisés dans des choses qui lui ont été précédemment expliquées, m'empêche d'anticiper ici sur les faits. Les trois exemples d'ailleurs que je viens de citer, suffisent pour donner une idée claire & précise de la manière dont se forment les acides. On voit que l'oxigène est un principe commun à tous, & que c'est lui qui constitue leur acidité; qu'ils sont ensuite différenciés les uns des autres par la nature de la substance acidifiée. Il faut donc distinguer dans tout acide, la base acidifiable à laquelle M. de Morveau a donné le nom de radical, & le principe acidifiant, c'est-à-dire, l'oxigène.
70
De la nomenclature des Acides en général, & particulièrement de ceux tirés du salpêtre & du sel marin.
Rien n'est plus aisé, d'après les principes posés dans le Chapitre précédent, que d'établir une nomenclature méthodique des acides: le mot acide sera le nom générique; chaque acide sera ensuite différencié dans le langage comme il l'est dans la nature, par le nom de sa base ou de son radical. Nous nommerons donc acides en général, le résultat de la combustion ou de l'oxygénation du phosphore, du soufre & du charbon. Nous nommerons le premier de ces résultats acide phosphorique, le second acide sulfurique, le troisième acide carbonique. De même, dans toutes les occasions qui pourront se présenter, nous emprunterons du nom de la base la désignation spécifique de chaque acide.
Mais une circonstance remarquable que présente l'oxygénation des corps combustibles, & en général, d'une partie des corps qui se transforment en acides, c'est qu'ils sont susceptibles 71 de différens degrés de saturation; & les acides qui en résultent, quoique formés de la combinaison des deux mêmes substances, ont des propriétés fort différentes, qui dépendent de la différence de proportion. L'acide phosphorique, & sur-tout l'acide sulfurique, en fournissent des exemples. Si le soufre est combiné avec peu d'oxygène, il forme à ce premier degré d'oxigénation un acide volatil, d'une odeur pénétrante, & qui a des propriétés toutes particulières. Une plus grande proportion d'oxygène le convertit en un acide fixe, pesant, sans odeur, & qui donne dans les combinaisons des produits fort différens du premier. Ici le principe de notre méthode de nomenclature sembloit se trouver en défaut, & il paroissoit difficile de tirer du nom de la base acidifiable deux dénominations qui exprimassent, sans circonlocution & sans périphrase, les deux degrés de saturation. Mais la réflexion, & plus encore peut-être la nécessité, nous ont ouvert de nouvelles ressources, & nous avons cru pouvoir nous permettre d'exprimer les variétés des acides par de simples variations dans les terminaisons. L'acide volatil du soufre avoit été désigné par Stahl sous le nom d'acide sulfureux: nous lui avons conservé ce nom, & nous avons donné celui de sulfurique à l'acide du soufre 72 complettement saturé d'oxygène. Nous dirons donc, en nous servant de ce nouveau langage, que le soufre, en se combinant avec l'oxygène, est susceptible de deux degrés de saturation; le premier constitue l'acide sulfureux, qui est pénétrant & volatil; le second constitue l'acide sulfurique, qui est inodore & fixe. Nous adopterons ce même changement de terminaison pour tous les acides qui présenteront plusieurs degrés de saturation; nous aurons donc également un acide phosphoreux & un acide phosphorique, un acide acéteux & un acide acétique, & ainsi des autres.
Toute cette partie de la chimie auroit été extrêmement simple, & la nomenclature des acides n'auroit rien présenté d'embarrassant, si, lors de la découverte de chacun d'eux, on eût connu son radical ou sa base acidifiable. L'acide phosphorique, par exemple, n'a été découvert que postérieurement à la découverte du phosphore, & le nom qui lui a été donné a été dérivé en conséquence de celui de la base acidifiable dont il est formé. Mais lorsqu'au contraire l'acide a été découvert avant la base, ou plutôt lorsqu'à l'époque où l'acide a été découvert, on ignoroit quelle étoit la base acidifiable à laquelle il appartenoit, alors on a donné à l'acide & à la base des noms qui n'avoient 73 aucun rapport entr'eux, & non-seulement on a surchargé la mémoire de dénominations inutiles, mais encore on a porté dans l'esprit des commençans & même des Chimistes consommés, des idées fausses que le tems seul & la réflexion peuvent effacer.
Nous citerons pour exemple l'acide du soufre. C'est du vitriol de fer qu'on a retiré cet acide dans le premier âge de la Chimie; & on l'a nommé acide vitriolique, en empruntant son nom de celui de la substance dont il étoit tiré. On ignoroit alors que cet acide fût le même que celui qu'on obtenoit du soufre par la combustion.
Il en est de même de l'acide aériforme auquel on a donné originairement le nom d'air fixe; on ignoroit que cet acide fût le résultat de la combinaison du carbone avec l'oxygène. De-là une infinité de dénominations qui lui ont été données & dont aucune ne transmet des idées justes. Rien ne nous a été plus facile que de corriger & de modifier l'ancien langage à l'égard de ces acides: nous avons converti le nom d'acide vitriolique en celui d'acide sulfurique, & celui d'air fixe en celui d'acide carbonique; mais il ne nous a pas été possible de suivre le même plan à l'égard des acides dont la base nous étoit inconnue. Nous nous sommes 74 trouvés alors forcés de prendre une marche inverse; & au lieu de conclure le nom de l'acide de celui de la base, nous avons nommé au contraire la base d'après la dénomination de l'acide. C'est ce qui nous est arrivé pour l'acide qu'on retire du sel marin ou sel de cuisine. Il suffit, pour dégager cet acide, de verser de l'acide sulfurique sur du sel marin; aussitôt il se fait une vive effervescence, il s'élève des vapeurs blanches d'une odeur très-pénétrante, & en faisant légèrement chauffer, on dégage tout l'acide. Comme il est naturellement dans l'état de gaz au degré de température & de pression dans lequel nous vivons, il faut des précautions particulières pour le retenir. L'appareil le plus commode & le plus simple pour les expériences en petit, consiste en une petite cornue G, planche V, fig. 5, dans laquelle on introduit du sel marin bien sec; on verse dessus de l'acide sulfurique concentré, & aussi-tôt on engage le bec de la cornue sous de petites jarres ou cloches de verre A, même figure, qu'on a préalablement remplies de mercure. A mesure que le gaz acide se dégage, il passe dans la jarre & gagne le haut en déplaçant le mercure. Lorsque le dégagement se rallentit, on chauffe légèrement & on augmente le feu jusqu'à ce qu'il ne passe 75 plus rien. Cet acide a une grande affinité avec l'eau, & cette dernière en absorbe une énorme quantité. On peut s'en assurer en introduisant une petite couche d'eau dans la jarre de verre qui le contient; en un instant l'acide se combine avec elle & disparoît en entier. On profite de cette circonstance dans les laboratoires & dans les arts, pour obtenir l'acide du sel marin sous la forme de liqueur. On se sert à cet effet de l'appareil représenté planche IV, figure première. Il consiste 1o. dans une cornue A, où l'on introduit le sel marin, & dans laquelle on verse de l'acide sulfurique par la tubulure H; 2o. dans le ballon CB destiné à recevoir la petite quantité de liqueur qui se dégage; 3o. dans une suite de bouteilles à deux gouleaux LL'L''L''', qu'on remplit d'eau à moitié. Cette eau est destinée à absorber le gaz acide qui se dégage pendant la distillation. Cet appareil est plus amplement décrit dans la dernière partie de cet Ouvrage.
Quoiqu'on ne soit encore parvenu ni à composer, ni à décomposer l'acide qu'on retire du sel marin, on ne peut douter cependant qu'il ne soit formé, comme tous les autres, de la réunion d'une base acidifiable avec l'oxygène. Nous avons nommé cette base inconnue base muriatique, radical muriatique, en empruntant ce 76 nom, à l'exemple de M. Bergman & de M. de Morveau, du mot latin muria, donné anciennement au sel marin. Ainsi, sans pouvoir déterminer quelle est exactement la composition de l'acide muriatique, nous désignerons sous cette dénomination un acide volatil, dont l'état naturel est d'être sous forme gazeuse au degré de chaleur & de pression que nous éprouvons, qui se combine avec l'eau en très-grande quantité & avec beaucoup de facilité; enfin dans lequel le radical acidifiable tient si fortement à l'oxygène, qu'on ne connoît jusqu'à présent aucun moyen de les séparer.
Si un jour on vient à rapporter le radical muriatique à quelque substance connue, il faudra bien alors changer sa dénomination & lui donner un nom analogue à celui de la base dont la nature aura été découverte.
L'acide muriatique présente au surplus une circonstance très-remarquable; il est, comme l'acide du soufre & comme plusieurs autres, susceptible de différens degrés d'oxygénation; mais l'excès d'oxygène produit en lui un effet tout contraire à celui qu'il produit dans l'acide du soufre. Un premier degré d'oxygénation transforme le soufre en un acide gazeux volatil, qui ne se mêle qu'en petite quantité avec l'eau: c'est celui que nous désignons avec Stahl 77 sous le nom d'acide sulfureux. Une dose plus forte d'oxygène le convertit en acide sulfurique, c'est-à-dire en un acide qui présente des qualités acides plus marquées, qui est beaucoup plus fixe, qui ne peut exister dans l'état de gaz qu'à une haute température, qui n'a point d'odeur & qui s'unit à l'eau en très-grande quantité. C'est le contraire dans l'acide muriatique; l'addition d'oxygène le rend plus volatil, d'une odeur plus pénétrante, moins miscible à l'eau, & diminue ses qualités acides. Nous avions d'abord été tentés d'exprimer ces deux degrés de saturation, comme nous l'avions fait pour l'acide du soufre, en faisant varier les terminaisons. Nous aurions nommé l'acide le moins saturé d'oxygène acide muriateux, & le plus saturé acide muriatique; mais nous avons cru que cet acide qui présente des résultats particuliers, & dont on ne connoît aucun autre exemple en Chimie, demandoit une exception, & nous nous sommes contentés de le nommer acide muriatique oxygéné.
Il est un autre acide que nous nous contenterons de définir, comme nous l'avons fait pour l'acide muriatique, quoique sa base soit mieux connue: c'est celui que les Chimistes ont désigné jusqu'ici sous le nom d'acide nitreux. Cet acide se tire du nitre ou salpêtre par des 78 procédés analogues à ceux qu'on emploie pour obtenir l'acide muriatique. C'est également par l'intermède de l'acide sulfurique qu'on le chasse de la base à laquelle il est uni, & l'on se sert de même à cet effet de l'appareil représenté planche IV, fig. 1. A mesure que l'acide passe, une partie se condense dans le ballon, l'autre est absorbée par l'eau des bouteilles LL'L''L''' qui devient d'abord verte, puis bleue, & enfin jaune, suivant le degré de concentration de l'acide. Il se dégage pendant cette opération une grande quantité de gaz oxygène mêlé d'un peu de gaz azotique.
L'acide qu'on tire ainsi du salpêtre, est composé, comme tous les autres, d'oxygène uni à une base acidifiable, & c'est même le premier dans lequel l'existence de l'oxygène ait été bien démontrée. Les deux principes qui le constituent tiennent peu ensemble, & on les sépare aisément en présentant à l'oxygène une substance avec laquelle il ait plus d'affinité qu'il n'en a avec la base acidifiable qui constitue l'acide du nitre. C'est par des expériences de ce genre qu'on est parvenu à reconnoître que l'azote ou base de la mofète entroit dans sa composition, qu'elle étoit sa base acidifiable. L'azote est donc véritablement le radical nitrique, ou l'acide du nitre est un véritable acide azotique. On voit donc que pour être d'accord 79 avec nous-mêmes & avec nos principes, nous aurions dû adopter l'une ou l'autre de ces manières de nous énoncer. Nous en avons été détournés cependant par différens motifs; d'abord il nous a paru difficile de changer le nom de nitre ou de salpêtre généralement adopté dans les arts, dans la société & dans la Chimie. Nous n'avons pas cru, d'un autre côté, devoir donner à l'azote le nom de radical nitrique, parce que cette substance est également la base de l'alkali volatil ou ammoniaque, comme l'a découvert M. Berthollet. Nous continuerons donc de désigner sous le nom d'azote la base de la partie non respirable de l'air atmosphérique, qui est en même tems le radical nitrique & le radical ammoniaque. Nous conserverons également le nom de nitreux & de nitrique à l'acide tiré du nitre ou salpêtre. Plusieurs Chimistes d'un grand poids ont désapprouvé notre condescendance pour les anciennes dénominations; ils auroient préféré que nous eussions dirigé uniquement nos efforts vers la perfection de la nomenclature, que nous eussions reconstruit l'édifice du langage chimique de fond en comble, sans nous embarrasser de le raccorder avec d'anciens usages dont le tems effacera insensiblement le souvenir: & c'est ainsi que nous nous sommes 80 trouvés exposés à la fois à la critique & aux plaintes des deux partis opposés.
L'acide du nitre est susceptible de se présenter dans un grand nombre d'états qui dépendent du degré d'oxygénation qu'il a éprouvé, c'est-à-dire, de la proportion d'azote & d'oxygène qui entre dans sa composition. Un premier degré d'oxygénation de l'azote constitue un gaz particulier que nous continuerons de désigner sous le nom de gaz nitreux: il est composé d'environ 2 parties en poids d'oxygène & d'une d'azote, & dans cet état il est immiscible à l'eau. Il s'en faut beaucoup que l'azote dans ce gaz soit saturé d'oxygène, il lui reste au contraire une grande affinité pour ce principe, & il l'attire avec une telle activité, qu'il l'enlève même à l'air de l'atmosphère sitôt qu'il est en contact avec lui. La combinaison du gaz nitreux avec l'air de l'atmosphère est même devenue un des moyens qu'on emploie pour déterminer la quantité d'oxigène contenu dans ce dernier, & pour juger de son degré de salubrité. Cette addition d'oxygène convertit le gaz nitreux en un acide puissant qui a une grande affinité avec l'eau, & qui est susceptible lui-même de différens degrés d'oxygénation. Si la proportion de l'oxygène & de l'azote est au-dessous de trois parties contre une, l'acide est 81 rouge & fumant: dans cet état nous le nommons acide nitreux; on peut en le faisant légèrement chauffer, en dégager du gaz nitreux. Quatre parties d'oxygène contre une d'azote donnent un acide blanc & sans couleur, plus fixe au feu que le précédent, qui a moins d'odeur, & dont les deux principes constitutifs sont plus solidement combinés: nous lui avons donné, d'après les principes exposés ci-dessus, le nom d'acide nitrique.
Ainsi l'acide nitrique est l'acide du nitre surchargé d'oxygène; l'acide nitreux est l'acide du nitre surchargé d'azote, ou, ce qui est la même chose, de gaz nitreux; enfin le gaz nitreux est l'azote qui n'est point assez saturée d'oxygène pour avoir les propriétés des acides. C'est ce que nous nommerons plus bas un oxide.
82
De la décomposition du Gaz oxygène par les métaux, & de la formation des Oxides métalliques.
Lorsque les substances métalliques sont échauffées à un certain degré de température, l'oxygène a plus d'affinité avec elles qu'avec le calorique: en conséquence toutes les substances métalliques, si on en excepte l'or, l'argent & le platine, ont la propriété de décomposer le gaz oxygène, de s'emparer de sa base & d'en dégager le calorique. On a déjà vu plus haut comment s'opéroit cette décomposition de l'air par le mercure & par le fer; on a observé que la première ne pouvoit être regardée que comme une combustion lente; que la dernière au contraire étoit très-rapide & accompagnée d'une flamme brillante. S'il est nécessaire d'employer un certain degré de chaleur dans ces opérations, c'est pour écarter les unes des autres les molécules du métal, & diminuer leur affinité d'aggrégation, ou ce qui est la même chose, l'attraction qu'elles exercent les unes sur les autres.
Les substances métalliques pendant leur calcination 83 augmentent de poids à proportion de l'oxygène qu'elles absorbent; en même-tems elles perdent leur éclat métallique & se réduisent en une poudre terreuse. Les métaux dans cet état ne doivent point être considérés comme entièrement saturés d'oxygène, par la raison que leur action sur ce principe est balancée par la force d'attraction qu'exerce sur lui le calorique. L'oxygène dans la calcination des métaux, obéit donc réellement à deux forces, à celle exercée par le calorique, à celle exercée par le métal; il ne tend à s'unir à ce dernier qu'en raison de la différence de ces deux forces, de l'excès de l'une sur l'autre, & cet excès en général n'est pas fort considérable. Aussi les substances métalliques, en s'oxygénant dans l'air & dans le gaz oxygène, ne se convertissent-elles point en acides, comme le soufre, le phosphore & le charbon: il se forme des substances intermédiaires qui commencent à se rapprocher de l'état salin, mais qui n'ont pas encore acquis toutes les propriétés salines. Les anciens ont donné le nom de chaux, non-seulement aux métaux amenés à cet état, mais encore à toute substance qui avoit été exposée long-tems à l'action du feu sans se fondre. Ils ont fait en conséquence du mot chaux un nom générique, & ils ont confondu sous ce nom, & la pierre calcaire, 84 qui d'un sel neutre qu'elle étoit avant la calcination, se convertit au feu en un alkali terreux, en perdant moitié de son poids, & les métaux qui s'associent par la même opération une nouvelle substance dont la quantité excède quelquefois moitié de leur poids, & qui les rapproche de l'état d'acide. Il auroit été contraire à nos principes de classer sous un même nom des substances si différentes, & sur-tout de conserver aux métaux une dénomination si propre à faire naître des idées fausses. Nous avons en conséquence proscrit l'expression de chaux métalliques, & nous y avons substitué celui d'oxides, du grec οξυς.
On voit d'après cela combien le langage que nous avons adopté est fécond & expressif; un premier degré d'oxygénation constitue les oxides; un second degré constitue les acides terminés en eux, comme l'acide nitreux, l'acide sulfureux; un troisième degré constitue les acides en ique, tels que l'acide nitrique, l'acide sulfurique; enfin nous pouvons exprimer un quatrième degré d'oxigénation des substances, en ajoutant l'épithète d'oxygéné, comme nous l'avons admis pour l'acide muriatique oxygéné.
Nous ne nous sommes pas contentés de désigner sous le nom d'oxides la combinaison des métaux avec l'oxygène; nous n'avons fait aucune 85 difficulté de nous en servir pour exprimer le premier degré d'oxygénation de toutes les substances, celui qui, sans les constituer acides, les rapproche de l'état salin. Nous appellerons donc oxide de soufre, le soufre devenu mou par un commencement de combustion; nous appellerons oxide de phosphore la substance jaune que laisse le phosphore quand il a brûlé.
Nous dirons de même que le gaz nitreux, qui est le premier degré d'oxygénation de l'azote, est un oxide d'azote. Enfin le règne végétal & le règne animal auront leurs oxides, & je ferai voir dans la suite combien ce nouveau langage jettera de lumières sur toutes les opérations de l'art & de la nature.
Les oxides métalliques ont, comme nous l'avons déjà fait observer, presque tous des couleurs qui leur sont propres, & ces couleurs varient non-seulement pour les différens métaux, mais encore suivant le degré d'oxygénation du même métal. Nous nous sommes donc trouvés obligés d'ajouter à chaque oxide deux épithètes, l'une qui indiquât le métal oxidé, l'autre sa couleur; ainsi nous dirons oxide noir de fer, oxide rouge de fer, oxide jaune de fer; & ces expressions répondront à celles d'éthiops martial, de colcothar, de rouille de fer ou d'ocre.
86
Nous dirons de même oxide gris de plomb, oxide jaune de plomb, oxide rouge de plomb; & ces expressions désigneront la cendre de plomb, le massicot & le minium.
Ces dénominations seront quelquefois un peu longues, sur-tout quand on voudra exprimer si le métal a été oxidé à l'air, s'il l'a été par la détonation avec le nitre ou par l'action des acides; mais au moins elles seront toujours justes & feront naître l'idée précise de l'objet qui y correspond.
Les tables jointes à cet Ouvrage, rendront ceci plus sensible.
87
Du principe radical de l'Eau, & de sa décomposition par le charbon & par le fer.
Jusqu'a ces derniers tems on avoit regardé l'eau comme une substance simple, & les anciens n'avoient fait aucune difficulté de la qualifier du nom d'élément: c'étoit sans doute une substance élémentaire pour eux, puisqu'ils n'étoient point parvenus à la décomposer, ou au moins puisque les décompositions de l'eau qui s'opéroient journellement sous leurs yeux, avoient échappé à leurs observations: mais on va voir que l'eau n'est plus un élément pour nous. Je ne donnerai point ici l'histoire de cette découverte qui est très-moderne, & qui même est encore contestée. On peut consulter à cet égard les Mémoires de l'Académie des Sciences, année 1781.
Je me contenterai de rapporter les principales preuves de la décomposition & de la recomposition de l'eau; j'ose dire que quand on voudra bien les peser sans partialité, on les trouvera démonstratives.
88
EXPÉRIENCE PREMIÈRE.
Préparation.
On prend un tube de verre EF, planche VII, fig. 11, de 8 à 12 lignes de diamètre, qu'on fait passer à travers un fourneau, en lui donnant une légère inclinaison de E en F. A l'extrêmité supérieure E de ce tube, on ajuste une cornue de verre A, qui contient une quantité d'eau distillée bien connue, & à son extrêmité inférieure F, un serpentin SS' qui s'adapte en S' au gouleau d'un flacon H à deux tubulures; enfin à l'une des deux tubulures du flacon s'adapte un tube de verre recourbé KK, destiné à conduire les fluides aériformes ou gaz dans un appareil propre à en déterminer la qualité & la quantité.
Il est nécessaire, pour assurer le succès de cette expérience, que le tube EF soit de verre vert bien cuit & d'une fusion difficile; on l'enduit en outre d'un lut d'argile mêlée avec du ciment fait avec des poteries de grès réduites en poudre; & dans la crainte qu'il ne fléchisse par le ramollissement, on le soutient dans son milieu avec une barre de fer qui traverse le fourneau. Des tuyaux de porcelaine sont préférables à ceux de verre; mais il est difficile de s'en procurer 89 qui ne soient pas poreux, & presque toujours on y découvre quelques trous qui donnent passage à l'air ou aux vapeurs.
Lorsque tout a été ainsi disposé, on allume du feu dans le fourneau EFCD, & on l'entretient de manière à faire rougir le tube de verre EF, sans le fondre; en même tems on allume assez de feu dans le fourneau VVXX, pour entretenir toujours bouillante l'eau de la cornue A.
Effet.
A mesure que l'eau de la cornue A se vaporise par l'ébullition, elle remplit l'intérieur du tube EF, & elle en chasse l'air commun qui s'évacue par le tube KK; le gaz aqueux est ensuite condensé par le refroidissement dans le serpentin SS', & il tombe de l'eau goutte à goutte dans le flacon tubulé H.
En continuant cette opération jusqu'à ce que toute l'eau de la cornue A soit évaporée, & en laissant bien égoutter les vaisseaux, on retrouve dans le flacon H une quantité d'eau rigoureusement égale à celle qui étoit dans la cornue A, sans qu'il y ait eu dégagement d'aucun gaz; en sorte que cette opération se réduit à une simple distillation ordinaire, dont le résultat est absolument le même que si l'eau 90 n'eût point été portée à l'état incandescent, en traversant le tube intermédiaire EF.
Expérience seconde.
Preparation.
On dispose tout comme dans l'expérience précédente, avec cette différence seulement qu'on introduit dans le tube EF vingt-huit grains de charbon concassé en morceaux de médiocre grosseur, & qui préalablement a été long-tems exposé à une chaleur incandescente dans des vaisseaux fermés. On fait, comme dans l'expérience précédente, bouillir l'eau de la cornue A jusqu'à évaporation totale.
Effet.
L'eau de la cornue A se distille dans cette expérience comme dans la précédente; elle se condense dans le serpentin, & coule goutte à goutte dans le flacon H; mais en même tems il se dégage une quantité considérable de gaz, qui s'échappe par le tuyau KK, & qu'on recueille dans un appareil convenable.
L'opération finie, on ne retrouve plus dans le tube EF que quelques atômes de cendre; les vingt-huit grains de charbon ont totalement disparu.
91
Les gaz qui se sont dégagés examinés avec soin, se trouvent peser ensemble 113 grains 7/10[4]; ils sont de deux espèces, savoir 144 pouces cubiques de gaz acide carbonique, pesant 100 grains, & 380 pouces cubiques d'un gaz extrêmement léger, pesant 13 grains 7/10, & qui s'allume par l'approche d'un corps enflammé lorsqu'il a le contact de l'air. Si on vérifie ensuite le poids de l'eau passée dans le flacon, on la trouve diminuée de 85 grains 7/10.
Ainsi dans cette expérience, 85 grains 7/10 d'eau, plus 28 grains de charbon ont formé 100 grains d'acide carbonique, plus 13 grains 7/10 d'un gaz particulier susceptible de s'enflammer.
Mais j'ai fait voir plus haut, que pour former 100 grains de gaz acide carbonique, il falloit unir 72 grains d'oxygène à 28 grains de charbon; donc les 28 grains de charbon placés dans le tube de verre ont enlevé à l'eau 72 grains d'oxygène; donc 85 grains 7/10 d'eau sont composés de 72 grains d'oxygène & de 13 grains 7/10 d'un gaz susceptible de s'enflammer. On verra bientôt qu'on ne peut pas supposer que ce gaz ait été dégagé du charbon, 92 & qu'il est conséquemment un produit de l'eau.
J'ai supprimé dans l'exposé de cette expérience quelques détails qui n'auroient servi qu'à la compliquer & à jetter de l'obscurité dans les idées des lecteurs: le gaz inflammable, par exemple, dissout un peu de charbon, & cette circonstance en augmente le poids & diminue au contraire celui de l'acide carbonique; l'altération qui en résulte dans les quantités n'est pas très-considérable; mais j'ai cru devoir les rétablir par calcul, & présenter l'expérience dans toute sa simplicité, & comme si cette circonstance n'avoit pas lieu. Au surplus, s'il restoit quelques nuages sur la vérité des conséquences que je tire de cette expérience, ils seroient bientôt dissipés par les autres expériences que je vais rapporter à l'appui.
Troisième Expérience.
Préparation.
On dispose tout l'appareil comme dans l'expérience précédente, avec cette différence seulement, qu'au lieu des 28 grains de charbon, on met dans le tube EF, planche VII, fig. 11, 274 grains de petites lames de fer très-doux roulées en spirales. On fait rougir le tube comme dans les expériences précédentes; on allume 93 du feu sous la cornue A, & on entretient l'eau qu'elle contient toujours bouillante, jusqu'à ce qu'elle soit entièrement évaporée, qu'elle ait passé en totalité dans le tube EF, & qu'elle se soit condensée dans le flacon H.
Effet.
Il ne se dégage point de gaz acide carbonique dans cette expérience, mais seulement un gaz inflammable 13 fois plus léger que l'air de l'atmosphère: le poids total qu'on en obtient est de 15 grains, & son volume est d'environ 416 pouces cubiques. Si on compare la quantité d'eau primitivement employée avec celle restante dans le flacon H, on trouve un déficit de 100 grains. D'un autre côté, les 274 grains de fer renfermés dans le tube EF se trouvent peser 85 grains de plus que lorsqu'on les y a introduits; & leur volume se trouve considérablement augmenté: ce fer n'est presque plus attirable à l'aimant, il se dissout sans effervescence dans les acides; en un mot, il est dans l'état d'oxide noir, précisément comme celui qui a été brûlé dans le gaz oxygène.
Réflexions.
Le résultat de cette expérience présente une véritable oxidation du fer par l'eau; oxidation 94 toute semblable à celle qui s'opère dans l'air à l'aide de la chaleur. Cent grains d'eau ont été décomposés; 85 d'oxygène se sont unis au fer pour le constituer dans l'état d'oxide noir, & il s'est dégagé 15 grains d'un gaz inflammable particulier: donc l'eau est composée d'oxygène & de la base d'un gaz inflammable, dans la proportion de 85 parties contre 15.
Ainsi l'eau indépendamment de l'oxygène qui est un de ses principes, & qui lui est commun avec beaucoup d'autres substances, en contient un autre qui lui est propre, qui est son radical constitutif, & auquel nous nous sommes trouvés forcés de donner un nom. Aucun ne nous a paru plus convenable que celui d'hydrogène, c'est-à-dire, principe générateur de l'eau, de υδορ eau, & de γεινομαι j'engendre. Nous appellerons gaz hydrogène la combinaison de ce principe avec le calorique, & le mot d'hydrogène seul exprimera la base de ce même gaz, le radical de l'eau[A].
Voilà donc un nouveau corps combustible, c'est-à-dire, un corps qui a assez d'affinité avec l'oxygène pour l'enlever au calorique & pour décomposer l'air ou le gaz oxygène. Ce corps combustible a lui-même une telle affinité avec le calorique, qu'à moins qu'il ne soit engagé dans une combinaison, il est toujours dans 95 l'état aériforme ou de gaz au degré habituel de pression & de température dans lequel nous vivons. Dans cet état de gaz, il est environ 13 fois plus léger que l'air de l'atmosphère, il n'est point absorbable par l'eau, mais il est susceptible d'en dissoudre une petite quantité; enfin il ne peut servir à la respiration des animaux.
La propriété de brûler & de s'enflammer n'étant pour ce gaz comme pour tous les autres combustibles, que la propriété de décomposer l'air & d'enlever l'oxygène au calorique, on conçoit qu'il ne peut brûler qu'avec le contact de l'air ou du gaz oxygène. Aussi lorsqu'on emplit une bouteille de ce gaz & qu'on l'allume, il brûle paisiblement au gouleau de la bouteille & ensuite dans son intérieur, à mesure que l'air extérieur y pénètre; mais la combustion est successive & lente, elle n'a lieu qu'à la surface où le contact des deux airs ou gaz s'opère. Il n'en est pas de même lorsqu'on mêle ensemble les deux airs avant de les allumer: si par exemple après avoir introduit dans une bouteille à gouleau étroit une partie de gaz oxygène, & ensuite deux de gaz hydrogène, on approche de son orifice un corps enflammé, tel qu'une bougie ou un morceau de papier allumé, la combustion des deux gaz se fait 96 d'une manière instantanée & avec une forte explosion. On ne doit faire cette expérience que dans une bouteille de verre vert très-forte qui n'excède pas une pinte de capacité & qu'on enveloppe même d'un linge, autrement on s'exposeroit à des accidens funestes par la rupture de la bouteille dont les fragmens pourroient être lancés à de grandes distances.
Si tout ce que je viens d'exposer sur la décomposition de l'eau est exact & vrai, si réellement cette substance est composée, comme j'ai cherché à l'établir, d'un principe qui lui est propre, d'hydrogène combiné avec l'oxygène, il en résulte qu'en réunissant ces deux principes, on doit refaire de l'eau, & c'est ce qui arrive en effet, comme on va en juger par l'expérience suivante.
Quatrième Expérience.
Recomposition de l'eau.
Préparation.
On prend un ballon A de cristal, planche IV, fig. 5, à large ouverture, & dont la capacité soit de 30 pintes environ; on y mastique une platine de cuivre BC percée de quatre trous auxquels aboutissent quatre tuyaux. Le premier 97 Hh est destiné à s'adapter par son extrêmité h à une pompe pneumatique par le moyen de laquelle on peut faire le vuide dans le ballon. Un second tuyau gg communique par son extrêmité MM avec un réservoir de gaz oxygène, & est destiné à l'amener dans le ballon. Un troisième dDd' communique par son extrêmité dNN avec un réservoir de gaz hydrogène: l'extrêmité d' de ce tuyau se termine par une ouverture très-petite & à travers laquelle une très-fine aiguille peut à peine passer. C'est par cette petite ouverture que doit sortir le gaz hydrogène contenu dans le réservoir; & pour qu'il ait une vîtesse suffisante, on doit lui faire éprouver une pression de un ou deux pouces d'eau. Enfin la platine BC est percée d'un quatrième trou, lequel est garni d'un tube de verre mastiqué, à travers lequel passe un fil de métal GL, à l'extrémité L duquel est adaptée une petite boule, afin de pouvoir tirer une étincelle électrique de L en d' pour allumer, comme on le verra bientôt, le gaz hydrogène. Le fil de métal GL est mobile dans le tube de verre afin de pouvoir éloigner la boule L de l'extrémité d' de l'ajutoir Dd'. Les trois tuyaux dDd', gg, Hh sont chacun garnis de leur robinet.
Pour que le gaz hydrogène & le gaz oxygène 98 arrivent bien secs par les tuyaux respectifs qui doivent les amener au ballon A, & qu'ils soient dépouillés d'eau autant qu'ils le peuvent être, on les fait passer à travers des tubes MM, NN d'un pouce environ de diamètre qu'on remplit d'un sel très-déliquescent, c'est-à-dire, qui attire l'humidité de l'air avec beaucoup d'avidité, tels que l'acétite de potasse, le muriate ou le nitrate de chaux. Voyez quelle est la composition de ces sels dans la seconde partie de cet Ouvrage. Ces sels doivent être en poudre grossière afin qu'ils ne puissent pas faire masse, & que le gaz passe facilement à travers les interstices que laissent les morceaux.
On doit s'être prémuni d'avance d'une provision suffisante de gaz oxygène bien pur; & pour s'assurer qu'il ne contient point d'acide carbonique, on doit le laisser long-tems en contact avec de la potasse dissoute dans de l'eau, & qu'on a dépouillée de son acide carbonique par de la chaux: on donnera plus bas quelques détails sur les moyens d'obtenir cet alkali.
On prépare avec le même soin le double de gaz hydrogène. Le procédé le plus sûr pour l'obtenir exempt de mêlange, consiste à le tirer de la décomposition de l'eau par du fer bien ductile & bien pur.
Lorsque ces deux gaz sont ainsi préparés, on 99 adapte la pompe pneumatique au tuyau Hh, & on fait le vuide dans le grand ballon A: on y introduit ensuite l'un ou l'autre des deux gaz, mais de préférence le gaz oxygène par le tuyau gg, puis on oblige par un certain degré de pression le gaz hydrogène à entrer dans le même ballon par le tuyau dDd', dont l'extrémité d' se termine en pointe. Enfin on allume ce gaz à l'aide d'une étincelle électrique. En fournissant ainsi de chacun des deux airs, on parvient à continuer très-long-tems la combustion. J'ai donné ailleurs la description des appareils que j'ai employés pour cette expérience, & j'ai expliqué comment on parvient à mesurer les quantités de gaz consommés avec une rigoureuse exactitude. Voyez la troisième partie de cet Ouvrage.
Effet.
A mesure que la combustion s'opère, il se dépose de l'eau sur les parois intérieures du ballon ou matras: la quantité de cette eau augmente peu à peu; elle se réunit en grosses goutes qui coulent & se rassemblent dans le fond du vase.
En pesant le matras avant & après l'opération, il est facile de connoître la quantité d'eau qui s'est ainsi rassemblée. On a donc dans cette expérience 100 une double vérification; d'une part le poids des gaz employés, de l'autre celui de l'eau formée, & ces deux quantités doivent être égales. C'est par une expérience de ce genre que nous avons reconnu, M. Meusnier & moi, qu'il falloit 85 parties en poids d'oxygène, & 15 parties également en poids d'hydrogène, pour composer 100 parties d'eau. Cette expérience qui n'a point encore été publiée, a été faite en présence d'une Commission nombreuse de l'Académie; nous y avons apporté les attentions les plus scrupuleuses, & nous avons lieu de la croire exacte à un deux-centième près tout au plus.
Ainsi, soit qu'on opère par voie de décomposition ou de recomposition, on peut regarder comme constant & aussi bien prouvé qu'on puisse le faire en Chimie & en Physique, que l'eau n'est point une substance simple; qu'elle est composée de deux principes, l'oxygène & l'hydrogène, & que ces deux principes séparés l'un de l'autre, ont tellement d'affinité avec le calorique, qu'ils ne peuvent exister que sous forme de gaz, au degré de température & de pression dans lequel nous vivons.
Ce phénomène de la décomposition & de la recomposition de l'eau s'opère continuellement sous nos yeux, à la température de l'atmosphère 101 & par l'effet des affinités composées. C'est à cette décomposition que sont dus, comme nous le verrons bientôt, au moins jusqu'à un certain point, les phénomènes de la fermentation spiritueuse, de la putréfaction, & même de la végétation. Il est bien extraordinaire qu'elle ait échappé jusqu'ici à l'œil attentif des Physiciens & des Chimistes, & on doit en conclure que dans les sciences comme dans la morale il est difficile de vaincre les préjugés dont on a été originairement imbu, & de suivre une autre route que celle dans laquelle on est accoutumé de marcher.
Je terminerai cet article par une expérience beaucoup moins probante que celles que j'ai précédemment rapportées, mais qui m'a paru cependant faire plus d'impression qu'aucune autre sur un grand nombre de personnes. Si on brûle une livre ou seize onces d'esprit-de-vin ou alkool dans un appareil propre à recueillir toute l'eau qui se dégage pendant la combustion, on en obtient 17 à 18 onces[5]. Or une matière quelconque ne peut rien fournir dans une expérience au-delà de la totalité de 102 son poids; il faut donc qu'il s'ajoute une autre substance à l'esprit-de-vin pendant sa combustion: or j'ai fait voir que cette autre substance étoit la base de l'air, l'oxygène. L'esprit-de-vin contient donc un des principes de l'eau, l'hydrogène; & c'est l'air de l'atmosphère qui fournit l'autre, l'oxygène: nouvelle preuve que l'eau est une substance composée.
103
De la quantité de Calorique qui se dégage des différentes espèces de combustion.
Nous avons vu qu'en opérant une combustion quelconque dans une sphère de glace creuse, & en fournissant pour l'entretenir de l'air à zéro du thermomètre, la quantité de glace fondue dans l'intérieur de la sphère, donnoit une mesure, sinon absolue, du moins relative des quantités de calorique dégagé. Nous avons donné, M. de la Place & moi, la description de l'appareil que nous avons employé dans ce genre d'expériences. Voyez Mémoires de l'Acad. des Sciences, année 1780, page 355. Voyez aussi la 3e partie de cet Ouvrage. Ayant essayé de déterminer les quantités de glace qui se fondoient par la combustion de trois des quatre substances combustibles simples, savoir, le phosphore, le carbone & l'hydrogène, nous avons obtenu les résultats qui suivent.
Pour la combustion d'une livre de phosphore, 100 livres de glace.
Pour la combustion d'une livre de carbone, 96 livres 8 onces.
104
Pour la combustion d'une livre de gaz hydrogène, 295 livres 9 onces 3 gros & demi.
La substance qui se forme par le résultat de la combustion du phosphore, étant un acide concret, il est probable qu'il reste très-peu de calorique dans cet acide, & que par conséquent cette combustion fournit un moyen de connoître, à très-peu de chose près, la quantité de calorique contenue dans le gaz oxygène. Mais quand on voudroit supposer que l'acide phosphorique retient encore une quantité considérable de calorique, comme le phosphore en contenoit aussi une portion avant la combustion, l'erreur ne pourroit jamais être que de la différence, & par conséquent de peu d'importance.
J'ai fait voir, page 60, qu'une livre de phosphore en brûlant absorboit 1 livre 8 onces d'oxygène; & puisqu'il y a en même tems 100 livres de glace fondue, il en résulte que la quantité de calorique contenue dans une livre de gaz oxygène, est capable de faire fondre 66 livres 10 onces 5 gros 24 grains de glace.
Une livre de charbon en brûlant ne fait fondre que 96 livres 8 onces de glace; mais il s'absorbe en même tems 2 livres 9 onces 1 gros 10 grains de gaz oxygène. Or, en partant des résultats obtenus dans la combustion du phosphore, 105 2 liv. 9 onc. 1 gros 10 grains de gaz oxygène, devroient abandonner assez de calorique pour fondre 171 livres 6 onces 5 gros de glace. Il disparoît donc dans cette expérience une quantité de calorique qui auroit été suffisante pour faire fondre 74 liv. 14 onc. 5 gros de glace; mais comme l'acide carbonique n'est point, comme le phosphorique, dans l'état concret après la combustion, qu'il est au contraire dans l'état gazeux, il a fallu nécessairement une quantité de calorique pour le porter à cet état, & c'est cette quantité qui se trouve manquante dans la combustion ci-dessus. En la divisant par le nombre de livres d'acide carbonique qui se forment par la combustion d'une livre de charbon, on trouve que la quantité de calorique nécessaire pour porter une livre d'acide carbonique de l'état concret à l'état gazeux, feroit fondre 20 liv. 15 onces 5 gros de glace.
On peut faire un semblable calcul sur la combustion de l'hydrogène & sur la formation de l'eau; une livre de ce fluide élastique absorbe en brûlant 5 liv. 10 onc. 5 gros 24 grains d'oxygène, & fait fondre 295 livres 9 onces 3 gros & demi de glace.
liv. | onc. | gros. | |
Or, 5 liv. 10 onces 5 gros 24 grains de gaz oxygène, en passant de l'état aériforme à l'état 106 solide, perdroient, d'après les résultats obtenus dans la combustion du phosphore, assez de calorique pour faire fondre une quantité de glace égale à | 377 | 12 | 3 |
Il ne s'en dégage dans la combustion du gaz hydrogène, que | 295 | 2 | 3 |
Il en reste donc dans l'eau qui se forme, lors même qu'elle est ramenée à zéro du thermomètre, | 82 | 9 | 7 1/2 |
Or, comme il se forme 6 liv. 10 onc. 5 gros 24 grains d'eau dans la combustion d'une livre de gaz hydrogène, il en résulte qu'il reste dans chaque livre d'eau, à zéro du thermomètre, une quantité de calorique égale à celle nécessaire pour fondre 12 liv. 5 onc. 2 gros 48 grains de glace, sans parler même de celui contenu dans le gaz hydrogène, dont il est impossible de tenir compte dans cette expérience, parce que nous n'en connoissons pas la quantité. D'où l'on voit que l'eau, même dans l'état de glace, contient encore beaucoup de calorique, & que l'oxygène en conserve une quantité très-considérable en passant dans cette combinaison.
De ces diverses tentatives on peut résumer les résultats qui suivent.
107
liv. | onc. | gros | gr. | |
Quantité de phosphore brûlé, | 1 | » | » | » |
Quantité de gaz oxygène nécessaire pour la combustion, | 1 | 8 | » | » |
Quantité d'acide phosphorique obtenu, | 2 | 8 | » | » |
Quantité de calorique dégagé par la combustion d'une livre de phosphore, exprimé par la quantité de livres de glace qu'il peut fondre, | 100,00000 | |||
Quantité de calorique dégagé de chaque livre de gaz oxygène dans la combustion du phosphore, | 66,66667 | |||
Quantité de calorique qui se dégage dans la formation d'une livre d'acide phosphorique, | 40,00000 | |||
Quantité de calorique resté dans chaque livre d'acide phosphorique, | 0,00000 |
On suppose ici que l'acide phosphorique ne conserve aucune portion de calorique, ce qui n'est pas rigoureusement vrai: mais la quantité (comme on l'a déjà observé plus haut) en est probablement très-petite, & on ne la suppose nulle que faute de la pouvoir évaluer.
108
liv. | onc. | gros | gr. | |
Quantité de charbon brûlé, | 1 | » | » | » |
Quantité de gaz oxygène absorbé pendant la combustion, | 2 | 9 | 1 | 10 |
Quantité d'acide carbonique formé, | 3 | 9 | 1 | 10 |
Quantité de calorique dégagé par la combustion d'une livre de charbon, exprimé par la quantité de livres de glace qu'il peut fondre, | 96,50000 | |||
Quantité de calorique dégagé de chaque livre de gaz oxygène, | 37,52823 | |||
Quantité de calorique qui se dégage dans la formation d'une livre de gaz acide carbonique, | 27,02024 | |||
Quantité de calorique que conserve une livre d'oxygène dans cette combustion, | 29,13844 | |||
Quantité de calorique nécessaire pour porter une livre d'acide carbonique à l'état de gaz, | 20,97960 |
109
liv. | onc. | gros | gr. | |
Quantité de gaz hydrogène brûlé, | 1 | » | » | » |
Quantité de gaz oxygène employé pour la combustion, | 5 | 10 | 5 | 24 |
Quantité d'eau formée, | 6 | 10 | 5 | 24 |
Quantité de calorique dégagé par la combustion d'une livre de gaz hydrogène, | 295,58950 | |||
Quantité de calorique dégagé par chaque livre de gaz oxygène, | 52,16280 | |||
Quantité de calorique qui se dégage pendant la formation d'une livre d'eau, | 44,33840 | |||
Quantité de calorique que conserve une livre d'oxygène dans sa combustion avec l'hydrogène, | 14,50386 | |||
Quantité de calorique que conserve une livre d'eau à zéro, | 12,32823 |
Lorsque l'on combine du gaz nitreux avec du gaz oxigène pour former de l'acide nitrique ou nitreux, il y a une légère chaleur produite; mais elle est beaucoup moindre que celle qui 110 a lieu dans les autres combinaisons de l'oxygène; d'où il résulte par une conséquence nécessaire que le gaz oxygène, en se fixant dans l'acide nitrique, retient une grande partie du calorique qui lui étoit combiné dans l'état de gaz. Il n'est point impossible sans doute de déterminer la quantité de calorique qui se dégage pendant la réunion des deux gaz, & on en concluroit facilement ensuite celle qui demeure engagée dans la combinaison. On parviendroit à obtenir la première de ces données, en opérant la combinaison du gaz nitreux & du gaz oxygène dans un appareil environné de glace: mais comme il se dégage peu de calorique dans cette combinaison, on ne pourroit réussir à en déterminer la quantité, qu'autant qu'on opéreroit très en grand avec des appareils embarrassans & compliqués; & c'est ce qui nous a empêchés jusqu'ici, M. de la Place & moi, de la tenter. En attendant, on peut déjà y suppléer par des calculs qui ne peuvent pas s'écarter beaucoup de la vérité.
Nous avons fait détonner, M. de la Place & moi, dans un appareil à glace une proportion convenable de salpêtre & de charbon, & nous avons observé qu'une livre de salpêtre pouvoit, en détonant ainsi, fondre 12 livres de glace.
Mais une livre de salpêtre, comme on 111 le verra dans la suite, contient:
onc. | gros | grains. | |
Potasse | 7 | 6 | 51,84 = 4515,84. |
Acide sec | 8 | 1 | 20,16 = 4700,16. |
Et les 8 onces 1 gros 20 grains 16 d'acide, sont eux-mêmes composés de
onc. | gros | grains. | |
Oxygène | 6 | 3 | 66,34 = 3738,34. |
Mofète | 1 | 5 | 25,82 = 961,82. |
On a donc réellement brûlé dans cette opération 2 gros 1 grain 1/3 de charbon, à l'aide de 3738,34 grains, ou 6 onces 3 gros 66,34 grains d'oxygène; & puisque la quantité de glace fondue dans cette combustion a été de 12 livres, il en résulte qu'une livre de gaz oxygène brûlé de la même manière, fondroit | 29,58320 |
A quoi ajoutant pour la quantité de calorique que conserve une livre d'oxygène dans sa combinaison avec le charbon, pour constituer l'acide carbonique dans l'état de gaz, & qui est, comme on l'a vu plus haut, de | 29,13844 |
On a pour la quantité totale de calorique que contient une livre d'oxygène, lorsqu'il est combiné dans l'acide nitrique, | 58,72164 |
112On a vu par le résultat de la combustion du phosphore, que dans l'état de gaz oxygène il en contenoit au moins | 66,66667 |
Donc, en se combinant avec l'azote pour former de l'acide nitrique, il n'en perd que | 7,94502 |
Des expériences ultérieures apprendront si ce résultat déduit par le calcul, s'accorde avec des opérations plus directes.
Cette énorme quantité de calorique que l'oxygène porte avec lui dans l'acide nitrique, explique pourquoi dans toutes les détonations du nitre, ou pour mieux dire, dans toutes les occasions où l'acide nitrique se décompose, il y a un si grand dégagement de calorique.
Après avoir examiné quelques cas de combustions simples, je vais donner des exemples de combustions plus composées; je commence par la cire.
Une livre de cette substance, en brûlant paisiblement dans l'appareil à glace destiné à mesurer les quantités de calorique, fond 133 liv. 2 onces 5 gros 1/3 de glace.
Or une livre de bougie, suivant les expériences 113 que j'ai rapportées, Mém. de l'Acad. année 1784, page 606, contient:
onc. | gros | grains. | |
Charbon | 13 | 1 | 23 |
Hydrogène | 2 | 6 | 49 |
liv. de glace. | |
Les 13 onces 1 gros 23 grains de charbon, d'après les expériences ci-dessus rapportées, devoient fondre | 79,39390 |
Les 2 onces 6 gros 49 grains d'hydrogène, devoient fondre | 52,37605 |
Total, | 131,76995 |
On voit par ces résultats, que la quantité de calorique qui se dégage de la bougie qui brûle, est assez exactement égale à celle qu'on obtiendroit en brûlant séparément un poids de charbon & d'hydrogène égal à celui qui entre dans sa combinaison. Les expériences sur la combustion de la bougie ayant été répétées plusieurs fois, j'ai lieu de présumer qu'elles sont exactes.
Nous avons enfermé dans l'appareil ordinaire une lampe qui contenoit une quantité d'huile d'olives bien connue; & l'expérience finie, nous avons déterminé exactement le poids de l'huile qui avoit été consommée, & celui de 114 la glace qui avoir été fondue; le résultat a été qu'une livre d'huile d'olives en brûlant pouvoit fondre 148 livr. 14 onc. 1 gros de glace.
Mais une livre d'huile d'olives, d'après les expériences que j'ai rapportées, Mémoires de l'Acad. année 1784, & dont on trouvera un extrait dans le chapitre suivant, contient:
onc. | gros | grains. | |
Charbon | 12 | 5 | 5 |
Hydrogène | 3 | 2 | 67 |
liv. de glace. | |
La combustion de 12 onces 5 gros 5 grains de charbon, ne devoit fondre que | 76,18723 |
Et celle de 3 onces 2 gros 67 grains d'hydrogène, | 62,15053 |
Total, | 138,33776 |
Il s'en est fondu | 148,88330 |
Le dégagement de calorique a donc été plus considérable qu'il ne devoit l'être d'une quantité équivalente à | 10,54554 |
Cette différence qui n'est pas au surplus très-considérable peut tenir ou à des erreurs inévitables dans les expériences de ce genre, ou à ce que la composition de l'huile n'est pas encore assez rigoureusement connue. Mais il en 115 résulte toujours qu'il y a déjà beaucoup d'ensemble & d'accord dans la marche des expériences relatives à la combinaison & au dégagement du calorique.
Ce qui reste à faire dans ce moment & dont nous sommes occupés, est de déterminer ce que l'oxygène conserve de calorique dans sa combinaison avec les métaux pour les convertir en oxides; ce que l'hydrogène en contient dans les différens états dans lesquels il peut exister; enfin de connoître d'une manière plus exacte la quantité de calorique qui se dégage dans la formation de l'eau. Il nous reste sur cette détermination une incertitude assez grande qu'il est nécessaire de lever par de nouvelles expériences. Ces différens points bien connus, & nous espérons qu'ils le seront bientôt, nous nous trouverons vraisemblablement obligés de faire des corrections, peut-être même assez considérables, à la plupart des résultats que je viens d'exposer; mais je n'ai pas cru que ce fût une raison de différer d'en aider ceux qui pourront se proposer de travailler sur le même objet. Il est difficile quand on cherche les élémens d'une science nouvelle, de ne pas commencer par des à-peu-près; & il est rare qu'il soit possible de la porter dès le premier jet à son état de perfection.
116
De la combinaison des Substances combustibles les unes avec les autres.
Les substances combustibles étant en général celles qui ont une grande appétence pour l'oxygène, il en résulte qu'elles doivent avoir de l'affinité entr'elles, qu'elles doivent tendre à se combiner les unes avec les autres: quæ sunt eadem uni tertio sunt eadem inter se; & c'est ce qu'on observe en effet. Presque tous les métaux, par exemple, sont susceptibles de se combiner les uns avec les autres, & il en résulte un ordre de composés qu'on nomme alliage dans les usages de la société. Rien ne s'oppose à ce que nous adoptions cette expression: ainsi nous dirons que la plupart des métaux s'allient les uns avec les autres; que les alliages, comme toutes les combinaisons, sont susceptibles d'un ou de plusieurs degrés de saturation: que les substances métalliques dans cet état sont en général plus cassantes que les métaux purs, sur-tout lorsque les métaux alliés diffèrent beaucoup par leur degré de fusibilité; enfin nous ajouterons que c'est à cette différence des degrés de fusibilité 117 des métaux que sont dus une partie des phénomènes particuliers que présentent les alliages, tels, par exemple, que la propriété qu'ont quelques espèces de fer d'être cassans à chaud. Ces fers doivent être considérés comme un alliage de fer pur, métal presqu'infusible, avec une petite quantité d'un autre métal, quel qu'il soit, qui se liquéfie à une chaleur beaucoup plus douce. Tant qu'un alliage de cette espèce est froid, & que les deux métaux sont dans l'état solide, il peut être malléable: mais si on le chauffe à un degré suffisant pour liquéfier celui des deux métaux qui est le plus fusible, les parties liquides interposées entre les solides doivent rompre la solution de continuité, & le fer doit devenir cassant.
A l'égard des alliages du mercure avec les métaux, on a coutume de les désigner sous le nom d'amalgame, & nous n'avons vu aucun inconvénient à leur conserver cette dénomination.
Le soufre, le phosphore, le charbon sont également susceptibles de se combiner avec les métaux; les combinaisons du soufre ont été en général désignées sous le nom de pirites; les autres n'ont point été nommées, ou du moins elles ont reçu des dénominations si modernes que rien ne s'oppose à ce qu'elles soient changées.
118
Nous avons donné aux premières de ces combinaisons le nom de sulfures, aux secondes celui de phosphures, enfin aux troisièmes celui de carbures. Ainsi le soufre, le phosphore, le charbon oxygénés forment des oxides ou des acides; mais lorsqu'ils entrent dans des combinaisons sans s'être auparavant oxygénés, ils forment des sulfures, des phosphures & des carbures. Nous étendrons même ces dénominations aux combinaisons alkalines; ainsi nous désignerons sous le nom de sulfure de potasse la combinaison du soufre avec la potasse ou alkali fixe végétal, & sous le nom de sulfure d'ammoniaque la combinaison du soufre avec l'alkali volatil ou ammoniaque.
L'hydrogène, cette substance éminemment combustible est aussi susceptible de se combiner avec un grand nombre de substances combustibles. Dans l'état de gaz il dissout le carbone, le soufre, le phosphore & plusieurs métaux. Nous désignerons ces combinaisons sous le nom de gaz hydrogène carboné, de gaz hydrogène sulfuré, de gaz hydrogène phosphoré. Le second de ces gaz, le gaz hydrogène sulfuré est celui que les chimistes ont désigné sous le nom de gaz hépatique, & que M. Schéele a nommé gaz puant du soufre; c'est à lui que quelques eaux minérales doivent leurs vertus; 119 c'est aussi à son émanation que les déjections animales doivent principalement leur odeur infecte. A l'égard du gaz hydrogène phosphoré, il est remarquable par la propriété qu'il a de s'enflammer spontanément lorsqu'il a le contact de l'air ou mieux encore celui du gaz oxigène, comme l'a découvert M. Gengembre. Ce gaz a l'odeur du poisson pourri, & il est probable qu'il s'exhale en effet un véritable gaz hydrogène phosphoré de la chair des poissons par la putréfaction.
Lorsque l'hydrogène & le carbone s'unissent ensemble sans que l'hydrogène ait été porté à l'état de gaz par le calorique, il en résulte une combinaison particulière connue sous le nom d'huile, & cette huile est ou fixe ou volatile, suivant les proportions de l'hydrogène & du carbone.
Il ne sera pas inutile d'observer ici qu'un des principaux caractères qui distingue les huiles fixes retirées des végétaux par expression d'avec les huiles volatiles ou essentielles, c'est que les premières contiennent un excès de carbone qui s'en sépare lorsqu'on les échauffe au-delà du degré de l'eau bouillante: les huiles volatiles au contraire étant formées d'une plus juste proportion de carbone & d'hydrogène, ne sont point susceptibles d'être décomposées à un degré de 120 chaleur supérieur à l'eau bouillante; les deux principes qui les constituent demeurent unis; ils se combinent avec le calorique pour former un gaz, & c'est dans cet état que ces huiles passent dans la distillation.
J'ai donné la preuve que les huiles étoient ainsi composées d'hydrogène & de carbone dans un mémoire sur la combinaison de l'esprit de vin & des huiles avec l'oxygène, imprimé dans le recueil de l'Académie, année 1784, page 593. On y verra que les huiles fixes en brûlant dans le gaz oxygène se convertissent en eau & en acide carbonique, & qu'en appliquant le calcul à l'expérience, elles sont composées de 21 parties d'hydrogène & de 79 parties de carbone. Peut-être les substances huileuses solides, telles que la cire, contiennent-elles en outre un peu d'oxigène auquel elles doivent leur état solide. Je suis au surplus occupé dans ce moment d'expériences qui donneront un grand développement à toute cette théorie.
C'est une question bien digne d'être examinée, de savoir si l'hydrogène est susceptible de se combiner avec le soufre, le phosphore & même avec les métaux dans l'état concret. Rien n'indique sans doute à priori que ces combinaisons soient impossibles; car puisque les corps combustibles sont en général susceptibles de se 121 combiner les uns avec les autres, on ne voit pas pourquoi l'hydrogène feroit exception. Mais en même-tems aucune expérience directe ne prouve encore ni la possibilité ni l'impossibilité de cette union. Le fer & le zinc sont de tous les métaux ceux dans lesquels on seroit le plus en droit de soupçonner une combinaison d'hydrogène: mais en même-tems ces métaux ont la propriété de décomposer l'eau; & comme dans les expériences chimiques il est difficile de se débarrasser des derniers vestiges d'humidité, il n'est pas facile de s'assurer si les petites portions de gaz hydrogène qu'on obtient dans quelques expériences sur ces métaux leur étoient combinées, ou bien si elles proviennent de la décomposition de quelques molécules d'eau. Ce qu'il y a de certain, c'est que plus on prend soin d'écarter l'eau de ce genre d'expérience, plus la quantité de gaz hydrogène diminue, & qu'avec de très-grandes précautions on parvient à n'en avoir que des quantités presque insensibles.
Quoi qu'il en soit, que les corps combustibles, notamment le soufre, le phosphore & les métaux, soient susceptibles ou non d'absorber de l'hydrogène, on peut assurer au moins qu'il ne s'y combine qu'en très-petite quantité; & que cette combinaison loin d'être essentielle à leur 122 constitution, ne peut être regardée que comme une addition étrangère qui en altère la pureté. C'est au surplus à ceux qui ont embrassé ce systême à prouver par des expériences décisives l'existence de cet hydrogène, & jusqu'à présent ils n'ont donné que des conjectures appuyées sur des suppositions.
123
Considérations sur les Oxides & les Acides à plusieurs bases, & sur la composition des matières végétales & animales.
Nous avons examiné dans le chapitre cinquième & dans le chapitre huitième quel étoit le résultat de la combustion & de l'oxygénation des quatre substances combustibles simples, le phosphore, le soufre, le carbone & l'hydrogène: nous avons fait voir dans le chapitre dixième que les substances combustibles simples étoient susceptibles de se combiner les unes avec les autres, pour former des corps combustibles composés, & nous avons observé que les huiles en général, principalement les huiles fixes des végétaux, appartenoient à cette classe, & qu'elles étoient toutes composées d'hydrogène & de carbone. Il me reste à traiter dans ce chapitre de l'oxygénation des corps combustibles composés, à faire voir qu'il existe des acides & des oxides à base double & triple, que la nature nous en fournit à chaque pas des exemples, & que c'est principalement par ce genre de combinaisons qu'elle est parvenue à former avec 124 un aussi petit nombre d'élémens ou de corps simples une aussi grande variété de résultats.
On avoit très-anciennement remarqué qu'en mêlant ensemble de l'acide muriatique & de l'acide nitrique, il en résultoit un acide mixte qui avoit des propriétés fort différentes de celles des deux acides dont il étoit composé. Cet acide a été célébre par la propriété qu'il a de dissoudre l'or, le Roi des métaux dans le langage alchimique, & c'est de-là que lui a été donnée la qualification brillante d'eau régale. Cet acide mixte, comme l'a très-bien prouvé M. Berthollet, a des propriétés particulières dépendantes de l'action combinée de ses deux bases acidifiables, & nous avons cru par cette raison devoir lui conserver un nom particulier. Celui d'acide nitro-muriatique nous a paru le plus convenable, parce qu'il exprime la nature des deux substances qui entrent dans sa composition.
Mais ce phénomène qui n'a été observé que pour l'acide nitro-muriatique se présente continuellement dans le règne végétal: il est infiniment rare d'y trouver un acide simple, c'est-à-dire qui ne soit composé que d'une seule base acidifiable. Tous les acides de ce règne ont pour base l'hydrogène & le carbone, quelquefois l'hydrogène, le carbone & le phosphore, 125 le tout combiné avec une proportion plus ou moins considérable d'oxygène. Le règne végétal a également des oxides qui sont formés des mêmes bases doubles & triples, mais moins oxygénées.
Les acides & oxides du règne animal sont encore plus composés; il entre dans la combinaison de la plupart quatre bases acidifiables, l'hydrogène, le carbone, le phosphore & l'azote.
Je ne m'étendrai pas beaucoup ici sur cette matière sur laquelle il n'y a pas long-tems que je me suis formé des idées claires & méthodiques: je la traiterai plus à fond dans des Mémoires que je prépare pour l'Académie. La plus grande partie de mes expériences sont faites, mais il est nécessaire que je les répète & que je les multiplie davantage, afin de pouvoir donner des résultats exacts pour les quantités. Je me contenterai en conséquence de faire une courte énumération des oxides & acides végétaux & animaux, & de terminer cet article par quelques réflexions sur la constitution végétale & animale.
Les oxides végétaux à deux bases sont le sucre, les différentes espèces de gomme que nous avons réunies sous le nom générique de muqueux, & l'amidon. Ces trois substances ont pour radical l'hydrogène & le carbone combinés 126 ensemble, de manière à ne former qu'une seule base, & portés à l'état d'oxide par une portion d'oxygène; ils ne diffèrent que par la proportion des principes qui composent la base. On peut de l'état d'oxide les faire passer à celui d'acide en leur combinant une nouvelle quantité d'oxygène, & on forme ainsi, suivant le degré d'oxygénation & la proportion de l'hydrogène & du carbone, les différens acides végétaux.
Il ne s'agiroit plus pour appliquer à la nomenclature des acides & des oxides végétaux les principes que nous avons précédemment établis pour les oxides & les acides minéraux, que de leur donner des noms relatifs à la nature des deux substances qui composent leur base. Les oxides & les acides végétaux seroient alors des oxides & des acides hydro-carboneux: bien plus on auroit encore dans cette méthode l'avantage de pouvoir indiquer sans périphrases quel est le principe qui est en excès, comme M. Rouelle l'avoit imaginé pour les extraits végétaux: il appeloit extracto-résineux celui où l'extrait dominoit, & résino-extractif celui qui participoit davantage de la résine.
En partant des mêmes principes, & en variant les terminaisons pour donner encore plus d'étendue à ce langage, on auroit pour désigner 127 les acides & les oxides végétaux, les dénominations suivantes:
Il est probable que cette variété de langage sera suffisante pour indiquer toutes les variétés que nous présente la nature, & qu'à mesure que les acides végétaux seront bien connus, ils se rangeront naturellement & pour ainsi dire d'eux-mêmes dans le cadre que nous venons de présenter. Mais il s'en faut bien que nous soyons encore en état de pouvoir faire une classification méthodique de ces substances: nous savons quels sont les principes qui les composent, & il ne me reste plus aucun doute à cet égard; mais les proportions sont encore inconnues. Ce sont ces considérations qui nous ont déterminés à conserver provisoirement les 128 noms anciens; & maintenant encore que je suis un peu plus avancé dans cette carrière que je ne l'étois à l'époque où notre essai de nomenclature a paru, je me reprocherois de tirer des conséquences trop décidées d'expériences qui ne sont pas encore assez précises: mais en convenant que cette partie de la Chimie reste en souffrance, je puis y ajouter l'espérance qu'elle sera bientôt éclaircie.
Je me trouve encore plus impérieusement forcé de prendre le même parti à l'égard des oxides & des acides à trois & quatre bases, dont le règne animal présente un grand nombre d'exemples, & qui se rencontrent même quelquefois dans le règne végétal. L'azote, par exemple, entre dans la composition de l'acide prussique; il s'y trouve joint à l'hydrogène & au carbone, pour former une base triple; il entre également, à ce qu'on peut croire, dans l'acide gallique. Enfin presque tous les acides animaux ont pour base l'azote, le phosphore, l'hydrogène & le carbone. Une nomenclature qui entreprendroit d'exprimer à la fois ces quatre bases, seroit méthodique sans doute; elle auroit l'avantage d'exprimer des idées claires & déterminées: mais cette cumulation de substantifs & d'adjectifs grecs & latins, dont les Chimistes même n'ont point encore admis généralement l'usage, sembleroit 129 présenter un langage barbare, également difficile à retenir & à prononcer. La perfection d'ailleurs de la science doit précéder celle du langage, & il s'en faut bien que cette partie de la Chimie soit encore parvenue au point auquel elle doit arriver un jour. Il est donc indispensable de conserver, au moins pour un tems, les noms anciens pour les acides & oxides animaux. Nous nous sommes seulement permis d'y faire quelques légères modifications; par exemple, de terminer en eux la dénomination de ceux dans lesquels nous soupçonnons que le principe acidifiable est en excès, & de terminer au contraire en ique le nom de ceux dans lesquels nous avons lieu de croire que l'oxygène est prédominant.
Les acides végétaux qu'on connoît jusqu'à présent, sont au nombre de treize; savoir:
Quoique tous ces acides soient, comme je l'ai dit, principalement & presqu'uniquement composés d'hydrogène, de carbone & d'oxygène, ils ne contiennent cependant, à proprement parler, ni eau, ni acide carbonique, ni huile, mais seulement les principes propres à les former. La force d'attraction qu'exercent réciproquement l'hydrogène, le carbone & l'oxygène, est dans ces acides dans un état d'équilibre qui ne peut exister qu'à la température dans laquelle nous vivons: pour peu qu'on les échauffe au-delà du degré de l'eau bouillante, l'équilibre est rompu; l'oxygène & l'hydrogène se réunissent pour former de l'eau; une portion du carbone s'unit à l'hydrogène pour produire de l'huile; il se forme aussi de l'acide carbonique par la combinaison du carbone & de l'oxygène; enfin il se trouve presque toujours une quantité excédente de charbon qui reste libre. C'est ce que je me propose de développer un peu davantage dans le Chapitre suivant.
Les oxides du règne animal sont encore moins connus que ceux du règne végétal, & leur nombre même est encore indéterminé. La partie rouge du sang, la lymphe, presque toutes les sécrétions sont de véritables oxides; & c'est 131 sous ce point de vue qu'il est important de les étudier.
Quant aux acides animaux, le nombre de ceux qui sont connus se borne actuellement à six; encore est-il probable que plusieurs de ces acides rentrent les uns dans les autres, ou au moins ne diffèrent que d'une manière peu sensible. Ces acides sont:
Je ne place pas l'acide phosphorique au rang des acides animaux, parce qu'il appartient également aux trois règnes.
La connexion des principes qui constituent les acides & les oxides animaux, n'est pas plus solide que celle des acides & des oxides végétaux; un très-léger changement dans la température suffit pour la troubler, & c'est ce que j'espère rendre plus sensible par les observations que je vais rapporter dans le Chapitre suivant.
132
De la décomposition des Matières végétales & animales par l'action du feu.
Pour bien concevoir ce qui se passe dans la décomposition des substances végétales par le feu, il faut non-seulement considérer la nature des principes qui entrent dans leur composition, mais encore les différentes forces d'attraction que les molécules de ces principes exercent les unes sur les autres, & en même-tems celle que le calorique exerce sur eux.
Les principes vraiment constitutifs des végétaux se réduisent à trois, comme je viens de l'exposer dans le Chapitre précédent; l'hydrogène, l'oxygène & le carbone. Je les appelle constitutifs, parce qu'ils sont communs à tous les végétaux, qu'il ne peut exister de végétaux sans eux; à la différence des autres substances qui ne sont essentielles qu'à la constitution de tel végétal en particulier, mais non pas de tous les végétaux en général.
De ces trois principes, deux, l'hydrogène & l'oxygène, ont une grande tendance à s'unir au calorique & à se convertir en gaz; tandis 133 que le carbone au contraire est un principe fixe & qui a très-peu d'affinité avec le calorique.
D'un autre côté, l'oxygène qui tend avec un degré de force à peu près égale à s'unir, soit avec l'hydrogène, soit avec le carbone, à la température habituelle dans laquelle nous vivons, a au contraire plus d'affinité avec le carbone à une chaleur rouge; l'oxygène quitte en conséquence à ce degré l'hydrogène, & s'unit au carbone pour former de l'acide carbonique.
Je me servirai quelquefois de cette expression chaleur rouge, quoiqu'elle n'exprime pas un degré de chaleur bien déterminée, mais beaucoup supérieure cependant à celle de l'eau bouillante.
Quoique nous soyons bien éloignés de connoître la valeur de toutes ces forces, & de pouvoir en exprimer l'énergie par des nombres, au moins sommes-nous certains par ce qui se passe journellement sous nos yeux, que quelque variables qu'elles soient en raison du degré de température, ou, ce qui est la même chose, en raison de la quantité de calorique avec lequel elles sont combinées, elles sont toutes à peu près en équilibre à la température dans laquelle nous vivons; ainsi les végétaux ne contiennent ni huile, ni eau, ni acide carbonique[B]; mais ils 134 contiennent les élémens de toutes ces substances. L'hydrogène n'est point combiné, ni avec l'oxygène, ni avec le carbone, & réciproquement; mais les molécules de ces trois substances forment une combinaison triple, d'où résultent le repos & l'équilibre.
Un changement très-léger dans la température suffit pour renverser tout cet échaffaudage de combinaisons, s'il est permis de se servir de cette expression. Si la température à laquelle le végétal est exposé n'excède pas beaucoup celle de l'eau bouillante, l'hydrogène & l'oxygène se réunissent & forment de l'eau qui passe dans la distillation; une portion d'hydrogène & de carbone s'unissent ensemble pour former de l'huile volatile, une autre portion de carbone devient libre, & comme le principe le plus fixe, il reste dans la cornue. Mais si au lieu d'une chaleur voisine de l'eau bouillante on applique à une substance végétale une chaleur rouge, alors ce n'est plus de l'eau qui se forme, ou plutôt même celle qui pouvoit s'être formée par la première impression de la chaleur se décompose; l'oxygène s'unit au carbone avec lequel il a plus d'affinité à ce degré; il se forme de l'acide carbonique, & l'hydrogène devenu libre s'échappe sous la forme de gaz, en s'unissant au calorique. Non-seulement à ce degré il ne 135 se forme point d'huile, mais s'il s'en étoit formé, elle seroit décomposée.
On voit donc que la décomposition des matières végétales se fait à ce degré, en vertu d'un jeu d'affinités doubles & triples, & que tandis que le carbone attire l'oxygène pour former de l'acide carbonique, le calorique attire l'hydrogène pour former du gaz hydrogène.
Il n'est point de substance végétale dont la distillation ne fournisse la preuve de cette théorie, si toutefois on peut appeler de ce nom un simple énoncé des faits. Qu'on distille du sucre; tant qu'on ne lui fera éprouver qu'une chaleur inférieure à celle de l'eau bouillante, il ne perdra qu'un peu d'eau de cristallisation; il sera toujours du sucre & il en conservera toutes les propriétés: mais sitôt qu'on l'expose à une chaleur tant soit peu supérieure à celle de l'eau bouillante, il noircit; une portion de carbone se sépare de la combinaison, en même tems il passe de l'eau légèrement acide, & un peu d'huile; le charbon qui reste dans la cornue, forme près d'un tiers du poids originaire.
Le jeu des affinités est encore plus compliqué dans les plantes qui contiennent de l'azote, comme les crucifères, & dans celles qui contiennent du phosphore; mais comme ces substances n'entrent qu'en petite quantité dans leur 136 combinaison, elles n'apportent pas de grands changemens, au moins en apparence, dans les phénomènes de la distillation: il paroît que le phosphore demeure combiné avec le charbon, qui lui communique de la fixité. Quant à l'azote, il s'unit à l'hydrogène pour former de l'ammoniaque ou alkali volatil.
Les matières animales étant composées à peu près des mêmes principes que les plantes crucifères, leur distillation donne le même résultat; mais comme elles contiennent plus d'hydrogène & plus d'azote, elles fournissent plus d'huile & plus d'ammoniaque. Pour faire connoître avec quelle ponctualité cette théorie rend compte de tous les phénomènes qui ont lieu dans la distillation des matières animales, je ne citerai qu'un fait; c'est la rectification & la décomposition totale des huiles volatiles animales, appelées vulgairement huiles de Dippel. Ces huiles, lorsqu'on les obtient par une première distillation à feu nud, sont brunes, parce qu'elles contiennent un peu de charbon presque libre; mais elles deviennent blanches par la rectification. Le carbone tient si peu à ces combinaisons, qu'il s'en sépare par leur simple exposition à l'air. Si on place une huile volatile animale bien rectifiée & par conséquent blanche, limpide & transparente, sous une cloche remplie 137 de gaz oxygène, en peu de tems le volume du gaz diminue & il est absorbé par l'huile. L'oxygène se combine avec l'hydrogène de l'huile, pour former de l'eau qui tombe au fond; en même tems la portion de charbon qui étoit combinée avec l'hydrogène, devient libre & se manifeste par sa couleur noire. C'est par cette raison que ces huiles ne se conservent blanches & claires, qu'autant qu'on les enferme dans des flacons bien bouchés, & qu'elles noircissent dès qu'elles ont le contact de l'air.
Les rectifications successives de ces mêmes huiles présentent un autre phénomène confirmatif de cette théorie. A chaque fois qu'on les distille, il reste un peu de charbon au fond de la cornue, en même tems il se forme un peu d'eau par la combinaison de l'oxygène de l'air des vaisseaux avec l'hydrogène de l'huile. Comme ce même phénomène a lieu à chaque distillation de la même huile, il en résulte qu'au bout d'un grand nombre de rectifications successives, sur-tout si on opère à un degré de feu un peu fort & dans des vaisseaux d'une capacité un peu grande, la totalité de l'huile se trouve décomposée, & l'on parvient à la convertir entièrement en eau & en charbon. Cette décomposition totale de l'huile par des 138 rectifications répétées, est beaucoup plus longue & beaucoup plus difficile, quand on opère avec des vaisseaux d'une petite capacité, & sur-tout à un degré de feu lent & peu supérieur à celui de l'eau bouillante. Je rendrai compte à l'Académie, dans un Mémoire particulier, du détail de mes expériences sur cette décomposition des huiles; mais ce que j'ai dit me paroît suffire pour donner des idées précises de la constitution des matières végétales & animales, & de leur décomposition par le feu.
139
De la décomposition des Oxides végétaux par la fermentation vineuse.
Tout le monde sait comment se fait le vin, le cidre, l'hidromel & en général toutes les boissons fermentées spiritueuses. On exprime le jus des raisins & des pommes; on étend d'eau ce dernier; on met la liqueur dans de grandes cuves, & on la tient dans un lieu dont la température soit au moins de 10 degrés du thermomètre de Réaumur. Bientôt il s'y excite un mouvement rapide de fermentation, des bulles d'air nombreuses viennent crêver à la surface, & quand la fermentation est à son plus haut période, la quantité de ces bulles est si grande, la quantité de gaz qui se dégage est si considérable, qu'on croiroit que la liqueur est sur un brâsier ardent qui y excite une violente ébullition. Le gaz qui se dégage est de l'acide carbonique, & quand on le recueille avec soin, il est parfaitement pur & exempt du mêlange de toute autre espèce d'air ou de gaz.
Le suc des raisins, de doux & de sucré qu'il étoit, se change dans cette opération en une liqueur 140 vineuse qui, lorsque la fermentation est complette, ne contient plus de sucre, & dont on peut retirer par distillation une liqueur inflammable qui est connue dans le commerce & dans les arts sous le nom d'esprit de vin. On sent que cette liqueur étant un résultat de la fermentation d'une matière sucrée quelconque suffisamment étendue d'eau, il auroit été contre les principes de notre nomenclature de la nommer plutôt esprit de vin qu'esprit de cidre, ou esprit de sucre fermenté. Nous avons donc été forcés d'adopter un nom plus général, & celui d'alkool qui nous vient des arabes nous a paru propre à remplir notre objet.
Cette opération est une des plus frappantes & des plus extraordinaires de toutes celles que la Chimie nous présente, & nous avons à examiner d'où vient le gaz acide carbonique qui se dégage, d'où vient l'esprit inflammable qui se forme, & comment un corps doux, un oxide végétal peut se transformer ainsi en deux substances si différentes, dont l'une est combustible, l'autre éminemment incombustible. On voit que pour arriver à la solution de ces deux questions, il falloit d'abord bien connoître l'analyse & la nature du corps susceptible de fermenter, & les produits de la fermentation; car rien ne se crée, ni dans les opérations de l'art, ni dans 141 celles de la nature, & l'on peut poser en principes que dans toute opération, il y a une égale quantité de matière avant & après l'opération; que la qualité & la quantité des principes est la même, & qu'il n'y a que des changemens, des modifications.
C'est sur ce principe qu'est fondé tout l'art de faire des expériences en Chimie: on est obligé de supposer dans toutes une véritable égalité ou équation entre les principes du corps qu'on examine, & ceux qu'on en retire par l'analyse. Ainsi puisque du moût de raisin donne du gaz acide carbonique & de l'alkool, je puis dire que le moût de raisin = acide carbonique + alkool. Il résulte de-là qu'on peut parvenir de deux manières à éclaircir ce qui se passe dans la fermentation vineuse; la première, en déterminant bien la nature & les principes du corps fermentescible; la seconde, en observant bien les produits qui en résultent par la fermentation, & il est évident que les connoissances que l'on peut acquérir sur l'un conduisent à des conséquences certaines sur la nature des autres, & réciproquement.
Il étoit important d'après cela que je m'attachasse à bien connoître les principes constituans du corps fermentescible. On conçoit que pour y parvenir je n'ai pas été chercher les 142 sucs de fruits très-composés, & dont une analyse rigoureuse seroit peut-être impossible. J'ai choisi de tous les corps susceptibles de fermenter le plus simple; le sucre dont l'analyse est facile, & dont j'ai déjà précédemment fait connoître la nature. On se rappelle que cette substance est un véritable oxide végétal, un oxide à deux bases; qu'il est composé d'hydrogène & de carbone porté à l'état d'oxide par une certaine proportion d'oxygène, & que ces trois principes sont dans un état d'équilibre qu'une force très-légère suffit pour rompre: une longue suite d'expériences faites par différentes voies & que j'ai répétées bien des fois, m'a appris que les proportions des principes qui entrent dans la composition du sucre sont à-peu-près les suivantes.
Hydrogène, | 8 | parties. |
Oxygène, | 64 | |
Carbone, | 28 | |
Total, | 100 |
Pour faire fermenter le sucre il faut d'abord l'étendre d'environ quatre parties d'eau. Mais de l'eau & du sucre mêlés ensemble, dans quelque proportion que ce soit, ne fermenteroient jamais seuls, & l'équilibre subsisteroit toujours entre les principes de cette combinaison, 143 si on ne le rompoit par un moyen quelconque. Un peu de levure de bierre suffit pour produire cet effet & pour donner le premier mouvement à la fermentation: elle se continue ensuite d'elle-même jusqu'à la fin. Je rendrai compte ailleurs des effets de la levure & de ceux des fermens en général. J'ai communément employé dix livres de levure en pâte pour un quintal de sucre, & une quantité d'eau égale à quatre fois le poids du sucre: ainsi la liqueur fermentescible se trouvoit composée ainsi qu'il suit: je donne ici les résultats de mes expériences tels que je les ai obtenus, & en conservant même jusqu'aux fractions que m'a données le calcul de réduction.
Matériaux de la fermentation pour un quintal de sucre.
liv. | onc. | gr. | gr. | |||
Eau | 400 | » | » | » | ||
Sucre | 100 | » | » | » | ||
Levure de biere en pâte, composée de | Eau | 7 | 3 | 6 | 44 | |
Levure seche | 2 | 12 | 1 | 28 | ||
Total | 510 | » | » | » |
144
Détail des principes constituans des matériaux de la fermentation.
livres | onces | gros | grains | |||
407 livres 3 onces 6 gros 44 grains d'eau composées de | Hydrogène | 61 | 1 | 2 | 71,40 | |
Oxygène | 346 | 2 | 3 | 44,60 | ||
100 livres de sucre composées de | Hydrogène | 8 | » | » | » | |
Oxygène | 64 | » | » | » | ||
Carbone | 28 | » | » | » | ||
2 livres 12 onces 1 gros 28 grains de levure seche composées de | Carbone | » | 12 | 4 | 59,00 | |
Azote | » | » | 5 | 2,94 | ||
Hydrogène | » | 4 | 5 | 9,30 | ||
Oxygène | 1 | 10 | 2 | 28,76 | ||
Total | 510 | » | » | » |
Récapitulation des principes constituans des matériaux de la fermentation.
liv. | on. | gr. | grains. | liv. | onc. | gr. | gr. | ||||
Oxygène | de l'eau | 340 | » | » | » | 411 | 12 | 6 | 1,36 | ||
de l'eau de la levure | 6 | 2 | 3 | 44,60 | |||||||
du sucre | 64 | » | » | » | |||||||
de la levure | 1 | 10 | 2 | 28,76 | |||||||
Hydrogène | de l'eau | 60 | » | » | » | 69 | 6 | » | 8,70 | ||
de l'eau de la levure | 1 | 1 | 2 | 71,40 | |||||||
du sucre | 8 | » | » | » | |||||||
de la levure | » | 4 | 5 | 9,30 | |||||||
Carbone | du sucre | 28 | » | » | » | 28 | 12 | 4 | 59,00 | ||
de la levure | » | 12 | 4 | 59,00 | |||||||
Azote | de la levure | » | » | 5 | 2,94 | ||||||
Total | 510 | » | » | » |
145
Après avoir bien déterminé quelle est la nature & la quantité des principes qui constituent les matériaux de la fermentation, il reste à examiner quels en sont les produits. Pour parvenir à les connoître, j'ai commencé par renfermer les 510 livres de liqueur ci-dessus dans un appareil, par le moyen duquel je pouvois, non-seulement déterminer la qualité & la quantité des gaz à mesure qu'ils se dégageoient, mais encore peser chacun des produits séparément, à telle époque de la fermentation que je le jugeois à propos. Il seroit trop long de décrire ici cet appareil, qui se trouve au surplus décrit dans la troisième partie de cet Ouvrage. Je me bornerai donc à rendre compte des effets.
Une heure ou deux après que le mêlange est fait, sur-tout si la température dans laquelle on opère est de 15 à 18 degrés, on commence à appercevoir les premiers indices de la fermentation: la liqueur se trouble & devient écumeuse; il s'en dégage des bulles qui viennent crêver à la surface: bientôt la quantité de ces bulles augmente, & il se fait un dégagement abondant & rapide de gaz acide carbonique très-pur accompagné d'écume qui n'est autre chose que de la levure qui se sépare. Au bout de quelques jours, suivant le degré de 146 chaleur, le mouvement & le dégagement de gaz diminue, mais il ne cesse pas entièrement; & ce n'est qu'après un intervalle de tems assez long que la fermentation est achevée.
Le poids de l'acide carbonique sec qui se dégage dans cette opération est de 35 livres 5 onces 4 gros 19 grains.
Ce gaz entraîne en outre avec lui une portion assez considérable d'eau qu'il tient en dissolution, & qui est environ de 13 livres 14 onces 5 gros.
Il reste dans le vase dans lequel on opère une liqueur vineuse légèrement acide, d'abord trouble, qui s'éclaircit ensuite d'elle-même, & qui laisse déposer une portion de levure. Cette liqueur pèse en totalité 460 livres 11 onces 6 gros 53 grains.
Enfin en analysant séparément toutes ces substances, & en les résolvant dans leurs parties constituantes, on trouve après un travail très-pénible les résultats qui suivent, qui seront détaillés dans les mémoires de l'Académie.
147
Tableau des résultats obtenus par la fermentation.
liv. | on. | gr. | gr. | |||
35 livres 5 onces 4 gros 19 grains d'acide carbonique composées | d'oxygène | 25 | 7 | 1 | 34 | |
de carbone | 9 | 14 | 2 | 57 | ||
408 livres 15 onces 5 gros 14 grains d'eau composées | d'oxygène | 347 | 10 | » | 59 | |
d'hydrogène | 61 | 5 | 4 | 27 | ||
57 livres 11 onces 1 gros 58 grains d'alkool sec, composées | d'oxygène combiné avec l'hydrogène | 31 | 6 | 1 | 64 | |
d'hydrogène combiné avec l'oxygène | 5 | 8 | 5 | 3 | ||
d'hydrogène combiné avec le carbone | 4 | » | 5 | » | ||
de carbone | 16 | 11 | 5 | 63 | ||
2 livres 8 onces d'acide acéteux sec composées | d'hydrogène | 2 | 4 | » | ||
d'oxygène | 1 | 11 | 4 | » | ||
de carbone | 10 | » | » | |||
4 livres 1 once 4 gros 3 grains de résidu sucré composées | d'hydrogène | 5 | 1 | 67 | ||
d'oxygène | 2 | 9 | 7 | 27 | ||
de carbone | 1 | 2 | 2 | 53 | ||
1 livre 6 onces 50 grains de levure seche composées | d'hydrogène | 2 | 2 | 41 | ||
d'oxygène | 13 | 1 | 14 | |||
de carbone | 6 | 2 | 30 | |||
d'azote | 2 | 37 | ||||
510 livres | 510 | » | » | » |
148
Récapitulation des résultats obtenus par la fermentation.
liv. | on. | gr. | gr. | |||
409 livres 10 onces 54 grains d'oxygène | de l'eau | 347 | 10 | » | 59 | |
de l'acide carbonique | 25 | 7 | 1 | 34 | ||
de l'alkool | 31 | 6 | 1 | 64 | ||
de l'acide acéteux | 1 | 11 | 4 | » | ||
du résidu sucré | 2 | 9 | 7 | 27 | ||
de la levure | 13 | 1 | 14 | |||
28 livres 12 onces 5 gros 59 grains de carbone | de l'acide carbonique | 9 | 14 | 2 | 57 | |
de l'alkool | 16 | 11 | 5 | 63 | ||
de l'acide acéteux | 10 | » | » | |||
du résidu sucré | 1 | 2 | 2 | 53 | ||
de la levure | 6 | 2 | 30 | |||
71 livres 8 onces 6 gros 66 grains d'hydrogène | de l'eau | 61 | 5 | 4 | 27 | |
de l'eau de l'alkool | 5 | 8 | 5 | 3 | ||
combiné avec le carbone dans l'alkool | 4 | » | 5 | » | ||
de l'acide acéteux | 2 | 4 | » | |||
du résidu sucré | 5 | 1 | 67 | |||
de la levure | 2 | 2 | 41 | |||
2 gros 37 grains d'azote | 2 | 37 | ||||
510 livres | 510 | » | » | » |
Quoique dans ces résultats j'aye porté jusqu'aux grains la précision du calcul, il s'en faut bien que ce genre d'expériences puisse comporter encore une aussi grande exactitude; mais comme je n'ai opéré que sur quelques livres de sucre, & que pour établir des comparaisons j'ai été obligé de les réduire au quintal, j'ai cru 149 devoir laisser subsister les fractions telles que le calcul me les a données.
En réfléchissant sur les résultats que présentent les tableaux ci-dessus, il est aisé de voir clairement ce qui se passe dans la fermentation vineuse. On remarque d'abord que sur les cent livres de sucre qu'on a employées, il y en a eu 4 livres 1 once 4 gros 3 grains qui sont restées dans l'état de sucre non-décomposé, en sorte qu'on n'a réellement opéré que sur 95 livres 14 onces 5 gros 69 grains de sucre; c'est-à-dire, sur 61 livres 6 onces 45 grains d'oxygène, sur 7 livres 10 onces 6 gros 6 grains d'hydrogène, & sur 26 livres 13 onces 5 gros 19 grains de carbone. Or en comparant ces quantités on verra qu'elles sont suffisantes pour former tout l'esprit de vin ou alkool, tout l'acide carbonique & tout l'acide acéteux qui a été produit par l'effet de la fermentation. Il n'est donc point nécessaire de supposer que l'eau se décompose dans cette opération: à moins qu'on ne prétende que l'oxygène & l'hydrogène sont dans l'état d'eau dans le sucre; ce que je ne crois pas, puisque j'ai établi au contraire qu'en général les trois principes constitutifs des végétaux, l'hydrogène, l'oxygène & le carbone étoient entr'eux dans un état d'équilibre; que cet état d'équilibre subsistoit tant qu'il n'étoit 150 point troublé, soit par un changement de température, soit par une double affinité, & que ce n'étoit qu'alors que les principes se combinant deux à deux formoient de l'eau & de l'acide carbonique.
Les effets de la fermentation vineuse se réduisent donc à séparer en deux portions le sucre qui est un oxide; à oxygéner l'une aux dépens de l'autre pour en former de l'acide carbonique; à désoxygéner l'autre en faveur de la première pour en former une substance combustible qui est l'alkool: en sorte que s'il étoit possible de recombiner ces deux substances, l'alkool & l'acide carbonique, on reformeroit du sucre. Il est à remarquer au surplus que l'hydrogène & le carbone ne sont pas dans l'état d'huile dans l'alkool; ils sont combinés avec une portion d'oxygène qui les rend miscibles à l'eau: les trois principes, l'oxygène, l'hydrogène & le carbone, sont donc encore ici dans une espèce d'état d'équilibre; & en effet, en les faisant passer à travers un tube de verre ou de porcelaine rougi au feu, on les recombine deux à deux, & on retrouve de l'eau, de l'hydrogène, de l'acide carbonique & du carbone.
J'avois avancé d'une manière formelle dans mes premiers Mémoires sur la formation de l'eau, que cette substance regardée comme un 151 élément, se décomposoit dans un grand nombre d'opérations chimiques, notamment dans la fermentation vineuse: je supposois alors qu'il existoit de l'eau toute formée dans le sucre, tandis que je suis persuadé aujourd'hui qu'il contient seulement les matériaux propres à la former. On conçoit qu'il a dû m'en coûter pour abandonner mes premières idées; aussi n'est-ce qu'après plusieurs années de réflexions, & d'après une longue suite d'expériences & d'observations sur les végétaux, que je m'y suis déterminé.
Je terminerai ce que j'ai à dire sur la fermentation vineuse, en observant qu'elle peut fournir un moyen d'analyse du sucre & en général des substances végétales susceptibles de fermenter. En effet, comme je l'ai déjà indiqué au commencement de cet article, je puis considérer les matières mises à fermenter & le résultat obtenu après la fermentation, comme une équation algébrique; & en supposant successivement chacun des élémens de cette équation inconnus, j'en puis tirer une valeur, & rectifier ainsi l'expérience par le calcul & le calcul par l'expérience. J'ai souvent profité de cette méthode pour corriger les premiers résultats de mes expériences, & pour me guider dans les précautions à prendre pour les recommencer: 152 mais ce n'est pas ici le moment d'entrer dans ces détails sur lesquels je me suis au surplus étendu fort au long dans le Mémoire que j'ai donné à l'Académie sur la Fermentation vineuse, & qui sera incessamment imprimé.
153
De la Fermentation putride.
Je viens de faire voir comment le corps sucré se décomposoit, lorsqu'il étoit étendu d'une certaine quantité d'eau & à l'aide d'une douce chaleur; comment les trois principes qui le constituent, l'oxygène, l'hydrogène & le carbone, qui étoient dans un état d'équilibre & qui ne formoient dans l'état de sucre ni de l'eau, ni de l'huile, ni de l'acide carbonique, se séparoient pour se combiner dans un autre ordre; comment une portion de carbone se réunissoit à l'oxygène pour former de l'acide carbonique; comment une autre portion de carbone se combinoit avec de l'hydrogène & avec de l'eau pour former de l'alkool.
Les phénomènes de la putréfaction s'opèrent de même en vertu d'affinités très-compliquées. Les trois principes constitutifs du corps cessent également, dans cette opération, d'être dans un état d'équilibre: au lieu d'une combinaison ternaire, il se forme des combinaisons binaires; mais le résultat de ces combinaisons est bien différent de celui que donne la fermentation 154 vineuse. Dans cette dernière, une partie des principes de la substance végétale, l'hydrogène par exemple, reste uni à une portion d'eau & de carbone pour former de l'alkool. Dans la fermentation putride au contraire, la totalité de l'hydrogène se dissipe sous la forme de gaz hydrogène: en même tems l'oxygène & le carbone se réunissant au calorique, s'échappent sous la forme de gaz acide carbonique. Enfin quand l'opération est entièrement achevée, sur-tout si la quantité d'eau nécessaire pour la putréfaction n'a pas manqué, il ne reste plus que la terre du végétal mêlée d'un peu de carbone & de fer.
La putréfaction des végétaux n'est donc autre chose qu'une analyse complette des substances végétales dans laquelle la totalité de leurs principes constitutifs se dégage sous forme de gaz, à l'exception de la terre qui reste dans l'état de ce qu'on nomme terreau.
Je donnerai dans la troisième partie de cet Ouvrage, une idée des appareils qu'on peut employer pour ce genre d'expériences.
Tel est le résultat de la putréfaction, quand le corps qu'on y soumet ne contient que de l'oxygène, de l'hydrogène, du carbone & un peu de terre: mais ce cas est rare, & il paroît même que ces substances, lorsqu'elles sont seules, 155 fermentent difficilement; qu'elles fermentent mal, & qu'il faut un tems considérable pour que la putréfaction soit complette. Il n'en est pas de même quand la substance mise à fermenter contient de l'azote; & c'est ce qui a lieu à l'égard de toutes les matières animales & même d'un assez grand nombre de matières végétales. Ce nouvel ingrédient favorise merveilleusement la putréfaction: c'est pour cette raison qu'on mêlange les matières animales avec les végétales, lorsqu'on veut hâter la putréfaction; & c'est dans ce mêlange que consiste presque toute la science des amendemens & des fumiers.
Mais l'introduction de l'azote dans les matériaux de la putréfaction, ne produit pas seulement l'effet d'en accélérer les phénomènes; elle forme, en se combinant avec l'hydrogène, une nouvelle substance connue sous le nom d'alkali volatil ou ammoniaque. Les résultats qu'on obtient en analysant les matières animales par différens procédés, ne laissent aucun doute sur la nature des principes qui constituent l'ammoniaque. Toutes les fois qu'on sépare préalablement l'azote de ces matières, elles ne donnent plus d'ammoniaque, & elles n'en donnent qu'autant qu'elles contiennent de l'azote. Cette composition de l'ammoniaque est d'ailleurs 156 confirmée par des expériences analytiques, que M. Berthollet a détaillées dans les Mémoires de l'Acad. année 1785, page 316; il a donné différens moyens de décomposer cette substance & d'obtenir séparément les deux principes, l'azote & l'hydrogène, qui entrent dans sa combinaison.
J'ai déjà annoncé plus haut (voyez Chapitre dixième) que les corps combustibles étoient presque tous susceptibles de se combiner les uns avec les autres. Le gaz hydrogène a éminemment cette propriété; il dissout le carbone, le soufre & le phosphore, & il résulte de ces combinaisons ce que j'ai appelé plus haut, gaz hydrogène carboné, gaz hydrogène sulfuré, gaz hydrogène phosphoré. Les deux derniers de ces gaz ont une odeur particulière & très-désagréable: celle du gaz hydrogène sulfuré a beaucoup de rapport avec celle des œufs gâtés & corrompus; celle du gaz hydrogène phosphoré est absolument la même que celle du poisson pourri; enfin l'ammoniaque a une odeur qui n'est ni moins pénétrante, ni moins désagréable que les précédentes. C'est de la combinaison de ces différentes odeurs que résulte celle qui s'exhale des matières animales en putréfaction, & qui est si fétide. Tantôt c'est l'odeur de l'ammoniaque qui est prédominante, 157 & on la reconnoît aisément à ce qu'elle pique les yeux; tantôt c'est celle du soufre, comme dans les matières fécales; tantôt enfin, c'est celle du phosphore, comme dans le hareng pourri.
J'ai supposé jusqu'ici que rien ne dérangeoit le cours de la fermentation, & n'en troubloit les effets. Mais M. de Fourcroy & M. Thouret ont observé, relativement à des cadavres enterrés à une certaine profondeur & garantis jusqu'à un certain point du contact de l'air, des phénomènes particuliers. Ils ont remarqué que souvent la partie musculaire se convertissoit en une véritable graisse animale. Ce phénomène tient à ce que, par quelque circonstance particulière, l'azote que contenoient ces matières animales aura été dégagé, & à ce qu'il n'est resté que de l'hydrogène & du carbone, c'est-à-dire, les matériaux propres à faire de la graisse. Cette observation sur la possibilité de convertir en graisse les matières animales, peut conduire un jour à des découvertes importantes sur le parti qu'on en peut tirer pour les usages de la société. Les déjections animales, telles que les matières fécales, sont principalement composées de carbone & d'hydrogène; elles se rapprochent donc beaucoup de l'état d'huile, & en effet elles en fournissent beaucoup par la distillation à feu nud. Mais 158 l'odeur insoutenable qui accompagne tous les produits qu'on en retire, ne permet pas d'espérer de long-tems qu'on puisse les employer à autre chose qu'à faire des engrais.
Je n'ai donné dans ce Chapitre que des apperçus, parce que la composition des matières animales n'est pas encore très-exactement connue. On sait qu'elles sont composées d'hydrogène, de carbone, d'azote, de phosphore, de soufre; le tout porté à l'état d'oxide par une quantité plus ou moins grande d'oxygène: mais on ignore absolument quelle est la proportion de ces principes. Le tems complétera cette partie de l'analyse chimique, comme il en a complété déjà quelques autres.
159
De la Fermentation acéteuse.
La fermentation acéteuse n'est autre chose que l'acidification du vin qui se fait à l'air libre par l'absorption de l'oxygène. L'acide qui en résulte est l'acide acéteux, vulgairement appelé vinaigre: il est composé d'une proportion qui n'a point encore été déterminée, d'hydrogène & de carbone combinés ensemble, & portés à l'état d'acide par l'oxygène.
Le vinaigre étant un acide, l'analogie conduisoit seule à conclure qu'il contenoit de l'oxygène; mais cette vérité est prouvée de plus par des expériences directes. Premièrement le vin ne peut se convertir en vinaigre qu'autant qu'il a le contact de l'air, & qu'autant que cet air contient du gaz oxygène. Secondement cette opération est accompagnée d'une diminution du volume de l'air dans lequel elle se fait, & cette diminution de volume est occasionnée par l'absorption du gaz oxygène. Troisièmement on peut transformer le vin en vinaigre, en l'oxygénant par quelqu'autre moyen que ce soit.
Indépendamment de ces faits qui prouvent 160 que l'acide acéteux est un résultat de l'oxygénation du vin, une expérience de M. Chaptal, professeur de Chimie à Montpellier, fait voir clairement ce qui se passe dans cette opération. Il prend du gaz acide carbonique dégagé de la bière en fermentation; il en imprègne de l'eau jusqu'à saturation, c'est-à-dire, jusqu'à ce qu'elle en ait absorbé environ une quantité égale à son volume; il met cette eau à la cave dans des vaisseaux qui ont communication avec l'air, & au bout de quelque tems le tout se trouve converti en acide acéteux. Le gaz acide carbonique des cuves de bière en fermentation, n'est pas entièrement pur; il est mêlé d'un peu d'alkool qu'il tient en dissolution: il y a donc dans l'eau imprégnée d'acide carbonique dégagé de la fermentation vineuse, tous les matériaux nécessaires pour former de l'acide acéteux. L'alkool fournit l'hydrogène & une portion de carbone; l'acide carbonique fournit du carbone & de l'oxygène; enfin l'air de l'atmosphère doit fournir ce qui manque d'oxygène pour porter le mêlange à l'état d'acide acéteux.
On voit par-là qu'il ne faut qu'ajouter de l'hydrogène à l'acide carbonique pour le constituer acide acéteux, ou pour parler plus généralement, pour le transformer en un acide végétal quelconque, suivant le degré d'oxygénation; 161 qu'il ne faut au contraire que retrancher de l'hydrogène aux acides végétaux pour les convertir en acide carbonique.
Je ne m'étendrai pas davantage sur la fermentation acéteuse à l'égard de laquelle nous n'avons pas encore d'expériences exactes; les faits principaux sont connus, mais l'exactitude numérique manque. On voit d'ailleurs que la théorie de l'acétification est étroitement liée à celle de la constitution de tous les acides & oxides végétaux, & nous ne connoissons point encore la proportion des principes dont ils sont composés. Il est aisé de s'appercevoir cependant que toute cette partie de la chimie marche rapidement comme toutes les autres, vers sa perfection, & qu'elle est beaucoup plus simple qu'on ne l'avoit cru jusqu'ici.
162
De la formation des Sels neutres, & des différentes bases qui entrent dans leur composition.
Nous avons vu comment un petit nombre de substances simples, ou au moins qui n'ont point été décomposées jusqu'ici, telles que l'azote, le soufre, le phosphore, le carbone, le radical muriatique & l'hydrogène, formoient en se combinant avec l'oxygène tous les oxides & les acides du règne végétal & du règne animal: nous avons admiré avec quelle simplicité de moyens la nature multiplioit les propriétés & les formes, soit en combinant ensemble jusqu'à trois & quatre bases acidifiables dans différentes proportions, soit en changeant la dose d'oxygène destiné à les acidifier. Nous ne la trouverons ni moins variée, ni moins simple, ni sur-tout moins féconde dans l'ordre de choses que nous allons parcourir.
Les substances acidifiables en se combinant avec l'oxygène, & en se convertissant en acides, acquièrent une grande tendance à la combinaison; elles deviennent susceptibles de s'unir avec des substances terreuses & métalliques, & c'est 163 de cette réunion que résultent les sels neutres. Les acides peuvent donc être regardés comme de véritables principes salifians, & les substances auxquelles ils s'unissent pour former des sels neutres, comme des bases salifiables: c'est précisément de la combinaison des principes salifians avec les bases salifiables que nous allons nous occuper dans cet article.
Cette manière d'envisager les acides ne me permet pas de les regarder comme des sels, quoiqu'ils aient quelques-unes de leurs propriétés principales, telles que la solubilité dans l'eau, &c. Les acides, comme je l'ai déjà fait observer, résultent d'un premier ordre de combinaisons; ils sont formés de la réunion de deux principes simples, ou au moins qui se comportent à la manière des principes simples, & ils sont par conséquent pour me servir de l'expression de Stahl, dans l'ordre des mixtes. Les sels neutres, au contraire, sont d'un autre ordre de combinaisons, ils sont formés de la réunion de deux mixtes, & ils rentrent dans la classe des composés. Je ne rangerai pas non plus, par la même cause, les alkalis[6] ni les substances terreuses, telles que la chaux, la magnésie, &c. dans la 164 classe des sels, & je ne désignerai par ce nom que des composés formés de la réunion d'une substance simple oxygénée avec une base quelconque.
Je me suis suffisamment étendu dans les chapitres précédens sur la formation des acides, & je n'ajouterai rien à cet égard; mais je n'ai rien dit encore des bases qui sont susceptibles de se combiner avec eux pour former des sels neutres; ces bases que je nomme salifiables, sont:
Et toutes les substances métalliques.
Je vais dire un mot de l'origine & de la nature de chacune de ces bases en particulier.
Nous avons déjà fait observer que lorsqu'on 165 échauffoit une substance végétale dans un appareil distillatoire, les principes qui la composent, l'oxygène, l'hydrogène & le carbone, & qui formoient une combinaison triple dans un état d'équilibre, se réunissoient deux à deux en obéissant aux affinités qui doivent avoir lieu suivant le degré de température. Ainsi à la première impression du feu, & dès que la chaleur excède celle de l'eau bouillante, l'oxygène & l'hydrogène se réunissent pour former de l'eau. Bientôt après une portion de carbone & une d'hydrogène se combinent pour former de l'huile. Lorsqu'ensuite par le progrès de la distillation on est parvenu à une chaleur rouge, l'huile & l'eau même qui s'étoient formées se décomposent; l'oxygène & le carbone forment l'acide carbonique, une grande quantité de gaz hydrogène devenu libre se dégage & s'échappe; enfin il ne reste plus que du charbon dans la cornue.
La plus grande partie de ces phénomènes se retrouvent dans la combustion des végétaux à l'air libre: mais alors la présence de l'air, introduit dans l'opération trois ingrédiens nouveaux, dont deux au moins apportent des changemens considérables dans les résultats de l'opération. Ces ingrédiens sont l'oxygène de l'air, l'azote & le calorique. A mesure que l'hydrogène 166 du végétal ou celui qui résulte de la décomposition de l'eau est chassé par le progrès du feu sous la forme de gaz hydrogène, il s'allume au moment où il a le contact de l'air, il reforme de l'eau, & le calorique des deux gaz qui devient libre, au moins pour la plus grande partie, produit la flamme.
Lorsqu'ensuite tout le gaz hydrogène a été chassé, brûlé & réduit en eau, le charbon qui reste brûle à son tour, mais sans flamme; il forme de l'acide carbonique qui s'échappe, emportant avec lui une portion de calorique qui le constitue dans l'état de gaz: le surplus du calorique devient libre, s'échappe & produit la chaleur & la lumière qu'on observe dans la combustion du charbon. Tout le végétal se trouve ainsi réduit en eau & en acide carbonique; il ne reste qu'une petite portion d'une matière terreuse grise, connue sous le nom de cendre, & qui contient les seuls principes vraiment fixes qui entrent dans la constitution des végétaux.
Cette terre ou cendre dont le poids n'excède pas communément le vingtième de celui du végétal, contient une substance d'un genre particulier, connue sous le nom d'alkali fixe végétal ou de potasse.
Pour l'obtenir on passe de l'eau sur les cendres; 167 l'eau se charge de la potasse qui est dissoluble, & elle laisse les cendres qui sont insolubles: en évaporant ensuite l'eau, on obtient la potasse qui est fixe, même à un très-grand degré de chaleur, & qui reste sous forme blanche & concrète. Mon objet n'est point de décrire ici l'art de préparer la potasse, encore moins les moyens de l'obtenir pure: je n'entre même ici dans ces détails que pour obéir à la loi que je me suis faite de n'admettre aucun mot qui n'ait été défini.
La potasse qu'on obtient par ce procédé est toujours plus ou moins saturée d'acide carbonique, & la raison en est facile à saisir: comme la potasse ne se forme, ou au moins n'est rendue libre qu'à mesure que le charbon du végétal est converti en acide carbonique par l'addition de l'oxygène, soit de l'air, soit de l'eau, il en résulte que chaque molécule de potasse se trouve au moment de sa formation en contact avec une molécule d'acide carbonique, & comme il y a beaucoup d'affinité entre ces deux substances, il doit y avoir combinaison. Quoique l'acide carbonique soit celui de tous les acides qui tient le moins à la potasse, il est cependant difficile d'en séparer les dernières portions. Le moyen le plus habituellement employé consiste à dissoudre la potasse 168 dans de l'eau, à y ajouter deux ou trois fois son poids de chaux vive, à filtrer & à évaporer dans des vaisseaux fermés; la substance saline qu'on obtient est de la potasse presqu'entièrement dépouillée d'acide carbonique.
Dans cet état, elle est non-seulement dissoluble dans l'eau, au moins à partie égale; mais elle attire encore celle de l'air avec une étonnante avidité: elle fournit en conséquence un moyen de sécher l'air ou les gaz auxquels elle est exposée. Elle est également soluble dans l'esprit-de-vin ou alkool, à la différence de celle qui est saturée d'acide carbonique, qui n'est pas soluble dans ce dissolvant. Cette circonstance a fourni à M. Berthollet un moyen d'avoir de la potasse parfaitement pure.
Il n'y a point de végétaux qui ne donnent plus ou moins de potasse par incinération; mais on ne l'obtient pas également pure de tous, elle est ordinairement mêlée avec différens sels qu'il est aisé d'en séparer.
On ne peut guère douter que les cendres, autrement dit la terre que laissent les végétaux lorsqu'on les brûle, ne préexistât dans ces végétaux antérieurement à la combustion; cette terre forme, à ce qu'il paroît, la partie osseuse, la carcasse du végétal. Mais il n'en est pas de même de la potasse; on n'est encore parvenu à séparer 169 cette substance des végétaux, qu'en employant des procédés ou des intermèdes qui peuvent fournir de l'oxigène & de l'azote, tels que la combustion ou la combinaison avec l'acide nitrique; en sorte qu'il n'est point démontré que cette substance ne soit pas un produit de ces opérations. J'ai commencé une suite d'expériences sur cet objet, dont je serai bientôt en état de rendre compte.
La soude est, comme la potasse, un alkali qui se tire de la lixiviation des cendres des plantes, mais de celles seulement qui croissent aux bords de la mer, & principalement du kali, d'où est venu le nom d'alkali qui lui a été donné par les arabes: elle a quelques propriétés communes avec la potasse, mais elle en a d'autres qui l'en distinguent. En général ces deux substances portent chacune dans toutes les combinaisons salines des caractères qui leur sont propres. La soude, telle qu'on l'obtient de la lixiviation des plantes marines, est le plus souvent entièrement saturée d'acide carbonique; mais elle n'attire pas, comme la potasse, l'humidité de l'air; au contraire elle s'y desseche; ses cristaux s'effleurissent & se convertissent en une poussière blanche 170 qui a toutes les propriétés de la soude, & qui n'en differe que parce qu'elle a perdu son eau de cristallisation.
On ne connoît pas mieux jusqu'ici les principes constituans de la soude que ceux de la potasse, & on n'est pas même certain si cette substance est toute formée dans les végétaux, antérieurement à la combustion. L'analogie pourroit porter à croire que l'azote est un des principes constituans des alkalis en général, & on en a la preuve à l'égard de l'ammoniaque, comme je vais l'exposer: mais on n'a, relativement à la potasse & à la soude que de légères présomptions qu'aucune expérience décisive n'a encore confirmées.
Comme nous n'avions aucune connoissance précise à présenter sur la composition de la soude & de la potasse, nous avons été obligés de nous borner dans les deux paragraphes précédens à indiquer les substances dont on les retire, & les moyens qu'on emploie pour les obtenir. Il n'en est pas de même de l'ammoniaque, que les anciens ont nommée alkali volatil. M. Berthollet, dans un Mémoire imprimé dans le recueil de l'Académie, année 1784, page 316, est parvenu à prouver par voie de 171 décomposition que 1000 parties de cette substance en poids étoient composées d'environ 807 d'azote & de 193 d'hydrogène.
C'est principalement par la distillation des matières animales qu'on obtient cette substance; l'azote qui est un de leurs principes constituans, s'unit à la proportion d'hydrogène propre à cette combinaison, & il se forme de l'ammoniaque: mais on ne l'obtient point pure dans cette opération; elle est mêlée avec de l'eau, de l'huile, & en grande partie saturée d'acide carbonique. Pour la séparer de toutes ces substances, on la combine d'abord avec un acide tel, par exemple, que l'acide muriatique; on l'en dégage ensuite, soit par une addition de chaux, soit par une addition de potasse.
Lorsque l'ammoniaque a été ainsi amenée à son plus grand degré de pureté, elle ne peut plus exister que sous forme gazeuse, à la température ordinaire dans laquelle nous vivons; elle a une odeur excessivement pénétrante. L'eau en absorbe une très-grande quantité, sur-tout si elle est froide & si on ajoute la pression au refroidissement; ainsi saturée d'ammoniaque, elle a été appelée alkali volatil fluor: nous l'appellerons simplement ammoniaque ou ammoniaque en liqueur, & nous désignerons la même substance, quand elle sera dans l'état 172 aériforme, par le nom de gaz ammoniac.
La composition de ces quatre terres est absolument inconnue; & comme on n'est point encore parvenu à déterminer quelles sont leurs parties constituantes & élémentaires, nous sommes autorisés, en attendant de nouvelles découvertes, à les regarder comme des êtres simples: l'art n'a donc aucune part à la formation de ces terres, la nature nous les présente toutes formées. Mais comme elles ont la plupart, sur-tout les trois premières, une grande tendance à la combinaison, on ne les trouve jamais seules. La chaux est presque toujours saturée d'acide carbonique, & dans cet état elle forme la craie, les spaths calcaires, une partie des marbres, &c. Quelquefois elle est saturée d'acide sulfurique, comme dans le gypse & les pierres à plâtre; d'autres fois avec l'acide fluorique, & elle forme le spath fluor ou vitreux. Enfin les eaux de la mer & des fontaines salées en contiennent de combinée avec l'acide muriatique. C'est de toutes les bases salifiables celle qui est la plus abondamment répandue dans la nature.
173
On rencontre la magnésie dans un grand nombre d'eaux minérales; elle y est le plus communément combinée avec l'acide sulfurique; on la trouve aussi très-abondamment dans l'eau de la mer, où elle est combinée avec l'acide muriatique; enfin elle entre dans la composition d'un grand nombre de pierres.
La baryte est beaucoup moins abondante que les deux terres précédentes; on la trouve dans le règne minéral combinée avec l'acide sulfurique, & elle forme alors le spath pesant; quelquefois, mais plus rarement, elle est combinée avec l'acide carbonique.
L'alumine ou base de l'alun a moins de tendance à la combinaison que les précédentes; aussi la trouve-t-on souvent dans l'état d'alumine, sans être combinée avec aucun acide. C'est principalement dans les argiles qu'on la rencontre; elle en fait, à proprement parler, la base.
Les métaux, à l'exception de l'or & quelquefois de l'argent, se présentent rarement dans le règne minéral sous leur forme métallique; ils sont communément ou plus ou moins saturés d'oxygène, ou combinés avec du soufre, de l'arsenic, de l'acide sulfurique, de l'acide muriatique, 174 de l'acide carbonique, de l'acide phosphorique. La docimasie & la métallurgie enseignent à les séparer de toutes ces substances étrangères, & nous renvoyons aux ouvrages qui traitent de cette partie de la Chimie.
Il est probable que nous ne connoissons qu'une partie des substances métalliques qui existent dans la nature; toutes celles, par exemple, qui ont plus d'affinité avec l'oxygène qu'avec le carbone, ne sont pas susceptibles d'être réduites ou ramenées à l'état métallique, & elles ne doivent se présenter à nos yeux que sous la forme d'oxides qui se confondent pour nous avec les terres. Il est très-probable que la baryte que nous venons de ranger dans la classe des terres, est dans ce cas; elle présente dans le détail des expériences des caractères qui la rapprochent beaucoup des substances métalliques. Il seroit possible à la rigueur que toutes les substances auxquelles nous donnons le nom de terres, ne fussent que des oxides métalliques, irréductibles par les moyens que nous employons.
Quoi qu'il en soit, les substances métalliques que nous connoissons, celles que nous pouvons obtenir dans l'état métallique, sont au nombre de dix-sept; savoir:
175
L'arsenic. | Le fer. |
Le molybdène. | L'étain. |
Le tungstène. | Le plomb. |
Le manganèse. | Le cuivre. |
Le nickel. | Le mercure. |
Le cobalt. | L'argent. |
Le bismuth. | Le platine. |
L'antimoine. | L'or. |
Le zinc. |
Je ne considérerai ici ces métaux que comme des bases salifiables, & je n'entrerai dans aucun détail sur leurs propriétés relatives aux arts & aux usages de la société. Chaque métal sous ces points de vue exigeroit un traité complet, & je sortirois absolument des bornes que je me suis prescrites.
176
Suite des réflexions sur les bases salifiables, & sur la formation des Sels neutres.
Telles sont les bases salifiables, c'est-à-dire, susceptibles de se combiner avec les acides, & de former des sels neutres. Mais il faut observer que les alkalis & les terres entrent purement & simplement dans la composition des sels neutres, sans aucun intermède qui serve à les unir; tandis qu'au contraire les métaux ne peuvent se combiner avec les acides, qu'autant qu'ils ont été préalablement plus ou moins oxygénés. On peut donc rigoureusement dire que les métaux ne sont point dissolubles dans les acides, mais seulement les oxides métalliques. Ainsi lorsqu'on met une substance métallique dans un acide, la première condition pour qu'elle puisse s'y dissoudre, est qu'elle puisse s'y oxider, & elle ne le peut qu'en enlevant de l'oxygène, ou à l'acide, ou à l'eau, dont cet acide est étendu: c'est-à-dire, en d'autres termes qu'une substance métallique ne peut se dissoudre dans un acide, qu'autant que l'oxygène qui entre, soit dans la composition de l'eau, soit dans 177 celle de l'acide, a plus d'affinité avec le métal, qu'il n'en a avec l'hydrogène ou la base acidifiable; ou, ce qui revient encore au même, qu'il n'y a de dissolution métallique, qu'autant qu'il y a décomposition de l'eau ou de l'acide.
C'est de cette observation simple, qui a échappé, même à l'illustre Bergman, que dépend l'explication des principaux phénomènes des dissolutions métalliques. Le premier de tous & le plus frappant est l'effervescence, ou, pour parler d'une manière moins équivoque, le dégagement de gaz qui a lieu pendant la dissolution. Ce gaz dans les dissolutions par l'acide nitrique est du gaz nitreux; dans les dissolutions par l'acide sulfurique, il est ou du gaz acide sulfureux, ou du gaz hydrogène, suivant que c'est aux dépens de l'acide sulfurique ou de l'eau que le métal s'est oxidé.
Il est sensible que l'acide nitrique & l'eau étant composés l'un & l'autre de substances qui séparément ne peuvent exister que dans l'état de gaz, du moins à la température dans laquelle nous vivons, aussitôt qu'on leur enlève l'oxygène, le principe qui lui étoit uni doit entrer sur le champ en expansion, il doit prendre la forme gazeuse, & c'est ce passage rapide de l'état liquide à l'état gazeux qui constitue l'effervescence. Il en est de même de l'acide sulfurique; les métaux, 178 en général, sur-tout par la voie humide, n'enlèvent point à cet acide la totalité de l'oxygène; ils ne le réduisent point en soufre, mais en acide sulfureux qui ne peut également exister que dans l'état de gaz au degré de température & de pression dans lequel nous vivons. Cet acide doit donc se dégager sous la forme de gaz, & c'est encore à ce dégagement qu'est due l'effervescence.
Un second phénomène est que toutes les substances métalliques se dissolvent sans effervescence dans les acides quand elles ont été oxidées avant la dissolution: il est clair qu'alors le métal n'ayant plus à s'oxider, il ne tend plus à décomposer ni l'acide ni l'eau; il ne doit donc plus y avoir d'effervescence, puisque l'effet qui le produisoit n'a plus lieu.
Un troisième phénomène est que tous les métaux se dissolvent sans effervescence dans l'acide muriatique oxygéné: ce qui se passe dans cette opération mérite quelques réflexions particulières. Le métal dans ce cas enlève à l'acide muriatique oxygéné son excès d'oxygène; il se forme d'une part un oxide métallique, & de l'autre de l'acide muriatique ordinaire. S'il n'y a pas d'effervescence dans ces sortes de dissolutions, ce n'est pas qu'il ne soit de l'essence de l'acide muriatique d'exister sous la 179 forme de gaz au degré de température dans lequel nous vivons, mais ce gaz trouve dans l'acide muriatique oxygéné plus d'eau qu'il n'en faut pour être retenu & pour demeurer sous forme liquide; il ne se dégage donc pas comme l'acide sulfureux, & après s'être combiné avec l'eau dans le premier instant, il se combine paisiblement ensuite avec l'oxide métallique qu'il dissout.
Un quatrième phénomène est que les métaux qui ont peu d'affinité pour l'oxygène, & qui n'exercent pas sur ce principe une action assez forte pour décomposer, soit l'acide, soit l'eau, sont absolument indissolubles: c'est par cette raison que l'argent, le mercure, le plomb, ne sont pas dissolubles dans l'acide muriatique, lorsqu'on les présente à cet acide dans leur état métallique; mais si on les oxide auparavant, de quelque manière que ce soit, ils deviennent aussitôt très-dissolubles, & la dissolution se fait sans effervescence.
L'oxygène est donc le moyen d'union entre les métaux & les acides; & cette circonstance qui a lieu pour tous les métaux comme pour tous les acides, pourroit porter à croire que toutes les substances qui ont une grande affinité avec les acides contiennent de l'oxygène. Il est donc assez probable que les quatre terres salifiables 180 que nous avons désignées ci-dessus contiennent de l'oxygène, & que c'est par ce latus qu'elles s'unissent aux acides. Cette considération sembleroit appuyer ce que j'ai précédemment avancé à l'article des terres, que ces substances pourroient bien n'être autre chose que des métaux oxidés avec lesquels l'oxygène a plus d'affinité qu'il n'en a avec le charbon, & qui par cette circonstance sont irréductibles. Au reste ce n'est ici qu'une conjecture que des expériences ultérieures pourront seules ou confirmer ou détruire.
Les acides connus jusqu'ici sont les suivans; nous allons en les désignant, indiquer le nom du radical ou base acidifiable dont ils sont composés.
Noms des acides. | Nom de la base acidifiable ou radical de chaque acide, avec des observations. | ||||
1 | Sulfureux. | Soufre. | |||
2 | Sulfurique. | ||||
3 | Phosphoreux. | Phosphore. | |||
4 | Phosphorique. | ||||
5 | Muriatique. | Radical muriatique. | |||
6 | Muriatique oxygéné. | ||||
7 | Nitreux. | Azote. | |||
8 | Nitrique. | ||||
9 | Nitrique oxigéné. | ||||
10 | Carbonique. | Carbone. | |||
18111 | Acéteux. | Tous ces acides paroissent être formés de la réunion d'une base acidifiable double, le carbone & l'hydrogène, & ne différer entr'eux que par la différence de proportion de ces deux bases & de l'oxigène qui les acidifie; on n'a au surplus encore aucune suite d'expériences bien faites à cet égard. | |||
12 | Acétique. | ||||
13 | Oxalique. | ||||
14 | Tartareux. | ||||
15 | Pyro-tartareux. | ||||
16 | Citrique. | ||||
17 | Malique. | ||||
18 | Pyro-ligneux. | ||||
19 | Pyro-muqueux. | ||||
20 | Gallique. | On n'a encore que des connoissances très-imparfaites sur la nature des radicaux de ces acides; on sait seulement que le carbone & l'hydrogène en sont les principales parties, & que l'acide prussique contient de l'azote. | |||
21 | Prussique. | ||||
22 | Benzoïque. | ||||
23 | Succinique. | ||||
24 | Camphorique. | ||||
25 | Lactique. | ||||
26 | Saccho-lactique. | ||||
27 | Bombique. | Ces acides & tous ceux qu'on obtient en oxigénant les matières animales, paroissent avoir pour base acidifiable le carbone, l'hydrogène, le phosphore & l'azote. | |||
28 | Formique. | ||||
29 | Sébacique. | ||||
30 | Boracique. | Le radical boracique | La nature de ces deux radicaux est entièrement inconnue. | ||
31 | Fluorique. | Le radical fluorique | |||
32 | Antimonique. | Antimoine. | |||
33 | Argentique. | Argent. | |||
34 | Arsenique. | Arsenic. | |||
35 | Bismuthique. | Bismuth. | |||
36 | Cobaltique. | Cobalt. | |||
37 | Cuprique. | Cuivre. | |||
38 | Stamnique. | Etain. | |||
39 | Ferrique. | Fer. | |||
40 | Manganique. | Manganèse. | |||
41 | Hydrargirique. | Mercure. | |||
42 | Molybdique. | Molybdène. | |||
43 | Nickelique. | Nickel. | |||
44 | Aurique. | Or. | |||
45 | Platinique. | Platine. | |||
46 | Plombique. | Plomb. | |||
47 | Tungstique. | Tungstène. | |||
48 | Zincique. | Zinc. |
182
On voit que le nombre des acides est de 48 en y comprenant les 17 acides métalliques qui sont encore peu connus, mais sur lesquels M. Berthollet va donner incessamment un travail important. On ne peut pas encore se flatter sans doute de les avoir tous découverts; mais il est probable, d'un autre côté, qu'un examen plus approfondi fera connoître que plusieurs des acides végétaux regardés comme différens, rentrent les uns dans les autres. Au reste, on ne peut présenter ici le tableau de la Chimie que dans l'état où elle est, & tout ce qu'on peut faire c'est de donner des principes pour nommer, en conformité du même systême, les corps qui pourront être découverts dans la suite.
Le nombre des bases salifiables, c'est-à-dire, susceptibles d'être converties en sels neutres par les acides, est de vingt-quatre, savoir:
La totalité des sels neutres qu'on peut concevoir dans l'état actuel de nos connoissances est donc de 1152; mais c'est en supposant que les acides métalliques soient susceptibles de dissoudre d'autres métaux; & cette dissolubilité des métaux, oxygénés les uns par les autres, 183 est une science neuve qui n'a point encore été entamée: c'est de cette partie de la science que dépendent toutes les combinaisons vitreuses métalliques. Il est d'ailleurs probable que toutes les combinaisons salines qu'on peut concevoir, ne sont pas possibles, ce qui doit réduire considérablement le nombre des sels que la nature & l'art peuvent former. Mais quand on ne supposeroit que cinq à six cens espèces de sels possibles, il est évident que si on vouloit donner à toutes des dénominations arbitraires à la manière des anciens, si on les désignoit, ou par le nom des premiers auteurs qui les ont découverts, ou par le nom des substances dont ils ont été tirés, il en résulteroit une confusion que la mémoire la plus heureuse ne pourroit pas débrouiller. Cette méthode pouvoit être tolérable dans le premier âge de la Chimie; elle pouvoit l'être encore il y a vingt ans, parce qu'alors on ne connoissoit pas au-delà de trente espèces de sels: mais aujourd'hui que le nombre en augmente tous les jours, que chaque acide qu'on découvre enrichit souvent la Chimie de 24 sels nouveaux, quelquefois de 48 en raison des deux degrés d'oxygénation de l'acide; il faut nécessairement une méthode, & cette méthode est donnée par l'analogie: c'est celle que nous avons suivie 184 dans la nomenclature des acides; & comme la marche de la nature est une, elle s'appliquera naturellement à la nomenclature des sels neutres.
Lorsque nous avons nommé les différentes espèces d'acides, nous avons distingué dans ces substances la base acidifiable particulière à chacun d'eux, & le principe acidifiant, l'oxygène qui est commun à tous. Nous avons exprimé la propriété commune à tous par le nom générique d'acide, & nous avons ensuite différencié les acides par le nom de la base acidifiable particulière à chacun. C'est ainsi que nous avons donné au soufre, au phosphore, au carbone oxygénés le nom d'acide sulfurique, d'acide phosphorique, d'acide carbonique: enfin nous avons cru devoir indiquer les différens degrés de saturation d'oxygène par une terminaison différente du même mot. Ainsi nous avons distingué l'acide sulfureux de l'acide sulfurique, l'acide phosphoreux de l'acide phosphorique.
Ces principes appliqués à la nomenclature des sels neutres, nous ont obligés de donner un nom commun à tous les sels dans la combinaison desquels entre le même acide, & de les différencier ensuite par le nom de la base salifiable. Ainsi nous avons désigné tous les sels qui ont l'acide sulfurique pour acide, par le nom de 185 sulfates; tous ceux qui ont l'acide phosphorique pour acide, par le nom de phosphates, & ainsi des autres. Nous distinguerons donc sulfate de potasse, sulfate de soude, sulfate d'ammoniaque, sulfate de chaux, sulfate de fer, &c. & comme nous connoissons vingt-quatre bases, tant alkalines que terreuses & métalliques, nous aurons vingt-quatre espèces de sulfates, autant de phosphates, & de même pour tous les autres acides. Mais comme le soufre est susceptible de deux degrés d'oxygénation, qu'une première dose d'oxygène constitue l'acide sulfureux, & une seconde l'acide sulfurique; comme les sels neutres que forment ces deux acides avec les différentes bases ne sont pas les mêmes, & qu'ils ont des propriétés fort différentes, il a fallu les distinguer encore par une terminaison particulière: nous avons en conséquence désigné par le nom de sulfites, de phosphites, &c. les sels neutres formés par l'acide le moins oxygéné. Ainsi le soufre oxygéné sera susceptible de former 48 sels neutres, savoir vingt-quatre sulfates & vingt-quatre sulfites, & ainsi des autres substances susceptibles de deux degrés d'oxygénation.
Il seroit excessivement ennuyeux pour les lecteurs de suivre ces dénominations dans tous leurs détails; il suffit d'avoir exposé clairement 186 la méthode de nommer: quand on l'aura saisie, on pourra l'appliquer sans effort à toutes les combinaisons possibles; & le nom de la substance combustible & acidifiable connu, on se rappellera toujours aisément le nom de l'acide qu'elle est susceptible de former, & celui de tous les sels neutres qui doivent en dériver.
Je m'en tiendrai donc à ces notions élémentaires; mais, pour satisfaire en même tems ceux qui pourroient avoir besoin de plus grands détails, j'ajouterai dans une seconde partie des Tableaux qui présenteront une récapitulation générale, non-seulement de tous les sels neutres, mais en général de toutes les combinaisons chimiques. J'y joindrai quelques courtes explications sur la manière la plus simple & la plus sûre de se procurer les différentes espèces d'acides, & sur les propriétés générales des sels neutres qui en résultent.
Je ne me dissimule pas qu'il auroit été nécessaire pour compléter cet Ouvrage, d'y joindre des observations particulières sur chaque espèce de sel, sur sa dissolubilité dans l'eau & dans l'esprit-de-vin, sur la proportion d'acide & de base qui entre dans sa composition, sur sa quantité d'eau de cristallisation, sur les différens degrés de saturation dont il est susceptible, enfin sur le degré de force avec laquelle 187 l'acide tient à sa base. Ce travail immense a été commencé par M. Bergman, M. de Morveau, M. Kirwan & quelques autres célèbres Chimistes; mais il n'est encore que médiocrement avancé, & les bases sur lesquelles il repose ne sont pas même encore d'une exactitude rigoureuse. Des détails aussi nombreux n'auroient pas pu convenir à un Ouvrage élémentaire, & le tems de rassembler les matériaux & de compléter les expériences auroit retardé de plusieurs années la publication de cet Ouvrage. C'est un vaste champ ouvert au zèle & à l'activité des jeunes Chimistes; mais qu'il me soit permis de recommander, en terminant ici ma tâche, à ceux qui auront le courage de l'entreprendre, de s'attacher plutôt à faire bien qu'à faire beaucoup; à s'assurer d'abord par des expériences précises & multipliées de la composition des acides, avant de s'occuper de celle des sels neutres. Tout édifice destiné à braver les outrages du tems, doit être établi sur des fondemens solides; & dans l'état où est parvenue la Chimie, c'est en retarder la marche que d'établir ses progrès sur des expériences qui ne sont ni assez exactes, ni assez rigoureuses.
SECONDE PARTIE.
De la Combinaison des Acides avec les bases salifiables, & de la Formation des Sels neutres.
Si j'avois voulu suivre strictement le plan que je m'étois formé dans la distribution des différentes parties de cet Ouvrage, je me serois borné dans les Tableaux qui composeront cette seconde Partie, & dans les explications qui les accompagnent, à donner de courtes définitions des différens acides que l'on connoît, une description abrégée des procédés par lesquels on les obtient, & j'y aurois joint une simple nomenclature des sels neutres qui résultent de leurs combinaisons avec différentes bases. Mais j'ai reconnu que, sans ajouter beaucoup au 190 volume de cet Ouvrage, je pourrois en augmenter beaucoup l'utilité, en présentant sous la même forme le tableau des substances simples, de celles qui entrent dans la composition des acides & des oxides, & leurs combinaisons.
Cette addition n'augmente que de dix le nombre des Tableaux strictement nécessaires pour la nomenclature de tous les sels neutres. J'y présente 1o. les substances simples, ou du moins celles que l'état actuel de nos connoissances nous oblige à regarder comme telles.
2o. Les radicaux oxidables & acidifiables doubles & triples, qui se combinent avec l'oxygène, à la manière des substances simples.
3o. Les combinaisons de l'oxygène avec les substances simples métalliques & non métalliques.
4o. Les combinaisons de l'oxygène avec les radicaux composés.
5o. Les combinaisons de l'azote avec les substances simples.
6o. Les combinaisons de l'hydrogène avec les substances simples.
7o. Les combinaisons du soufre avec les substances simples.
8o. Les combinaisons du phosphore avec les substances simples.
9o. Les combinaisons du carbone avec les substances simples. 191
10o. Les combinaisons de quelques autres radicaux avec les substances simples.
Ces dix Tableaux & les Observations qui les accompagnent, forment une espèce de récapitulation des quinze premiers Chapitres de cet Ouvrage. Les Tableaux qui sont à la suite & qui présentent l'ensemble de toutes les combinaisons salines, ont plus particulièrement rapport aux Chapitres XIV & XV.
On s'appercevra facilement que j'ai beaucoup profité dans ce travail de ce que M. de Morveau a publié dans le premier volume de l'Encyclopédie par ordre de matières; & en effet il m'auroit été difficile de puiser dans de meilleures sources, sur-tout d'après la difficulté de consulter les ouvrages étrangers dans leur langue originale. Je ne le citerai qu'une seule fois, au commencement de cette seconde Partie, pour ne pas être obligé de le citer à chaque article.
J'ai placé à la suite de chaque Tableau & vis-à-vis autant qu'il a été possible les explications qui y sont relatives.
192
Noms nouveaux. | Noms anciens correspondans. | ||||
Lumière. | Lumière. | ||||
Substances simples qui appartiennent aux trois règnes & qu'on peut regarder comme les élémens des corps. | Calorique. | Chaleur. | |||
Principe de la chaleur. | |||||
Fluide igné. | |||||
Feu. | |||||
Matière du feu & de la chaleur. | |||||
Oxygène. | Air déphlogistiqué. | ||||
Air empiréal. | |||||
Air vital. | |||||
Base de l'air vital. | |||||
Azote. | Gaz phlogistiqué. | ||||
Mofete. | |||||
Base de la mofete. | |||||
Hydrogène. | Gaz inflammable. | ||||
Base du gaz inflammable. | |||||
Substances simples non métalliques oxidables & acidifiables. | Soufre. | Soufre. | |||
Phosphore. | Phosphore. | ||||
Carbone. | Charbon pur. | ||||
Radical muriatique. | Inconnu. | ||||
Radical fluorique. | Inconnu. | ||||
Radical boracique. | Inconnu. | ||||
Substances simples métalliques oxidables & acidifiables. | Antimoine. | Antimoine. | |||
Argent. | Argent. | ||||
Arsenic. | Arsenic. | ||||
Bismuth. | Bismuth. | ||||
Cobalt. | Cobalt. | ||||
Cuivre. | Cuivre. | ||||
Etain. | Etain. | ||||
Fer. | Fer. | ||||
Manganèse. | Manganèse. | ||||
Mercure. | Mercure. | ||||
Molybdène. | Molybdène. | ||||
Nickel. | Nickel. | ||||
Or. | Or. | ||||
Platine. | Platine. | ||||
Plomb. | Plomb. | ||||
Tungstène. | Tungstène. | ||||
Zinc. | Zinc. | ||||
Substances simples salifiables terreuses. | Chaux. | Terre calcaire, chaux. | |||
Magnésie. | Magnésie, base du sel d'Epsom. | ||||
Baryte. | Barote, terre pesante. | ||||
Alumine. | Argile, terre de l'alun, base de l'alun. | ||||
Silice. | Terre siliceuse, terre vitrifiable. |
193
Sur le Tableau des Substances simples, ou du moins de celles que l'état actuel de nos connoissances nous oblige à considérer comme telles.
La Chimie en soumettant à des expériences les différens corps de la nature, a pour objet de les décomposer & de se mettre en état d'examiner séparément les différentes substances qui entrent dans leur combinaison. Cette science a fait de nos jours des progrès très-rapides. Il sera facile de s'en convaincre si l'on consulte les différens auteurs qui ont écrit sur l'ensemble de la Chimie: on verra que dans les premiers tems on regardoit l'huile & le sel comme les principes des corps; que l'expérience & l'observation ayant amené de nouvelles connoissances, on s'apperçut ensuite que les sels n'étoient point des corps simples, qu'ils étoient composés d'un acide & d'une base, & que c'étoit de cette réunion que résultoit leur état de neutralité. Les découvertes modernes ont encore reculé de plusieurs degrés les bornes de l'analyse[7], elles nous ont éclairés sur la formation 194 des acides, & nous ont fait voir qu'ils étoient formés par la combinaison d'un principe acidifiant commun à tous, l'oxygène, & d'un radical particulier pour chacun, qui les différencie & qui les constitue plutôt tel acide que tel autre. J'ai été encore plus loin dans cet ouvrage, puisque j'ai fait voir, comme M. Hassenfratz, au surplus l'avoit déjà annoncé, que les radicaux des acides eux-mêmes ne sont pas toujours des substances simples, même dans le sens que nous attachons à ce mot; qu'ils sont ainsi que le principe huileux, un composé d'hydrogène & de carbone. Enfin M. Berthollet a prouvé que les bases des sels n'étoient pas plus simples que les acides eux-mêmes, & que l'ammoniaque étoit un composé d'azote & d'hydrogène.
La Chimie marche donc vers son but & vers sa perfection, en divisant, subdivisant, & resubdivisant encore, & nous ignorons quel sera le terme de ses succès. Nous ne pouvons donc pas assurer que ce que nous regardons comme simple aujourd'hui le soit en effet: tout ce que nous pouvons dire, c'est que telle substance est le terme actuel auquel arrive l'analyse chimique, & qu'elle ne peut plus se subdiviser au-delà dans l'état actuel de nos connoissances.
Il est à présumer que les terres cesseront 195 bientôt d'être comptées au nombre des substances simples; elles sont les seules de toute cette classe qui n'aient point de tendance à s'unir à l'oxygène, & je suis bien porté à croire que cette indifférence pour l'oxygène, s'il m'est permis de me servir de cette expression, tient à ce qu'elles en sont déjà saturées. Les terres, dans cette manière de voir, feroient des substances simples, peut-être des oxides métalliques oxygénées jusqu'à un certain point. Ce n'est au surplus qu'une simple conjecture que je présente ici. J'espère que le lecteur voudra bien ne pas confondre ce que je donne pour des vérités de fait & d'expérience avec ce qui n'est encore qu'hypothétique.
Je n'ai point fait entrer dans ce tableau les alkalis fixes, tels que la potasse & la soude, parce que ces substances sont évidemment composées, quoiqu'on ignore cependant encore la nature des principes qui entrent dans leur combinaison.
196
Noms des Radicaux. | Observations. | |||
Radicaux oxidables ou acidifiables composés, du règne minéral. | Radical nitro-muriatique, ou radical de l'eau régale. | C'est la base de l'eau régale des anciens Chimistes, célèbre par la propriété qu'elle a de dissoudre l'or. | ||
Radicaux hydro-carboneux, ou carbone-hydreux du règne végétal, susceptibles d'être oxidés & acidifiés. | Radical tartareux. | Les anciens Chimistes ne connoissoient point la composition des acides, & ne se doutant pas qu'ils fussent formés de la réunion d'un radical particulier à chacun d'eux & d'un principe acidifiant commun à tous, ils n'ont pu donner aucun nom à des substances dont ils n'avoient aucune idée: nous nous sommes donc trouvés dans la nécessité de créer une Nomenclature pour cet objet; mais nous avons prévenu en même tems que cette Nomenclature seroit susceptible de modification, à mesure que la nature des radicaux composés seroit mieux connue. Voyez ce que j'ai dit à cet égard, chapitre XI. | ||
Radical malique. | ||||
Radical citrique. | ||||
Radical pyro-ligneux. | ||||
Radical pyro-muqueux. | ||||
Radical pyro-tartareux. | ||||
Radical oxalique. | ||||
Radical acéteux. | ||||
Radical succinique. | ||||
Radical benzoïque. | ||||
Radical camphorique. | ||||
Radical gallique. | ||||
Radicaux hydro-carboneux ou carbone-hydreux du règne animal dans la composition desquels entre presque toujours l'azote & souvent le phosphore & qui sont susceptibles d'être oxidés & acidifiés. XI. | Radical lactique. | |||
Radical saccholactique. | ||||
Radical formique. | ||||
Radical bombique. | ||||
Radical sébacique. | ||||
Radical lithique. | ||||
Radical prussique. |
Les radicaux du règne végétal donnent par un premier degré d'oxigénation des oxides végétaux; tels que le sucre, l'amidon, la gomme ou le muqueux. Les radicaux animaux donnent des oxides animaux, tels que la limphe, &c. &c. 197
Sur le Tableau des Radicaux ou bases oxydables & acidifiables, composés de la réunion de plusieurs substances simples.
Les radicaux du règne végétal & du règne animal que présente ce tableau, & qui tous sont susceptibles d'être oxidés & acidifiés, n'ayant point encore été analysés avec précision, il est impossible de les assujétir encore à une nomenclature régulière. Des expériences dont quelques-unes me sont propres, & dont d'autres ont été faites par M. Hassenfratz, m'ont seulement appris qu'en général, presque tous les acides végétaux, tels que l'acide tartareux, l'acide oxalique, l'acide citrique, l'acide malique, l'acide acéteux, l'acide pyro-tartarique, l'acide pyro-mucique, ont pour radical l'hydrogène & le carbone, mais réunis de manière à ne former qu'une seule & même base; que tous ces acides ne diffèrent entr'eux que par la différence de proportion de ces deux substances, & par le degré d'oxygénation. Nous savons de plus, principalement par les expériences de M. Berthollet, que les radicaux du règne animal, & 198 quelques-uns même du règne végétal sont plus composés, & qu'indépendamment de l'hydrogène & du carbone, ils contiennent encore souvent de l'azote, & quelquefois du phosphore; mais il n'existe point encore de calculs exacts sur les quantités. Nous nous sommes donc trouvés forcés de donner, à la manière des anciens, à ces différens radicaux des noms dérivés de celui de la substance dont ils ont été tirés. Sans doute, un jour & à mesure que nos connoissances acquerront plus de certitude & d'étendue, tous ces noms disparoîtront, & ils ne subsisteront plus que comme un témoignage de l'état dans lequel la science chimique nous a été transmise: ils feront place à ceux des radicaux hydro-carboneux & hydro-carbonique, carbone-hydreux & carbone-hydrique, comme je l'ai expliqué dans le chapitre XI, & le choix de ces noms sera déterminé par la proportion des deux bases dont ils sont composés.
On apperçoit aisément que les huiles étant composées d'hydrogène & de carbone, elles sont de véritables radicaux carbone-hydreux ou hydro-carboneux, & en effet, il suffit d'oxygéner des huiles pour les convertir d'abord en oxides, & ensuite en acides végétaux, suivant le degré d'oxygénation. On ne peut pas cependant assurer d'une manière positive que les huiles 199 entrent toutes entières dans la composition des oxides & des acides végétaux; il est possible qu'elles perdent auparavant une portion de leur hydrogène ou de leur carbone, & que ce qui reste de l'une & de l'autre de ces substances ne soit plus dans la proportion nécessaire pour constituer des huiles. C'est sur quoi nous avons encore besoin d'être éclairés par l'expérience.
Nous ne connoissons, à proprement parler, dans le règne minéral d'autre radical composé que le radical nitro-muriatique. Il est formé par la réunion de l'azote avec le radical muriatique. Les autres acides composés ont été beaucoup moins étudiés, & ne présentent pas d'ailleurs des phénomènes aussi frappans.
200
Sur les combinaisons de la Lumière & du Calorique avec les différentes substances.
Je n'ai point formé de Tableau pour les combinaisons de la lumière & du calorique avec les substances simples ou composées; parce que nous n'avons point encore des idées suffisamment arrêtées sur ces sortes de combinaisons. Nous savons, en général, que tous les corps de la nature sont plongés dans le calorique, qu'ils en sont environnés, pénétrés de toutes parts, & qu'il remplit tous les intervalles que laissent entr'elles leurs molécules: que dans certains cas le calorique se fixe dans les corps, de manière même à constituer leurs parties solides; mais que le plus souvent il en écarte les molécules, il exerce sur elles une force répulsive, & que c'est de son action ou de son accumulation plus ou moins grande que dépend le passage des corps de l'état solide à l'état liquide, de l'état liquide à l'état aériforme. Enfin nous avons appelé du nom générique de gaz toutes les substances portées à l'état aériforme par une addition suffisante de calorique; en sorte que si nous voulons désigner l'acide muriatique, l'acide 201 carbonique, l'hydrogène, l'eau, l'alkool dans l'état aériforme, nous leur donnons le nom de gaz acide muriatique, gaz acide carbonique, gaz hydrogène, gaz aqueux, gaz alkool.
A l'égard de la lumière, ses combinaisons & sa manière d'agir sur les corps sont encore moins connues. Il paroît seulement, d'après les expériences de M. Berthollet, qu'elle a une grande affinité avec l'oxygène, qu'elle est susceptible de se combiner avec lui, & qu'elle contribue avec le calorique à le constituer dans l'état de gaz. Les expériences qui ont été faites sur la végétation, donnent aussi lieu de croire que la lumière se combine avec quelques parties des plantes, & que c'est à cette combinaison qu'est due la couleur verte des feuilles & la diversité de couleurs des fleurs. Il est au moins certain que les plantes qui croissent dans l'obscurité sont étiolées, qu'elles sont absolument blanches, qu'elles sont dans un état de langueur & de souffrance, & qu'elles ont besoin pour reprendre leur vigueur naturelle & pour se colorer, de l'influence immédiate de la lumière.
On observe quelque chose de semblable sur les animaux eux-mêmes; les hommes, les femmes, les enfans s'étiolent jusqu'à un certain point dans les travaux sédentaires des manufactures, dans les logemens resserrés, dans les 202 rues étroites des villes. Ils se développent au contraire, ils acquièrent plus de force & plus de vie dans la plupart des occupations champêtres & dans les travaux qui se font en plein air.
L'organisation, le sentiment, le mouvement spontané, la vie, n'existent qu'à la surface de la terre & dans les lieux exposés à la lumière. On diroit que la fable du flambeau de Prométhée étoit l'expression d'une vérité philosophique qui n'avoit point échappé aux anciens. Sans la lumière la nature étoit sans vie, elle étoit morte & inanimée: un Dieu bienfaisant, en apportant la lumière, a répandu sur la surface de la terre l'organisation, le sentiment & la pensée.
Mais ce n'est point ici le lieu d'entrer dans aucuns détails sur les corps organisés; c'est à dessein que j'ai évité de m'en occuper dans cet Ouvrage, & c'est ce qui m'a empêché de parler des phénomènes de la respiration, de la sanguification & de la chaleur animale. Je reviendrai un jour sur ces objets.
203
Premier degré d'oxigénation. | ||||
Noms nouveaux. | Noms anciens. | |||
Combinaisons de l'oxygène avec les substances simples non métalliques, telles que: | Le calorique. | Le gaz oxygène. | Air vital ou déphlogistiqué. | |
L'hydrogène. | On ne connoît qu'un degré de combinaison de l'oxygène & de l'hydrogène, & cette combinaison forme de l'eau. | |||
L'azote. | Oxide nitreux ou base du gaz nitreux. | Gaz nitreux. | ||
Le carbone. | Oxide de carbone. | Inconnu. | ||
Le soufre. | Oxide de soufre. | Soufre mou. | ||
Le phosphore. | Oxide de phosphore. | Résidu de la combustion du phosphore. | ||
Le radical muriatique. | Oxide muriatique. | Inconnu. | ||
Le radical fluorique. | Oxide fluorique. | Inconnu. | ||
Le radical boracique. | Oxide boracique. | Inconnu. | ||
Combinaisons de l'oxygène avec les substances simples métalliques, telles que: | L'antimoine. | Oxide gris d'antimoine. | Chaux grise d'antimoine. | |
L'argent. | Oxide d'argent. | Chaux d'argent. | ||
L'arsenic. | Oxide gris d'arsenic. | Chaux grise d'arsenic. | ||
Le bismuth. | Oxide gris de bismuth. | Chaux grise de bismuth. | ||
Le cobalt. | Oxide gris de cobalt. | Chaux grise de cobalt. | ||
Le cuivre. | Oxide rouge brun de cuivre. | Chaux rouge brune de cuivre. | ||
L'étain. | Oxide gris d'étain. | Chaux grise d'étain. | ||
Le fer. | Oxide noir de fer. | Ethiops martial. | ||
Le manganèse. | Oxide noir de manganèse. | Chaux noire de manganèse. | ||
Le mercure. | Oxide noir de mercure. | Ethiops minéral. | ||
Le molybdène. | Oxide de molybdène. | Chaux de molybdène. | ||
Le nickel. | Oxide de nickel. | Chaux de nickel. | ||
L'or. | Oxide jaune d'or. | Chaux jaune d'or. | ||
Le platine. | Oxide jaune de platine. | Chaux jaune de platine. | ||
Le plomb. | Oxide gris de plomb. | Chaux grise de plomb. | ||
Le tungstène. | Oxide de tungstène. | Chaux de tungstène. | ||
Le zinc. | Oxide gris de zinc. | Chaux grise de zinc. |
Second degré d'oxigénation. | ||||
Noms nouveaux. | Noms anciens. | |||
Combinaisons de l'oxygène avec les substances simples non métalliques, telles que: | Le calorique. | |||
L'hydrogène. | ||||
L'azote. | Acide nitreux. | Acide nitreux fumant. | ||
Le carbone. | Acide carboneux. | Inconnu. | ||
Le soufre. | Acide sulfureux. | Acide sulfureux. | ||
Le phosphore. | Acide phosphoreux. | Acide volatil du phosphore. | ||
Le radical muriatique. | Acide muriateux. | Inconnu. | ||
Le radical fluorique. | Acide fluoreux. | Inconnu. | ||
Le radical boracique. | Acide boraceux. | Inconnu. | ||
Combinaisons de l'oxygène avec les substances simples métalliques, telles que: | L'antimoine. | Oxide blanc d'antimoine. | Chaux blanche d'antimoine, Antimoine diaphorétique. |
|
L'argent. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
L'arsenic. | Oxide blanc d'arsenic. | Chaux blanche d'arsenic. | ||
Le bismuth. | Oxide blanc de bismuth. | Chaux blanche de bismuth. | ||
Le cobalt. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
Le cuivre. | Oxide vert & bleu de cuivre. | Chaux verte & bleue de cuivre. | ||
L'étain. | Oxide blanc d'étain. | Chaux blanche d'étain ou potée d'étain. | ||
Le fer. | Oxide jaune & rouge de fer. | Ocre & rouille. | ||
Le manganèse. | Oxide blanc de manganèse. | Chaux blanche de manganèse. | ||
Le mercure. | Oxide jaune & rouge de mercure. | Turbith minéral, précipité rouge, précipité per se. | ||
Le molybdène. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
Le nickel. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
L'or. | Oxide rouge d'or. | Chaux rouge d'or. Précipité pourpre de Cassius. |
||
Le platine. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
Le plomb. | Oxide jaune & rouge de plomb. | Massicot & minium. | ||
Le tungstène. | . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . | ||
Le zinc. | Oxide blanc de zinc. | Chaux blanche de zinc, Pompholix. |
Troisième degré d'oxigénation. | ||||
Noms nouveaux. | Noms anciens. | |||
Combinaisons de l'oxygène avec les substances simples non métalliques, telles que: | Le calorique. | |||
L'hydrogène. | ||||
L'azote. | Acide nitrique. | Acide nitreux non fumant. | ||
Le carbone. | Acide carbonique | Air fixe. | ||
Le soufre. | Acide sulfurique. | Acide vitriolique. | ||
Le phosphore. | Acide phosphorique. | Acide phosphorique. | ||
Le radical muriatique. | Acide muriatique. | Acide marin. | ||
Le radical fluorique. | Acide fluorique. | Inconnu des anciens. | ||
Le radical boracique. | Acide boracique. | Sel sédatif de Homberg. | ||
Combinaisons de l'oxygène avec les substances simples métalliques, telles que: | L'antimoine. | Acide antimonique. | . . . . . . . . . . . . . . . . . . . | |
L'argent. | Acide argentique. | . . . . . . . . . . . . . . . . . . . | ||
L'arsenic. | Acide arsenique. | Acide arsenical. | ||
Le bismuth. | Acide bismutique. | . . . . . . . . . . . . . . . . . . . | ||
Le cobalt. | Acide cobaltique. | . . . . . . . . . . . . . . . . . . . | ||
Le cuivre. | Acide cuprique. | . . . . . . . . . . . . . . . . . . . | ||
L'étain. | Acide stamnique. | . . . . . . . . . . . . . . . . . . . | ||
Le fer. | Acide ferrique. | . . . . . . . . . . . . . . . . . . . | ||
Le manganèse. | Acide manganique. | . . . . . . . . . . . . . . . . . . . | ||
Le mercure. | Acide mercurique. | . . . . . . . . . . . . . . . . . . . | ||
Le molybdène. | Acide molybdique. | Acide de la molybdène. | ||
Le nickel. | Acide nickelique. | . . . . . . . . . . . . . . . . . . . | ||
L'or. | Acide aurique. | . . . . . . . . . . . . . . . . . . . | ||
Le platine. | Acide platinique. | . . . . . . . . . . . . . . . . . . . | ||
Le plomb. | Oxide plombique. | . . . . . . . . . . . . . . . . . . . | ||
Le tungstène. | Acide tungstique. | Acide de la tungstène. | ||
Le zinc. | Acide zincique. | . . . . . . . . . . . . . . . . . . . |
Quatrième degré d'oxigénation. | ||||
Noms nouveaux. | Noms anciens. | |||
Combinaisons de l'oxygène avec les substances simples non métalliques, telles que: | Le calorique. | |||
L'hydrogène. | ||||
L'azote. | Acide nitrique oxigéné. | Inconnu. | ||
Le carbone. | Acide carbonique oxigéné. | Inconnu. | ||
Le soufre. | Acide sulfurique oxigéné. | Inconnu. | ||
Le phosphore. | Acide phosphorique oxigéné. | Inconnu. | ||
Le radical muriatique. | Acide muriatique oxigéné. | Acide marin déphlogistiqué. | ||
Le radical fluorique. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le radical boracique. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Combinaisons de l'oxygène avec les substances simples métalliques, telles que: | L'antimoine. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | |
L'argent. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
L'arsenic. | Acide arsenic oxigéné. | Inconnu. | ||
Le bismuth. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le cobalt. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le cuivre. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
L'étain. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le fer. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le manganèse. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le mercure. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le molybdène. | Acide molybdique oxygéné. | Inconnu. | ||
Le nickel. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
L'or. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le platine. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le plomb. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . | ||
Le tungstène. | Acide tungstique oxygéné. | Inconnu. | ||
Le zinc. | . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . |
Sur les combinaisons binaires de l'Oxygène avec les substances simples métalliques & non métalliques.
L'Oxygène est une des substances les plus abondamment répandues dans la nature, puisqu'elle forme près du tiers en poids de notre atmosphère, & par conséquent du fluide élastique que nous respirons. C'est dans ce réservoir immense que vivent & croissent les animaux & les végétaux, & c'est également de lui que nous tirons principalement tout l'oxygène que nous employons dans nos expériences. L'attraction réciproque qui s'exerce entre ce principe & les différentes substances est telle, qu'il est impossible de l'obtenir seul & dégagé de toute combinaison. Dans notre atmosphère, il est uni au calorique qui le tient en état de gaz, & il est mêlé avec environ deux tiers en poids de gaz azote.
Il faut, pour qu'un corps s'oxygène, réunir un certain nombre de conditions: la première est que les molécules constituantes de ce corps n'exercent pas sur elles-mêmes une attraction plus forte que celle qu'elles exercent sur l'oxygène; car il est évident qu'alors il ne peut plus y avoir de combinaison. L'art dans ce cas peut 204 venir au secours de la nature, & l'on peut diminuer presqu'à volonté l'attraction des molécules des corps, en les échauffant, c'est-à-dire, en y introduisant du calorique.
Echauffer un corps, c'est écarter les unes des autres les molécules qui le constituent; & comme l'attraction de ces molécules diminue suivant une certaine loi relative à la distance, il se trouve nécessairement un instant où les molécules exercent une plus forte attraction sur l'oxygène, qu'elles n'en exercent sur elles-mêmes; c'est alors que l'oxygénation a lieu.
On conçoit que le degré de chaleur auquel commence ce phénomène, doit être différent pour chaque substance. Ainsi, pour oxygéner la plupart des corps & en général presque toutes les substances simples, il ne s'agit que de les exposer à l'action de l'air de l'atmosphère, & de les élever à une température convenable. Cette température pour le plomb, le mercure, l'étain, n'est pas fort supérieure à celle dans laquelle nous vivons. Il faut au contraire un degré de chaleur assez grand pour oxygéner le fer, le cuivre, &c. du moins par la voie sèche & lorsque l'oxygénation n'est point aidée par l'action de l'humidité. Quelquefois l'oxygénation se fait avec une extrême rapidité, & alors elle est accompagnée de chaleur, de lumière & 205 même de flamme; telle est la combustion du phosphore dans l'air de l'atmosphère, & celle du fer dans le gaz oxygène. Celle du soufre est moins rapide: enfin celle du plomb, de l'étain & de la plupart des métaux, se fait beaucoup plus lentement & sans que le dégagement du calorique, & sur-tout de la lumière, soit sensible.
Il est des substances qui ont une telle affinité pour l'oxygène, & qui ont la propriété de s'oxygéner à une température si basse, que nous ne les voyons que dans l'état d'oxygénation. Tel est l'acide muriatique que l'art, ni peut-être la nature, n'ont encore pu décomposer, & qui ne se présente à nous que dans l'état d'acide. Il est probable qu'il y a beaucoup d'autres substances du règne minéral qui, comme l'acide muriatique, sont nécessairement oxygénées au degré de chaleur dans lequel nous vivons; & c'est sans doute parce qu'elles sont déjà saturées d'oxygène, qu'elles n'exercent plus aucune action sur ce principe.
L'exposition des substances simples à l'air, élevées à un certain degré de température, n'est pas le seul moyen de les oxygéner. Au lieu de leur présenter l'oxygène uni au calorique, on peut leur présenter cette substance unie à un métal avec lequel elle ait peu d'affinité. L'oxide rouge de mercure est un des plus 206 propres à remplir cet objet, sur-tout à l'égard des corps qui ne sont point attaqués par le mercure. L'oxygène dans cet oxide tient très-peu au métal, & même il n'y tient plus au degré de chaleur qui commence à faire rougir le verre. En conséquence on oxygène avec beaucoup de facilité tous les corps qui en sont susceptibles, en les mêlant avec de l'oxide rouge de mercure, & en les élevant à un degré de chaleur médiocre.
L'oxide noir de manganèse, l'oxide rouge de plomb, les oxides d'argent, & en général presque tous les oxides métalliques peuvent remplir jusqu'à un certain point le même objet, en choisissant de préférence ceux dans lesquels l'oxygène a le moins d'adhérence. Toutes les réductions ou revivifications métalliques ne sont même que des opérations de ce genre: elles ne sont autre chose que des oxygénations du charbon par un oxide métallique quelconque. Le charbon combiné avec l'oxygène & avec du calorique, s'échappe sous forme de gaz acide carbonique, & le métal reste pur & revivifié.
On peut encore oxygéner toutes les substances combustibles en les combinant, soit avec du nitrate de potasse ou de soude, soit avec du muriate oxygéné de potasse. A un certain degré de chaleur, l'oxygène quitte le nitrate & le muriate, pour se combiner avec le corps 207 combustible: mais ces sortes d'oxygénation ne doivent être tentées qu'avec des précautions extrêmes & sur de très-petites quantités. L'oxygène entre dans la combinaison des nitrates & sur-tout des muriates oxygénés, avec une quantité de calorique presqu'égale à celle qui est nécessaire pour le constituer gaz oxygène. Cette immense quantité de calorique devient subitement libre au moment de sa combinaison avec les corps combustibles; & il en résulte des détonations terribles auxquelles rien ne résiste.
Enfin on peut oxygéner par la voie humide une partie des corps combustibles, & transformer en acides la plupart des oxides des trois règnes. On se sert principalement à cet effet de l'acide nitrique, auquel l'oxygène tient peu & qui le cède facilement à un grand nombre de corps, à l'aide d'une douce chaleur. On peut également employer l'acide muriatique oxygéné pour quelques-unes de ces opérations, mais non pas pour toutes.
J'appelle binaires les combinaisons des substances simples avec l'oxygène, parce qu'elles ne sont formées que de la réunion de deux substances. Je nommerai combinaisons ternaires celles composées de trois substances simples, & combinaisons quaternaires celles composées de quatre substances.
208
Noms des radicaux. | Noms des acides qui en résultent. | ||||
Nomenclature nouvelle. | Nomenclature ancienne. | ||||
Combinaisons de l'oxigène avec les radicaux composés du règne minéral, tels que: | Le radical nitro-muriatique. | L'acide nitro-muriatique. | L'eau régale. | ||
Combinaisons de l'oxigène avec les radicaux carbone-hydreux & hydro-carboneux du règne végétal tels que le radical: * | tartarique. | L'acide tartareux. | inconnu des anciens. | ||
malique. | L'acide malique. | inconnu des anciens. | |||
citrique. | L'acide citrique. | L'acide du citron. | |||
pyro-lignique. | L'acide pyro-ligneux. | L'acide empyreumatique du bois. | |||
pyro-mucique. | L'acide pyro-muqueux. | L'acide empyreumatique du sucre. | |||
pyro-tartarique. | L'acide pyro-tartareux. | L'acide empyreumatique du tartre. | |||
oxalique. | L'acide oxalique. | Le sel d'oseille. | |||
acétique. | L'acide acéteux ou acétique. | Le vinaigre, l'acide du vinaigre. | |||
Le vinaigre radical. | |||||
succinique. | L'acide succinique. | Le sel volatil de succin. | |||
benzoïque. | L'acide benzoïque. | Les fleurs de benjoin. | |||
camphorique. | L'acide camphorique. | inconnu des anciens. | |||
gallique. | L'acide gallique. | Le principe astringent des végétaux. | |||
Combinaisons de l'oxigène avec les radicaux carbone-hydreux & hydro-carboneux du règne animal, auxquels se joint presque toujours l'azote & souvent le phosphore, tels que le radical: ** | lactique. | L'acide lactique. | L'acide du petit lait aigri. | ||
saccho-lactique. | L'acide saccho-lactique. | inconnu des anciens. | |||
formique. | L'acide formique. | L'acide des fourmis. | |||
bombique. | L'acide bombique. | inconnu des anciens. | |||
sébacique. | L'acide sébacique. | inconnu des anciens. | |||
lithique. | L'acide lithique. | Le calcul de la vessie. | |||
prussique. | L'acide prussique. | La matière colorante du bleu de Prusse. |
* Ces radicaux, par un premier degré d'oxigénation, donnent le sucre, l'amidon, le muqueux, & en général tous les oxides végétaux.
** Ces radicaux, par un premier degré d'oxigénation, donnent la limphe animale, différentes humeurs, & en général tous les oxides animaux.
209
Sur les combinaisons de l'Oxigène avec les Radicaux composés.
Depuis que j'ai publié dans les Mémoires de l'Académ. année 1776, pag. 671, & 1778, page 535, une nouvelle théorie sur la nature & sur la formation des acides; & que j'en ai conclu que le nombre de ces substances devoit être beaucoup plus grand qu'on ne l'avoit pensé jusqu'alors, une nouvelle carrière s'est ouverte en Chimie: au lieu de cinq ou six acides qu'on connoissoit, on en a découvert successivement jusqu'à trente, & le nombre des sels neutres s'est accru dans la même proportion. Ce qui nous reste à étudier maintenant, est la nature des bases acidifiables & le degré d'oxygénation dont elles sont susceptibles. J'ai déjà fait observer que dans le règne minéral, presque tous les radicaux oxidables & acidifiables étoient simples; que dans le règne végétal au contraire, & sur-tout dans le règne animal, il n'en existoit presque pas qui ne fussent composés au moins de deux substances, d'hydrogène & de carbone; que souvent l'azote & le phosphore s'y réunissoient, & qu'il en résultoit des radicaux à quatre bases. 210
Les oxides & acides animaux & végétaux peuvent, d'après ces observations, différer entr'eux, 1o. par le nombre des principes acidifians qui constituent leur base; 2o. par la différente proportion de ces principes; 3o. par le différent degré d'oxygénation; ce qui suffit & au-delà pour expliquer le grand nombre de variétés que nous présente la nature. Il n'est pas étonnant, d'après cela, qu'on puisse convertir presque tous les acides végétaux les uns dans les autres; il ne s'agit, pour y parvenir, que de changer la proportion du carbone & de l'hydrogène, ou de les oxygéner plus ou moins. C'est ce qu'a fait M. Crell dans des expériences très-ingénieuses, qui ont été confirmées & étendues depuis par M. Hassenfratz. Il en résulte que le carbone & l'hydrogène donnent par un premier degré d'oxygénation de l'acide tartareux, par un second de l'acide oxalique, par un troisième de l'acide acéteux ou acétique. Il paroîtroit seulement que le carbone entre dans une proportion un peu moindre dans la combinaison des acides acéteux & acétique. L'acide citrique & l'acide malique diffèrent très-peu des précédens.
Doit-on conclure de ces réflexions, que les huiles soient la base, qu'elles soient le radical des acides végétaux & animaux? J'ai déjà exposé 211 mes doutes à cet égard. Premièrement, quoique les huiles paroissent n'être uniquement composées que d'hydrogène & de carbone, nous ne savons pas si la proportion qu'elles en contiennent est précisément celle nécessaire pour constituer les radicaux des acides. Secondement, puisque les acides végétaux & animaux ne sont pas seulement composés d'hydrogène, & de carbone, mais que l'oxygène entre également dans leur combinaison, il n'y a pas de raison de conclure qu'ils contiennent plutôt de l'huile que de l'acide carbonique & de l'eau. Ils contiennent bien, il est vrai, les matériaux propres à chacune de ces combinaisons; mais ces combinaisons ne sont point réalisées à la température habituelle dont nous jouissons, & les trois principes sont dans un état d'équilibre, qu'un degré de chaleur un peu supérieur à celui de l'eau bouillante suffit pour troubler. On peut consulter ce que j'ai dit à cet égard, page 132 & suivantes de cet Ouvrage.
212
Substances simples. | Résultat des combinaisons. | |||||
Nomenclature nouvelle. | Nomenclature anc. | |||||
Combinaisons de l'azote avec: | Le calorique. | Le gaz azote. | Air phlogistiqué, mofète. | |||
L'hydrogène. | L'ammoniaque. | Alkali volatil. | ||||
L'oxigène. | Oxide nitreux. | Base du gaz nitreux. | ||||
Acide nitreux. | Acide nitreux fumant. | |||||
Acide nitrique. | Acide nitreux blanc. | |||||
Le Carbone. | Azoture de carbone. Combinaison inconnue. On sait seulement que le carbone est susceptible de se dissoudre dans l'azote, & il en résulte un gaz azotique carboné. |
Inconnue. | ||||
Le phosphore. | Azoture de phosphore. Combinaison inconnue. |
Inconnue. | ||||
Le soufre. | Azoture de soufre. Combinaison inconnue. On sait seulement que le soufre est susceptible de se dissoudre dans le gaz azotique, & il en résulte un gaz azotique sulfuré. |
Inconnue. | ||||
Les radicaux composés. | L'azote se combine avec le carbone & l'hydrogène, & quelquefois avec le phosphore, pour former des radicaux composés, qui sont susceptibles, comme on l'a vu plus haut, de s'oxider & de s'acidifier. Ce principe entre généralement dans tous les radicaux du règne animal. | Inconnues. | ||||
Les substances métalliques. | Ces combinaisons sont absolument inconnues. Si elles sont découvertes un jour, on les nommera azotures métalliques. | Inconnues. | ||||
La chaux. | Toutes ces combinaisons sont entièrement inconnues. Si un jour elles sont reconnues possibles, elles seront nommées azotures de chaux, azotures magnésiènes, &c. | |||||
La magnésie. | ||||||
La baryte. | ||||||
L'alumine. | ||||||
La potasse. | ||||||
La soude. |
213
Sur l'Azote & sur ses combinaisons avec les substances simples.
L'Azote est un des principes les plus abondamment répandus dans la nature. Combiné avec le calorique, il forme le gaz azote ou la mofète, qui entre environ pour les deux tiers dans le poids de l'air de l'atmosphère. Il demeure constamment dans l'état de gaz au degré de pression & de température dans lequel nous vivons; aucun degré de compression ni de froid n'ont encore pu le réduire à l'état liquide ou solide.
Ce principe est aussi un des élémens qui constitue essentiellement les matières animales: il y est combiné avec le carbone & l'hydrogène, quelquefois avec le phosphore, & le tout est lié par une certaine portion d'oxygène qui les met ou à l'état d'oxide, ou à celui d'acide, suivant le degré d'oxygénation. La nature des matières animales peut donc varier comme celles des matières végétales, de trois manières, 1o. par le nombre des substances qui entrent dans la combinaison du radical, 2o. par leur proportion, 3o. par le degré d'oxygénation. 214
L'azote combiné avec l'oxygène forme les oxides & acides nitreux & nitrique; combiné avec l'hydrogène, il forme l'ammoniaque: ses autres combinaisons avec les substances simples sont peu connues. Nous leur donnerons le nom d'azotures, pour conserver l'identité de terminaison en ure que nous avons affectée à toutes les substances non-oxygénées. Il est assez probable que toutes les substances alkalines appartiennent à ce genre de combinaisons.
Il y a plusieurs manières d'obtenir le gaz azote: la première, de le tirer de l'air commun en absorbant par le sulfure de potasse ou de chaux dissous dans l'eau, le gaz oxygène qu'il contient. Il faut douze ou quinze jours pour que l'absorption soit complette; en supposant même qu'on agite & qu'on renouvelle les surfaces, & qu'on rompe la pellicule qui s'y forme.
La seconde, de le tirer des matières animales en les dissolvant dans de l'acide nitrique affoibli & presqu'à froid. L'azote, dans cette opération, se dégage sous forme de gaz, & on le reçoit sous des cloches remplies d'eau dans l'appareil pneumato-chimique: mêlé avec un tiers en poids de gaz oxygène, il reforme de l'air atmosphérique.
Une troisième manière d'obtenir le gaz azote, 215 est de le retirer du nitre par la détonation, soit avec le charbon, soit avec quelques autres corps combustibles. Dans le premier cas, le gaz azote se dégage mêlé avec du gaz acide carbonique, qu'on absorbe ensuite par de l'alkali caustique ou de l'eau de chaux, & le gaz azote reste pur.
Enfin un quatrième moyen d'obtenir le gaz azote, est de le tirer de la combinaison de l'ammoniaque avec les oxides métalliques. L'hydrogène de l'ammoniaque se combine avec l'oxygène de l'oxide; il se forme de l'eau, comme l'a observé M. de Fourcroy: en même tems l'azote devenu libre, se dégage sous la forme de gaz.
Il n'y a pas long-tems que les combinaisons de l'azote sont connues en Chimie. M. Cavendish est le premier qui l'ait observé dans le gaz & dans l'acide nitreux. M. Berthollet l'a ensuite découvert dans l'ammoniaque & dans l'acide prussique. Tout jusqu'ici porte à croire que cette substance est un être simple & élémentaire; rien ne prouve au moins qu'elle ait encore été décomposée, & ce motif suffit pour justifier la place que nous lui avons assignée.
216
Noms des Substances simples. | Résultat des combinaisons. | |||||
Nomenclature nouvelle. | Observations. | |||||
Combinaisons de l'hydrogène avec: | Le calorique. | Gaz hydrogène. | Cette combinaison de l'oxygène & du carbone comprend les huiles fixes & volatiles, & forme le radical d'une partie des oxides & des acides végétaux & animaux; lorsqu'elle a lieu dans l'état de gaz, il en résulte du gaz hydrogène carboné. | |||
L'azote. | Ammoniaque ou alkali volatil. | |||||
L'oxigène. | Eau. | |||||
Le soufre. | Combinaison inconnue. * | |||||
Le phosphore. | ||||||
Le carbone | Radical hydro-carboneux ou carbone-hydreux. | |||||
L'antimoine. | Hydrure d'antimoine. | Aucunes de ces combinaisons ne sont connues, & il y a toute apparence qu'elles ne peuvent exister à la température dans laquelle nous vivons, à cause de la grande affinité de l'hydrogène pour le calorique. | ||||
L'argent. | Hydrure d'argent. | |||||
L'arsenic. | Hydrure d'arsenic. | |||||
Le bismuth. | Hydrure de bismuth. | |||||
Le cobalt. | Hydrure de cobalt. | |||||
Le cuivre. | Hydrure de cuivre. | |||||
L'étain. | Hydrure d'étain. | |||||
Le fer. | Hydrure de fer. | |||||
Le manganèse. | Hydrure de manganèse. | |||||
Le mercure. | Hydrure de mercure. | |||||
Le molybdène. | Hydrure de molybdène. | |||||
Le nickel. | Hydrure de nickel. | |||||
L'or. | Hydrure d'or. | |||||
Le platine. | Hydrure de platine. | |||||
Le plomb. | Hydrure de plomb. | |||||
Le tungstène. | Hydrure de tungstène. | |||||
Le zinc. | Hydrure de zinc. | |||||
La potasse. | Hydrure de potasse. | |||||
La soude. | Hydrure de soude. | |||||
L'ammoniaque. | Hydrure d'ammoniaque. | |||||
La chaux. | Hydrure de chaux. | |||||
La magnésie. | Hydrure de magnésie. | |||||
La baryte. | Hydrure de baryte. | |||||
L'alumine. | Hydrure d'alumine. |
* Ces combinaisons ont lieu dans l'état de gaz & il en résulte du gaz hydrogène sulfuré & phosphoré.
217
Sur l'Hydrogène, & sur le tableau de ses combinaisons.
L'hydrogène, comme l'exprime sa dénomination, est un des principes de l'eau; il entre pour quinze centièmes dans sa composition: l'oxygène en forme les quatre-vingt-cinq autres centièmes. Cette substance dont ses propriétés & même l'existence ne sont connues que depuis très-peu de tems, est un des principes des plus abondamment répandus dans la nature: c'est un de ceux qui jouent le principal rôle dans le règne végétal & dans le règne animal.
L'affinité de l'hydrogène pour le calorique est telle qu'il reste constamment dans l'état de gaz au degré de chaleur & de pression dans lequel nous vivons. Il nous est donc impossible de connoître ce principe dans un état concret & dépouillé de toute combinaison.
Pour obtenir l'hydrogène ou plutôt le gaz hydrogène, il ne faut que présenter à l'eau une substance pour laquelle l'oxygène ait plus d'affinité qu'il n'en a avec l'hydrogène. Aussitôt l'hydrogène devient libre, il se combine avec le calorique & forme le gaz hydrogène. C'est 218 le fer qu'on a coutume d'employer pour opérer cette séparation, & il faut pour cela qu'il soit élevé à un degré de chaleur capable de le faire rougir. Le fer s'oxide dans cette opération, & devient semblable à la mine de fer de l'île d'Elbe. Dans cet état il est beaucoup moins attirable à l'aimant, & il se dissout sans effervescence dans les acides.
Le carbone, lorsqu'il est rouge & embrâsé, a également la propriété de décomposer l'eau & d'enlever l'oxygène à l'hydrogène: mais alors il se forme de l'acide carbonique qui se mêle avec le gaz hydrogène; on l'en sépare facilement, parce que l'acide carbonique est absorbable par l'eau & par les alkalis, tandis que l'hydrogène ne l'est pas. On peut encore obtenir du gaz hydrogène en faisant dissoudre du fer ou du zinc dans de l'acide sulfurique étendu d'eau. Ces deux métaux qui ne décomposent que très-difficilement & très-lentement l'eau lorsqu'ils sont seuls, la décomposent au contraire avec beaucoup de facilité lorsqu'ils sont aidés par la présence de l'acide sulfurique. L'hydrogène s'unit au calorique dans cette opération, aussitôt qu'il est dégagé, & on l'obtient dans l'état de gaz hydrogène.
Quelques Chimistes d'un ordre très-distingué se persuadent que l'hydrogène est le phlogistique 219 de Stalh, & comme ce célèbre Chimiste admettoit du phlogistique dans les métaux, dans le soufre, dans le charbon, &c. ils sont obligés de supposer qu'il existe également, de l'hydrogène fixé & combiné dans toutes ces substances: ils le supposent, mais ils ne le prouvent pas, & quand ils le prouveroient, ils ne seroient pas beaucoup plus avancés, puisque ce dégagement du gaz hydrogène n'explique en aucune manière les phénomènes de la calcination & de la combustion. Il faudroit toujours en revenir à l'examen de cette question; le calorique & la lumière qui se dégagent pendant les différentes espèces de combustion, sont-ils fournis par le corps qui brûle ou par le gaz oxygène qui se fixe dans toutes les opérations? & certainement la supposition de l'hydrogène dans les différens corps combustibles ne jette aucune lumière sur cette question. C'est au surplus à ceux qui supposent à prouver; & toute doctrine qui expliquera aussi bien & aussi naturellement que la leur, sans supposition, aura au moins l'avantage de la simplicité.
On peut voir ce que nous avons publié sur cette grande question, M. de Morveau, M. Bertholet, M. de Fourcroy & moi, dans la traduction de l'essai de M. Kirwan sur le phlogistique.
220
Noms des Substances simples. | Résultat des combinaisons. | |||||
Nomenclature nouvelle. | Noms anciens correspondans avec la nouvelle Nomenclature. | |||||
Combinaisons du soufre avec: | Le calorique. | Gaz du soufre. | ||||
L'oxigène. | Oxide de soufre. | Soufre mou. | ||||
Acide sulfureux. | Acide sulfureux. | |||||
Acide sulfurique. | Acide vitriolique. | |||||
L'hydrogène. | Sulfure d'hydrogène. | Combinaisons inconnues. | ||||
L'azote. | Sulfure d'azote ou azote sulfuré. | |||||
Le phosphore. | Sulfure de phosphore. | |||||
Le carbone. | Sulfure de carbone. | |||||
L'antimoine. | Sulfure d'antimoine. | Antimoine crud. | ||||
L'argent. | Sulfure d'argent. | |||||
L'arsenic. | Sulfure d'arsenic. | Orpiment, réalgar. | ||||
Le bismuth. | Sulfure de bismuth. | |||||
Le cobalt. | Sulfure de cobalt. | |||||
Le cuivre. | Sulfure de cuivre. | Pyrite de cuivre. | ||||
L'étain. | Sulfure d'étain. | |||||
Le fer. | Sulfure de fer. | Pyrite de fer. | ||||
Le manganèse. | Sulfure de manganèse. | |||||
Le mercure. | Sulfure de mercure. | Ethiops minéral, cinnabre. | ||||
Le molybdène. | Sulfure de molybdène. | |||||
Le nickel. | Sulfure de nickel. | |||||
L'or. | Sulfure d'or. | |||||
Le platine. | Sulfure de platine. | |||||
Le plomb. | Sulfure de plomb. | Galène. | ||||
Le tungstène. | Sulfure de tungstène. | |||||
Le zinc. | Sulfure de zinc. | Blende. | ||||
La potasse. | Sulfure de potasse. | Foie de soufre à base d'alkali fixe végétal. | ||||
La soude. | Sulfure de soude. | Foie de soufre à base d'alkali fixe minéral. | ||||
L'ammoniaque. | Sulfure d'ammoniaque. | Foie de soufre volatil, liqueur fumante de Boyle. | ||||
La chaux. | Sulfure de chaux. | Foie de soufre à base calcaire. | ||||
La magnésie. | Sulfure de magnésie. | Foie de soufre à base de magnésie. | ||||
La baryte. | Sulfure de baryte. | Foie de soufre à base de terre pesante. | ||||
L'alumine. | Sulfure d'alumine. | Combinaison inconnue. |
221
Sur le Soufre & sur le tableau de ses combinaisons avec les substances simples.
Le soufre est une des substances combustibles qui a le plus de tendance à la combinaison. Il est naturellement dans l'état concret à la température habituelle dans laquelle nous vivons, & ne se liquéfie qu'à une chaleur supérieure de plusieurs degrés à celle de l'eau bouillante.
La nature nous présente le soufre tout formé, & à-peu-près porté au dernier degré de pureté dont il est susceptible dans le produit des volcans; elle nous le présente encore, & beaucoup plus souvent dans l'état d'acide sulfurique, c'est-à-dire combiné avec l'oxygène, & c'est dans cet état qu'il se trouve dans les argiles, dans les gypses, &c. Pour ramener à l'état de soufre l'acide sulfurique de ces substances, il faut lui enlever l'oxygène, & on y parvient en le combinant à une chaleur rouge avec du carbone. Il se forme de l'acide carbonique qui se dégage dans l'état de gaz, & il reste un sulfure qu'on décompose par un acide: l'acide s'unit à la base & le soufre se précipite.
222
Noms des Substances simples. | Résultat des combinaisons. | |||||
Nomenclature nouvelle. | Observations. | |||||
Combinaisons du phosphore avec: | Le calorique. | Gaz du phosphore. | ||||
L'oxigène. | Oxide de phosphore. | |||||
Acide phosphoreux. | ||||||
Acide phosphorique. | ||||||
L'hydrogène. | Phosphure d'hydrogène. | |||||
L'azote. | Phosphure d'azote. | |||||
Le soufre. | Phosphure de soufre. | |||||
Le carbone. | Phosphure de carbone. | |||||
L'antimoine. | Phosphure d'antimoine. | De toutes ces combinaisons, on ne connoît encore que le phosphure de fer, auquel on a donné le nom très-impropre de sidérite; encore est-il incertain si le phosphore est oxigéné ou non oxigéné dans cette combinaison. | ||||
L'argent. | Phosphure d'argent. | |||||
L'arsenic. | Phosphure d'arsenic. | |||||
Le bismuth. | Phosphure de bismuth. | |||||
Le cobalt. | Phosphure de cobalt. | |||||
Le cuivre. | Phosphure de cuivre. | |||||
L'étain. | Phosphure d'étain. | |||||
Le fer. | Phosphure de fer. | |||||
Le manganèse. | Phosphure de manganèse. | |||||
Le mercure. | Phosphure de mercure. | |||||
Le molybdène. | Phosphure de molybdène. | |||||
Le nickel. | Phosphure de nickel. | |||||
L'or. | Phosphure d'or. | |||||
Le platine. | Phosphure de platine. | |||||
Le plomb. | Phosphure de plomb. | |||||
Le tungstène. | Phosphure de tungstène. | |||||
Le zinc. | Phosphure de zinc. | |||||
La potasse. | Phosphure de potasse. | Ces combinaisons ne sont point encore connues. Il y a apparence qu'elles sont impossibles, d'après les expériences de M. Gengembre. | ||||
La soude. | Phosphure de soude. | |||||
L'ammoniaque. | Phosphure d'ammoniaque. | |||||
La chaux. | Phosphure de chaux. | |||||
La baryte. | Phosphure de baryte. | |||||
La magnésie. | Phosphure de magnésie. | |||||
L'alumine. | Phosphure d'alumine. |
223
Sur le Phosphore & sur le Tableau de ses combinaisons avec les substances simples.
Le phosphore est une substance combustible simple, dont l'existence avoit échappé aux recherches des anciens Chimistes. C'est en 1667 que la découverte en fut faite par Brandt, qui fit mystère de son procédé: bientôt après Kunckel découvrit le secret de Brandt; il le publia, & le nom de phosphore de Kunckel qui lui a été conservé jusqu'à nos jours, prouve que la reconnoissance publique se porte sur celui qui publie, plutôt que sur celui qui découvre, quand il fait mystère de sa découverte. C'est de l'urine seule qu'on tiroit alors le phosphore: quoique la méthode de le préparer eût été décrite dans plusieurs ouvrages, & notamment par M. Homberg, dans les mémoires de l'Académie des Sciences, année 1692, l'Angleterre a été long-tems en possession d'en fournir seule aux savans de toute l'Europe. Ce fut en 1737 qu'il fut fait pour la première fois en France, au Jardin Royal des Plantes, en présence des commissaires de l'Académie des Sciences. Maintenant on le tire d'une manière plus 224 commode, & sur-tout plus économique, des os des animaux, qui sont un véritable phosphate calcaire. Le procédé le plus simple consiste, d'après MM. Gahn, Schéele, Rouelle, &c. à calciner des os d'animaux adultes, jusqu'à ce qu'ils soient presque blancs. On les pile & on les passe au tamis de soie; on verse ensuite dessus de l'acide sulfurique étendu d'eau, mais en quantité moindre qu'il n'en faut pour dissoudre la totalité des os. Cet acide s'unit à la terre des os pour former du sulfate de chaux: en même tems l'acide phosphorique est dégagé & reste libre dans la liqueur. On décante alors, on lave le résidu, & on réunit l'eau du lavage à la liqueur décantée; on fait évaporer, afin de séparer du sulfate de chaux qui se cristallise en filets soyeux, & on finit par obtenir l'acide phosphorique sous forme d'un verre blanc & transparent qui, réduit en poudre & mêlé avec un tiers de son poids de charbon, donne de bon phosphore. L'acide phosphorique qu'on obtient par ce procédé, n'est jamais aussi pur que celui retiré du phosphore, soit par la combustion, soit par l'acide nitrique; il ne doit donc point être employé pour des expériences de recherches.
Le phosphore se rencontre dans presque toutes les substances animales, & dans quelques 225 plantes qui ont, d'après l'analyse chimique, un caractère animal. Il y est ordinairement combiné avec le carbone, l'azote & l'hydrogène, & il en résulte des radicaux très-composés. Ces radicaux sont communément portés à l'état d'oxide par une portion d'oxygène. La découverte que M. Hassenfratz a faite de cette substance dans le charbon de bois, feroit soupçonner qu'il est plus commun qu'on ne pense dans le règne végétal: ce qu'il y a de certain, c'est que des familles entières de plantes en fournissent quand on les traite convenablement. Je range le phosphore au rang des corps combustibles simples, parce qu'aucune expérience ne donne lieu de croire qu'on puisse le décomposer. Il s'allume à 32 degrés du thermomètre.
226
Noms des Substances simples. | Résultat des combinaisons. | |||||
Nomenclature nouvelle. | Observations. | |||||
Combinaisons du carbone avec: | L'oxigène. | Oxide de carbone. | Inconnu. | |||
Acide carbonique. | Air fixe des anglois, acide crayeux de M. Bucquet & de M. de Fourcroy. | |||||
Le soufre. | Carbure de soufre. | Combinaisons inconnues. | ||||
Le phosphore. | Carbure de phosphore. | |||||
L'azote. | Carbure d'azote. | |||||
L'hydrogène. | Radical carbone-hydreux. | |||||
Huiles fixes & volatiles. | ||||||
L'antimoine. | Carbure d'antimoine. | De toutes ces combinaisons, on ne connoît que les carbures de fer & de zinc, auxquels on a donné le nom de Plombagine; les autres n'ont encore été ni faites ni observées. | ||||
L'argent. | Carbure d'argent. | |||||
L'arsenic. | Carbure d'arsenic. | |||||
Le bismuth. | Carbure de bismuth. | |||||
Le cobalt. | Carbure de cobalt. | |||||
Le cuivre. | Carbure de cuivre | |||||
L'étain. | Carbure d'étain. | |||||
Le fer. | Carbure de fer | |||||
Le manganèse. | Carbure de manganèse. | |||||
Le mercure. | Carbure de mercure. | |||||
Le molybdène. | Carbure de molybdène. | |||||
Le nickel. | Carbure de nickel. | |||||
L'or. | Carbure d'or. | |||||
Le platine. | Carbure de platine. | |||||
Le plomb. | Carbure de plomb. | |||||
Le tungstène. | Carbure de tungstène. | |||||
Le zinc. | Carbure de zinc. | |||||
La potasse. | Carbure de potasse. | Combinaisons inconnues. | ||||
La soude. | Carbure de soude. | |||||
L'ammoniaque. | Carbure d'ammoniaque. | |||||
La chaux. | Carbure de chaux. | Combinaisons inconnues. | ||||
La magnésie. | Carbure de magnésie. | |||||
La baryte. | Carbure de baryte. | |||||
L'alumine. | Carbure d'alumine. |
227
Sur le Carbone & sur le Tableau de ses combinaisons.
Comme aucune expérience ne nous a indiqué jusqu'ici la possibilité de décomposer le carbone, nous ne pouvons quant à présent le considérer que comme une substance simple. Il paroît prouvé par les expériences modernes, qu'il est tout formé dans les végétaux, & j'ai déjà fait observer qu'il y étoit combiné avec l'hydrogène, quelquefois avec l'azote & avec le phosphore, pour former des radicaux composés; enfin que ces radicaux étoient ensuite portés à l'état d'oxides ou d'acides, suivant la proportion d'oxygène qui y étoit ajoutée.
Pour obtenir le carbone contenu dans les matières végétales ou animales, il ne faut que les faire chauffer à un degré de feu d'abord médiocre & ensuite très-fort, afin de décomposer les dernières portions d'eau que le charbon retient obstinément. Dans les opérations chimiques on se sert ordinairement de cornues de grès ou de porcelaine, dans lesquelles on introduit le bois ou autres matières combustibles, & on pousse à grand feu dans un bon 228 fourneau de reverbère: la chaleur volatilise, ou, ce qui est la même chose, convertit en gaz toutes les substances qui en sont susceptibles, & le carbone, comme le plus fixe, reste combiné avec un peu de terre & quelques sels fixes.
Dans les arts la carbonisation du bois se fait par un procédé moins coûteux: on dispose le bois en tas, on le recouvre de terre, de manière qu'il n'y ait de communication avec l'air que ce qu'il en faut pour faire brûler le bois & pour en chasser l'huile & l'eau; on étouffe ensuite le feu, en bouchant les trous qu'on avoit ménagés à la terre du fourneau.
Il y a deux manières d'analyser le carbone, sa combustion par le moyen de l'air ou plutôt du gaz oxygène, & son oxygénation par l'acide nitrique. On le convertit dans les deux cas en acide carbonique, & il laisse de la chaux, de la potasse & quelques sels neutres. Les Chimistes se sont peu occupés de ce genre d'analyse, & il n'est pas même rigoureusement démontré que la potasse existe dans le charbon avant la combustion.
229
Sur les Radicaux muriatique, fluorique & boracique, & sur leurs combinaisons.
On n'a point formé de Tableau pour présenter le résultat des combinaisons de ces substances, soit entr'elles, soit avec les autres corps combustibles; parce qu'elles sont toutes absolument inconnues. On sait seulement que ces radicaux s'oxygènent; qu'ils forment les acides muriatique, fluorique & boracique, & qu'alors ils sont susceptibles d'entrer dans un grand nombre de combinaisons: mais la Chimie n'a pas encore pu parvenir à les désoxygéner, s'il est permis de se servir de cette expression, & à les obtenir dans leur état de simplicité. Il faudroit, pour y parvenir, trouver un corps pour lequel l'oxygène eût plus d'affinité qu'il n'en a avec les radicaux muriatique, fluorique & boracique, ou bien se servir de doubles affinités. On peut voir dans les Observations relatives aux acides muriatique, fluorique & boracique, ce que nous savons de l'origine de leurs radicaux.
230
Sur la combinaison des Métaux les uns avec les autres.
Ce seroit ici le lieu, pour terminer ce qui concerne les substances simples, de présenter des Tableaux de la combinaison de tous les métaux les uns avec les autres; mais comme ces Tableaux seroient très-volumineux & ne présenteroient rien que d'incomplet, à moins de recherches qui n'ont point encore été faites, je les ai supprimés. Il me suffira de dire que toutes ces combinaisons portent le nom d'alliages, & qu'on doit nommer le premier le métal qui entre en plus grande abondance dans la composition métallique. Ainsi, alliage d'or & d'argent, ou or allié d'argent, annonce une combinaison où l'or est le métal dominant.
Les alliages métalliques ont, comme toutes les autres combinaisons, leur degré de saturation: il paroîtroit même, d'après les expériences de M. de la Briche, qu'ils en ont deux très-distincts.
231
Noms des bases. | Noms des sels neutres. | ||||
Nomenclature nouvelle. | Observations. | ||||
Combinaisons de l'acide nitreux avec: | La baryte. | Nitrite de baryte. | Il n'y a qu'un très-petit nombre d'années que ces sels ont été découverts, & ils n'avoient point encore été nommés. | ||
La potasse. | Nitrite de potasse. | ||||
La soude. | Nitrite de soude. | ||||
La chaux. | Nitrite de chaux. | ||||
La magnésie. | Nitrite de magnésie. | ||||
L'ammoniaque. | Nitrite d'ammoniaque. | ||||
L'alumine. | Nitrite d'alumine. | ||||
L'oxide de zinc. | Nitrite de zinc. | Comme les métaux se dissolvent dans les acides nitreux & nitrique, à différens degrés d'oxigénation, il doit en résulter des sels, où l'acide est réellement dans des états différens; ceux où le métal est le moins oxigéné seront appelés nitrites; ceux où il l'est davantage seront nommés nitrates: mais la limite de cette distinction n'est pas très aisée à saisir. Les anciens ne connoissoient aucuns de ces sels. | |||
L'oxide de fer. | Nitrite de fer. | ||||
L'oxide de manganèse. | Nitrite de manganèse. | ||||
L'oxide de cobalt. | Nitrite de cobalt. | ||||
L'oxide de nickel. | Nitrite de nickel. | ||||
L'oxide de plomb. | Nitrite de plomb. | ||||
L'oxide d'étain. | Nitrite d'étain. | ||||
L'oxide de cuivre. | Nitrite de cuivre. | ||||
L'oxide de bismuth. | Nitrite de bismuth. | ||||
L'oxide d'antimoine. | Nitrite d'antimoine. | ||||
L'oxide d'arsenic. | Nitrite d'arsenic. | ||||
L'oxide de mercure. | Nitrite de mercure. | ||||
L'oxide d'argent. * | Nitrite d'argent. | ||||
L'oxide d'or. * | Nitrite d'or. | ||||
L'oxide de platine. * | Nitrite de platine. |
* Il y a grande apparence qu'il n'existe pas de nitrite d'argent, d'or & de platine, mais seulement des nitrates de ces métaux.
232
Noms des bases. | Noms des sels neutres. | |||||
Nomenclature nouvelle. | Nomenclature ancienne. | |||||
Combinaisons de l'acide nitrique avec: | La baryte. | Nitrate de baryte. | Nitre à base de terre pesante. | |||
La potasse. | Nitrate de potasse, salpêtre. | Nitre, nitre à base d'alkali végétal, salpêtre. | ||||
La soude. | Nitrate de soude. | Nitre quadrangulaire. | ||||
Nitre à base d'alkali minéral. | ||||||
La chaux. | Nitrate de chaux. | Nitre calcaire, nitre à base terreuse. | ||||
Eau mère de nitre ou de salpêtre. | ||||||
La magnésie. | Nitrate de magnésie. | Nitre à base de magnésie. | ||||
L'ammoniaque. | Nitrate d'ammoniaque. | Nitre ammoniacal. | ||||
L'alumine. | Nitrate d'alumine. | Alun nitreux, nitre argileux, nitre à base de terre d'alun. | ||||
L'oxide de zinc. | Nitrate de zinc. | Nitre de zinc. | ||||
L'oxide de fer. | Nitrate de fer. | Nitre de fer, nitre martial. | ||||
L'oxide de manganèse. | Nitrate de manganèse. | Nitre de manganèse. | ||||
L'oxide de cobalt. | Nitrate de cobalt. | Nitre de cobalt. | ||||
L'oxide de nickel. | Nitrate de nickel. | Nitre de nickel. | ||||
L'oxide de plomb. | Nitrate de plomb. | Nitre de plomb, nitre de saturne. | ||||
L'oxide d'étain. | Nitrate d'étain. | Nitre d'étain. | ||||
L'oxide de cuivre. | Nitrate de cuivre. | Nitre de cuivre, nitre de Vénus. | ||||
L'oxide de bismuth. | Nitrate de bismuth. | Nitre de bismuth. | ||||
L'oxide d'antimoine. | Nitrate d'antimoine. | Nitre d'antimoine. | ||||
L'oxide d'arsenic. | Nitrate d'arsenic. | Nitre d'arsenic. | ||||
Nitre arsenical. | ||||||
L'oxide de mercure. | Nitrate de mercure. | Nitre mercuriel. | ||||
Nitre de mercure. | ||||||
L'oxide d'argent. | Nitrate d'argent. | Nitre d'argent. | ||||
Nitre de lune, pierre infernale. | ||||||
L'oxide d'or. | Nitrate d'or. | Nitre d'or. | ||||
L'oxide de platine. | Nitrate de platine. | Nitre de platine. |
233
Sur les Acides nitreux & nitrique, & sur le Tableau de leurs combinaisons.
L'Acide nitreux & l'acide nitrique se tirent d'un sel connu dans les arts sous le nom de salpêtre. On extrait ce sel par lixiviation des décombres des vieux bâtimens & de la terre des caves, des écuries, des granges, & en général des lieux habités. L'acide nitrique est le plus souvent uni dans ces terres à la chaux & à la magnésie, quelquefois à la potasse & plus rarement à l'alumine. Comme tous ces sels, à l'exception de celui à base de potasse, attirent l'humidité de l'air, & qu'ils seroient d'une conservation difficile dans les arts, on profite de la plus grande affinité qu'a la potasse avec l'acide nitrique, & de la propriété qu'elle a de précipiter la chaux, la magnésie & l'alumine, pour ramener ainsi dans le travail du salpêtrier & dans le rafinage qui se fait ensuite dans les magasins du Roi, tous les sels nitriques à l'état de nitrate de potasse ou de salpêtre. Pour obtenir l'acide nitreux de ce sel, on met dans une cornue tubulée trois parties de salpêtre très-pur, & une d'acide sulfurique concentré: on 234 y adapte un ballon à deux pointes, auquel on joint l'appareil de Woulfe, c'est-à-dire, des flacons à plusieurs gouleaux à moitié remplis d'eau & réunis par des tubes de verre. On voit cet appareil représenté pl. IV, fig. 1. On lutte exactement toutes les jointures, & on donne un feu gradué: il passe de l'acide nitreux en vapeurs rouges, c'est-à-dire, surchargé de gaz nitreux, ou autrement dit, qui n'est point oxygéné autant qu'il le peut être. Une partie de cet acide se condense dans le ballon, dans l'état d'une liqueur d'un jaune rouge très-foncé; le surplus se combine avec l'eau des bouteilles. Il se dégage en même-tems une grande quantité de gaz oxygène, par la raison qu'à une température un peu élevée l'oxygène a plus d'affinité avec le calorique qu'avec l'oxide nitreux, tandis que le contraire arrive à la température habituelle dans laquelle nous vivons. C'est parce qu'une partie d'oxygène a quitté ainsi l'acide nitrique, qu'il se trouve converti en acide nitreux. On peut ramener cet acide de l'état nitreux à l'état nitrique, en le faisant chauffer à une chaleur douce; le gaz nitreux qui étoit en excès s'échappe, & il reste de l'acide nitrique: mais on n'obtient par cette voie qu'un acide nitrique très-étendu d'eau, & il y a d'ailleurs une perte considérable.
On se procure de l'acide nitrique beaucoup 235 plus concentré & avec infiniment moins de perte, en mêlant ensemble du salpêtre & de l'argile bien seche, & en les poussant au feu dans une cornue de grès. L'argile se combine avec la potasse pour laquelle elle a beaucoup d'affinité: en même-tems il passe de l'acide nitrique très-légèrement fumant, & qui ne contient qu'une très-petite portion de gaz nitreux. On l'en débarrasse aisément, en faisant chauffer foiblement l'acide dans une cornue: on obtient une petite portion d'acide nitreux dans le récipient, & il reste de l'acide nitrique dans la cornue.
On a vu dans le corps de cet Ouvrage, que l'azote étoit le radical nitrique: si à vingt parties & demie en poids d'azote, on ajoute quarante-trois parties & demie d'oxygène, cette proportion constituera l'oxide ou le gaz nitreux; si on ajoute à cette première combinaison 36 autres parties d'oxygène, on aura de l'acide nitrique. L'intermédiaire entre la première & la dernière de ces proportions, donne différentes espèces d'acides nitreux, c'est-à-dire, de l'acide nitrique plus ou moins imprégné de gaz nitreux. J'ai déterminé ces proportions par voie de décomposition, & je ne puis pas assurer qu'elles soient rigoureusement exactes; mais elles ne peuvent pas s'écarter beaucoup de la vérité. M. Cavendish, qui a prouvé le premier & par 236 voie de composition, que l'azote est le radical nitrique, a donné des proportions un peu différentes & dans lesquelles l'azote entre pour une plus forte proportion: mais il est probable en même tems que c'est de l'acide nitreux qu'il a formé, & non de l'acide nitrique; & cette circonstance suffit pour expliquer jusqu'à un certain point la différence des résultats.
Pour obtenir l'acide nitrique très-pur, il faut employer du nitre dépouillé de tout mêlange de corps étrangers. Si, après la distillation, on soupçonne qu'il y reste quelques vestiges d'acide sulfurique, on y verse quelques gouttes de dissolution de nitrate barytique, l'acide sulfurique s'unit avec la baryte, & forme un sel neutre insoluble qui se précipite. On en sépare avec autant de facilité les dernières portions d'acide muriatique qui pouvoient y être contenues, en y versant quelques gouttes de nitrate d'argent; l'acide muriatique contenu dans l'acide nitrique, s'unit à l'argent avec lequel il a plus d'affinité, & se précipite sous forme de muriate d'argent qui est presqu'insoluble. Ces deux précipitations faites, on distille jusqu'à ce qu'il ait passé environ les sept huitièmes de l'acide, & on est sûr alors de l'avoir parfaitement pur.
L'acide nitrique est un de ceux qui a le plus 237 de tendance à la combinaison, & dont en même tems la décomposition est le plus facile. Il n'est presque point de substance simple, si on en excepte l'or, l'argent & le platine, qui ne lui enlève plus ou moins d'oxygène; quelques-unes même le décomposent en entier. Il a été fort anciennement connu des Chimistes, & ses combinaisons ont été plus étudiées que celles d'aucun autre. MM. Macquer & Baumé ont nommé nitres tous les sels qui ont l'acide nitrique pour acide. Nous avons dérivé leur nom de la même origine; mais nous en avons changé la terminaison, & nous les avons appelés nitrates ou nitrites, suivant qu'ils ont l'acide nitrique ou l'acide nitreux pour acide & d'après la loi générale dont nous avons expliqué les motifs, chapitre XVI. C'est également par une suite des principes généraux dont nous avons rendu compte, que nous avons spécifié chaque sel par le nom de sa base.
238
Nomenclature nouvelle. | ||||
Nos. | Noms des bases. | Sels neutres qui en résultent. | ||
Combinaisons de l'acide sulfurique avec: | 1 | La baryte. | Sulfate de baryte. | |
2 | La potasse. | Sulfate de potasse. | ||
3 | La soude. | Sulfate de soude. | ||
4 | La chaux. | Sulfate de chaux. | ||
5 | La magnésie. | Sulfate de magnésie. | ||
6 | L'ammoniaque. | Sulfate d'ammoniaque. | ||
7 | L'alumine. | Sulfate d'alumine ou alun. | ||
8 | L'oxide de zinc. | Sulfate de zinc. | ||
9 | L'oxide de fer. | Sulfate de fer. | ||
10 | L'oxide de manganèse. | Sulfate de manganèse. | ||
11 | L'oxide de cobalt. | Sulfate de cobalt. | ||
12 | L'oxide de nickel. | Sulfate de nickel. | ||
13 | L'oxide de plomb. | Sulfate de plomb. | ||
14 | L'oxide d'étain. | Sulfate d'étain. | ||
15 | L'oxide de cuivre. | Sulfate de cuivre. | ||
16 | L'oxide de bismuth. | Sulfate de bismuth. | ||
17 | L'oxide d'antimoine. | Sulfate d'antimoine. | ||
18 | L'oxide d'arsenic. | Sulfate d'arsenic. | ||
19 | L'oxide de mercure. | Sulfate de mercure. | ||
20 | L'oxide d'argent. | Sulfate d'argent. | ||
21 | L'oxide d'or. | Sulfate d'or. | ||
22 | L'oxide de platine. | Sulfate de platine. |
239
Nomenclature ancienne. | |||||
Nos. | Noms des bases. | Sels neutres qui en résultent. | |||
Combinaisons de l'acide vitriolique avec: | 1 | La terre pesante. | Vitriol de terre pesante, spath pesant. | ||
2 | L'alkali fixe végétal. | Tartre vitriolé, sel de duobus, arcanum duplicatum. | |||
3 | L'alkali fixe minéral. | Sel de Glauber. | |||
4 | La terre calcaire. | Sélénite, gypse, vitriol calcaire. | |||
5 | La magnésie. | Vitriol de magnésie, sel d'Epsom, sel de Sedlitz. | |||
6 | L'alkali volatil. | Sel ammoniacal secret de Glauber. | |||
7 | La terre de l'alun. | Alun. | |||
8 | La chaux de zinc. | Vitriol blanc, vitriol de Goslard. | |||
Couperose blanche, vitriol de zinc. | |||||
9 | La chaux de fer. | Couperose verte, vitriol martial, vitriol de fer. | |||
10 | La chaux de manganèse. | Vitriol de manganèse. | |||
11 | La chaux de cobalt. | Vitriol de cobalt. | |||
12 | La chaux de nickel. | Vitriol de nickel. | |||
13 | La chaux de plomb. | Vitriol de plomb. | |||
14 | La chaux d'étain. | Vitriol d'étain. | |||
15 | La chaux de cuivre. | Vitriol de cuivre, couperose bleue. | |||
16 | La chaux de bismuth. | Vitriol de bismuth. | |||
17 | La chaux d'antimoine. | Vitriol d'antimoine. | |||
18 | La chaux d'arsenic. | Vitriol d'arsenic. | |||
19 | La chaux de mercure. | Vitriol de mercure. | |||
20 | La chaux d'argent. | Vitriol d'argent. | |||
21 | La chaux d'or. | Vitriol d'or. | |||
22 | La chaux de platine. | Vitriol de platine. |
240
Sur l'Acide sulfurique & sur le Tableau de ses combinaisons.
On a long-tems retiré l'acide sulfurique par distillation du sulfate de fer ou vitriol de mars, dans lequel cet acide est uni au fer. Cette distillation a été décrite par Basile Valentin, qui écrivoit dans le quinzième siècle. On préfère aujourd'hui de le tirer du soufre par la combustion, parce qu'il est beaucoup meilleur marché que celui qu'on peut extraire des différens sels sulfuriques. Pour faciliter la combustion du soufre & son oxygénation, on y mêle un peu de salpêtre ou nitrate de potasse en poudre. Ce dernier est décomposé, & fournit au soufre une portion de son oxygène, qui facilite sa conversion en acide. Malgré l'addition de salpêtre, on ne peut continuer la combustion du soufre dans des vaisseaux fermés, quelque grands qu'ils soient, que pendant un tems déterminé. La combustion cesse par deux raisons; 1o. parce que le gaz oxygène se trouve épuisé, & que l'air dans lequel se fait la combustion se trouve presque réduit à l'état de gaz azotique; 2o. parce 241 que l'acide lui-même qui reste long-tems en vapeurs, met obstacle à la combustion. Dans les travaux en grand des arts, on brûle le mêlange de soufre & de salpêtre dans de grandes chambres dont les parois sont recouvertes de feuilles de plomb: on laisse un peu d'eau au fond pour faciliter la condensation des vapeurs. On se débarrasse ensuite de cette eau, en introduisant l'acide sulfurique qu'on a obtenu dans de grandes cornues: on distille à un degré de chaleur modéré; il passe une eau légèrement acide, & il reste dans la cornue de l'acide sulfurique concentré. Dans cet état il est diaphane, sans odeur, & il pèse à peu près le double de l'eau. On prolongeroit la combustion du soufre, & on accéléreroit la fabrication de l'acide sulfurique, si on introduisoit dans les grandes chambres doublées de plomb où se fait cette opération, le vent de plusieurs soufflets qu'on dirigeroit sur la flamme. On feroit évacuer le gaz azotique par de longs canaux ou espèces de serpentins dans lesquels il seroit en contact avec de l'eau, afin de le dépouiller de tout le gaz acide sulfureux ou acide sulfurique qu'il pourroit contenir.
Suivant une première expérience de M. Berthollet, 69 parties de soufre en brûlant absorbent 31 parties d'oxygène, pour former 100 parties d'acide sulfurique. Suivant une seconde 242 expérience faite par une autre méthode, 72 parties de soufre en absorbent 28 d'oxygène, pour former la même quantité de 100 parties d'acide sulfurique sec.
Cet acide ne dissout, comme tous les autres, les métaux qu'autant qu'ils ont été préalablement oxidés; mais la plupart sont susceptibles de décomposer une portion de l'acide, & de lui enlever assez d'oxygène pour devenir dissolubles dans le surplus: c'est ce qui arrive à l'argent, au mercure & même au fer & au zinc, quand on les fait dissoudre dans de l'acide sulfurique concentré & bouillant. Ces métaux s'oxident & se dissolvent, mais ils n'enlèvent pas assez d'oxygène à l'acide pour le réduire en soufre; ils le réduisent seulement à l'état d'acide sulfureux, & il se dégage alors sous la forme de gaz acide sulfureux. Lorsqu'on met de l'argent, du mercure ou quelque métal autre que le fer & le zinc dans de l'acide sulfurique étendu d'eau, comme ils n'ont pas assez d'affinité avec l'oxygène pour l'enlever, ni au soufre, ni à l'acide sulfureux, ni à l'hydrogène, ils sont absolument insolubles dans cet acide. Il n'en est pas de même du zinc & du fer: ces deux métaux, aidés par la présence de l'acide, décomposent l'eau; ils s'oxident à ses dépens, & deviennent alors dissolubles dans l'acide, quoiqu'il ne soit ni concentré ni bouillant.
243
Nomenclature nouvelle. | |||
Noms des bases. | Noms des sel neutres. | ||
Combinaisons de l'acide sulfureux avec: | La baryte. | Sulfite de baryte. | |
La potasse. | Sulfite de potasse. | ||
La soude. | Sulfite de soude. | ||
La chaux. | Sulfite de chaux. | ||
La magnésie. | Sulfite de magnésie. | ||
L'ammoniaque. | Sulfite d'ammoniaque. | ||
L'alumine. | Sulfite d'alumine. | ||
L'oxide de zinc. | Sulfite de zinc. | ||
L'oxide de fer. | Sulfite de fer. | ||
L'oxide de manganèse. | Sulfite de manganèse. | ||
L'oxide de cobalt. | Sulfite de cobalt. | ||
L'oxide de nickel. | Sulfite de nickel. | ||
L'oxide de plomb. | Sulfite de plomb. | ||
L'oxide d'étain. | Sulfite d'étain. | ||
L'oxide de cuivre. | Sulfite de cuivre. | ||
L'oxide de bismuth. | Sulfite de bismuth. | ||
L'oxide d'antimoine. | Sulfite d'antimoine. | ||
L'oxide d'arsenic. | Sulfite d'arsenic. | ||
L'oxide de mercure. | Sulfite de mercure. | ||
L'oxide d'argent. | Sulfite d'argent. | ||
L'oxide d'or. | Sulfite d'or. | ||
L'oxide de platine. | Sulfite de platine. |
Nota. Les anciens n'ont connu à proprement parler de ces sels que le sulfite de potasse, qui, jusqu'à ces derniers tems, a conservé le nom de sel sulfureux de Stalh. Avant la nouvelle nomenclature que nous avons proposée, on désignoit les sels sulfureux comme il suit: Sel sulfureux de Stalh à base d'alkali fixe végétal, sel sulfureux de Stalh à base d'alkali fixe minéral, sel sulfureux de Stalh à base de terre calcaire.
On a suivi dans ce tableau l'ordre des affinités indiqué par M. Bergman pour l'acide sulfurique, parce qu'en effet à l'égard des alkalis & des terres, l'ordre est le même pour l'acide sulfureux; mais il n'est pas certain qu'il en soit de même pour les oxides métalliques.
244
Sur l'Acide sulfureux, & sur le Tableau de ses combinaisons.
L'Acide sulfureux est formé, comme l'acide sulfurique, de la combinaison du soufre avec l'oxygène, mais avec une moindre proportion de ce dernier. On peut l'obtenir de différentes manières, 1o. en faisant brûler du soufre lentement, 2o. en distillant de l'acide sulfurique sur de l'argent, de l'antimoine, du plomb, du mercure ou du charbon: une portion d'oxygène s'unit au métal, & l'acide passe dans l'état d'acide sulfureux. Cet acide existe naturellement dans l'état de gaz au degré de température & de pression dans lequel nous vivons; mais il paroît, d'après des expériences de M. Clouet, qu'à un très-grand degré de refroidissement, il se condense & devient liquide: l'eau absorbe beaucoup plus de ce gaz acide qu'elle n'absorbe de gaz acide carbonique; mais elle en absorbe beaucoup moins que de gaz acide muriatique.
C'est une vérité bien établie, & que je n'ai peut-être que trop répétée, que les métaux en général ne peuvent se dissoudre dans les acides, qu'autant qu'ils peuvent s'y oxider: or l'acide sulfureux étant déjà dépouillé d'une grande 245 partie de l'oxygène nécessaire pour le constituer acide sulfurique, il est plutôt disposé à en reprendre qu'à en fournir à la plupart des métaux, & c'est pour cela qu'il ne peut les dissoudre, à moins qu'ils n'aient été préalablement oxidés. Par une suite du même principe, les oxides métalliques se dissolvent dans l'acide sulfureux sans effervescence & même avec beaucoup de facilité. Cet acide a même, comme l'acide muriatique, la propriété de dissoudre des oxides métalliques qui sont trop oxygénés, & qui seroient par cela même indissolubles dans l'acide sulfurique; il forme alors avec eux de véritables sulfates. On pourroit donc soupçonner qu'il n'existe que des sulfates métalliques & non des sulfites, si les phénomènes qui ont lieu dans la dissolution du fer, du mercure, & de quelques autres métaux, ne nous apprenoient que ces substances métalliques sont susceptibles de s'oxider plus ou moins en se dissolvant dans les acides. D'après cette observation le sel dans lequel le métal sera le moins oxidé devra porter le nom de sulfite, & celui dans lequel le métal sera le plus oxidé devra porter le nom de sulfate. On ignore encore si cette distinction, nécessaire pour le fer & pour le mercure, est applicable à tous les autres sulfates métalliques.
246
Nomenclature nouvelle. | |||
Noms des bases. | Noms des sels neutres. | ||
Combinaisons de l'acide phosphoreux avec: | La chaux. | Phosphite de chaux. | |
La baryte. | Phosphite de baryte. | ||
La magnésie. | Phosphite de magnésie. | ||
La potasse. | Phosphite de potasse. | ||
La soude. | Phosphite de soude. | ||
L'ammoniaque. | Phosphite d'ammoniaque. | ||
L'alumine. | Phosphite d'alumine. | ||
L'oxide de zinc. | Phosphite de zinc. * | ||
L'oxide de fer. | Phosphite de fer. | ||
L'oxide de manganèse. | Phosphite de manganèse. | ||
L'oxide de cobalt. | Phosphite de cobalt. | ||
L'oxide de nickel. | Phosphite de nickel. | ||
L'oxide de plomb. | Phosphite de plomb. | ||
L'oxide d'étain. | Phosphite d'étain. | ||
L'oxide de cuivre. | Phosphite de cuivre. | ||
L'oxide de bismuth. | Phosphite de bismuth. | ||
L'oxide d'antimoine. | Phosphite d'antimoine. | ||
L'oxide d'arsenic. | Phosphite d'arsenic. | ||
L'oxide de mercure. | Phosphite de mercure. | ||
L'oxide d'argent. | Phosphite d'argent. | ||
L'oxide d'or. | Phosphite d'or. | ||
L'oxide de platine. | Phosphite de platine. |
* L'existence des phosphites métalliques n'est pas encore absolument certaine, elle suppose que les métaux sont susceptibles de se dissoudre dans l'acide phosphorique, à différens degrés d'oxygénation, ce qui n'est pas encore prouvé.
Aucuns de ces sels n'avoient été nommés.
247
Nomenclature nouvelle. | |||
Noms des bases. | Noms des sel neutres. | ||
Combinaisons de l'acide phosphorique avec: | La chaux. | Phosphate de chaux. | |
La baryte. | Phosphate de baryte. | ||
La magnésie. | Phosphate de magnésie. | ||
La potasse. | Phosphate de potasse. | ||
La soude. | Phosphate de soude. | ||
L'ammoniaque. | Phosphate d'ammoniaque. | ||
L'alumine. | Phosphate d'alumine. | ||
L'oxide de zinc. | Phosphate de zinc. | ||
L'oxide de fer. | Phosphate de fer. | ||
L'oxide de manganèse. | Phosphate de manganèse. | ||
L'oxide de cobalt. | Phosphate de cobalt. | ||
L'oxide de nickel. | Phosphate de nickel. | ||
L'oxide de plomb. | Phosphate de plomb. | ||
L'oxide d'étain. | Phosphate d'étain. | ||
L'oxide de cuivre. | Phosphate de cuivre. | ||
L'oxide de bismuth. | Phosphate de bismuth. | ||
L'oxide d'antimoine. | Phosphate d'antimoine. | ||
L'oxide d'arsenic. | Phosphate d'arsenic. | ||
L'oxide de mercure. | Phosphate de mercure. | ||
L'oxide d'argent. | Phosphate d'argent. | ||
L'oxide d'or. | Phosphate d'or. | ||
L'oxide de platine. | Phosphate de platine. |
* La plupart de ces sels ne sont connus que depuis très-peu de tems, & n'avoient point encore été nommés.
248
Sur les Acides phosphoreux & phosphorique, & sur les Tableaux de leurs combinaisons.
On a vu, à l'article Phosphore, un précis historique de la découverte de cette singulière substance, & quelques observations sur la manière dont il existe dans les végétaux & dans les animaux.
Le moyen le plus sûr pour obtenir l'acide phosphorique pur & exempt de tout mélange, est de prendre du phosphore en nature, & de le faire brûler sous des cloches de verre, dont on a humecté l'intérieur en y promenant de l'eau distillée. Il absorbe dans cette opération 2 fois 1/2 son poids d'oxygène. On peut obtenir cet acide concret en faisant cette même combustion sur du mercure au lieu de la faire sur de l'eau: il se présente alors dans l'état de floccons blancs qui attirent l'humidité de l'air avec une prodigieuse activité. Pour avoir ce même acide dans l'état d'acide phosphoreux, c'est-à-dire, moins oxygéné, il faut abandonner le phosphore à une combustion extrêmement lente, & le laisser tomber en quelque façon en déliquium à l'air dans un entonnoir placé sur un 249 flacon de cristal. Au bout de quelques jours on trouve le phosphore oxygéné; l'acide phosphoreux, à mesure qu'il s'est formé, s'est emparé d'une portion d'humidité de l'air, & a coulé dans le flacon. L'acide phosphoreux se convertit au surplus aisément en acide phosphorique par une simple exposition à l'air long-tems continuée. Comme le phosphore a une assez grande affinité avec l'oxygène pour l'enlever à l'acide nitrique & à l'acide muriatique oxygéné, il en résulte encore un moyen simple & peu dispendieux d'obtenir l'acide phosphorique. Lorsqu'on veut opérer par l'acide nitrique, on prend une cornue tubulée bouchée avec un bouchon de cristal; on l'emplit à moitié d'acide nitrique concentré, on fait chauffer légèrement, puis on introduit par la tubulure de petits morceaux de phosphore. Ils se dissolvent avec effervescence; en même tems le gaz nitreux s'échappe sous la forme de vapeurs rutilantes. On continue ainsi d'ajouter du phosphore jusqu'à ce qu'il refuse de se dissoudre. On pousse alors le feu un peu plus fort pour chasser les dernières portions d'acide nitrique, & on trouve l'acide phosphorique dans la cornue, en partie sous forme concrète, & en partie sous forme liquide.
250
Noms des bases. | Noms des sels neutres. | |||
Nomenclature nouvelle. | Nomenclature ancienne. | |||
Combinaisons de l'acide carbonique avec: | Carbonate | |||
La baryte. | de baryte. | Terre pesante aérée ou effervescente. | ||
La chaux. | de chaux. | Terre calcaire, spath calcaire, craie. | ||
La potasse. | de potasse. | Alkali fixe végétal effervescent, méphite de potasse. | ||
La soude. | de soude. | Alkali fixe minéral effervescent, méphite de soude. | ||
La magnésie. | de magnésie. | Magnésie effervescente, base du sel d'Epsom effervescente, méphite de magnésie. | ||
L'ammoniaque. | d'ammoniaque. | Alkali volatil effervescent, méphite d'ammoniaque. | ||
L'alumine. | d'alumine. | Méphite argileux, terre d'alun aérée. | ||
L'oxide de zinc. | de zinc. | Zinc spathique, méphite de zinc. | ||
L'oxide de fer. | de fer. | Fer spathique, méphite de fer. | ||
L'oxide de manganèse. | de manganèse. | Méphite de manganèse. | ||
L'oxide de cobalt. | de cobalt. | Méphite de cobalt. | ||
L'oxide de nickel. | de nickel. | Méphite de nickel. | ||
L'oxide de plomb. | de plomb. | Plomb spathique ou méphite de plomb. | ||
L'oxide d'étain. | d'étain. | Méphite d'étain. | ||
L'oxide de cuivre. | de cuivre. | Méphite de cuivre. | ||
L'oxide de bismuth. | de bismuth. | Méphite de bismuth. | ||
L'oxide d'antimoine. | d'antimoine. | Méphite d'antimoine. | ||
L'oxide d'arsenic. | d'arsenic. | Méphite d'arsenic. | ||
L'oxide de mercure. | de mercure. | Méphite de mercure. | ||
L'oxide d'argent. | d'argent. | Méphite d'argent. | ||
L'oxide d'or. | d'or. | Méphite d'or. | ||
L'oxide de platine. | de platine. | Méphite de platine. |
* Ces sels n'étant connus & définis que depuis quelques années, il n'existe pas, à proprement parler, pour eux de nomenclature ancienne. On a cru cependant devoir les désigner ici sous les noms que M. de Morveau leur a donnés dans son premier volume de l'Encyclopédie. M. Bergman désignoit les bases saturées de cet acide par l'épithète aérée; ainsi, la terre calcaire aérée exprimoit la terre calcaire saturée d'acide carbonique. M. de Fourcroy avoit donné le nom d'acide crayeux à l'acide carbonique, & le nom de craie à tous les sels qui résultent de la combinaison de cet acide avec les bases salifiables.
251
Sur l'Acide carbonique & sur le Tableau de ses combinaisons.
De tous les acides que nous connoissons, l'acide carbonique est peut-être celui qui est le plus abondamment répandu dans la nature. Il est tout formé dans les craies, dans les marbres, dans toutes les pierres calcaires, & il y est neutralisé principalement par une terre particulière connue sous le nom de chaux. Pour le dégager de ces substances, il ne faut que verser dessus de l'acide sulfurique, ou tout autre acide qui ait plus d'affinité avec la chaux que n'en a l'acide carbonique: il se fait une vive effervescence, laquelle n'est produite que par le dégagement de cet acide, qui prend la forme de gaz dès qu'il est libre. Ce gaz n'est susceptible de se condenser par aucun des degrés de refroidissement & de pression auxquels il a été exposé jusqu'ici: il ne s'unit avec l'eau qu'à peu près à volume égal, & il en résulte un acide extrêmement foible.
On peut encore obtenir l'acide carbonique assez pur, en le dégageant de la matière sucrée en fermentation; mais alors il tient une petite portion d'alkool en dissolution.
Le carbone est le radical de l'acide carbonique. On peut en conséquence former artificiellement 252 cet acide, en brûlant du charbon dans du gaz oxygène, ou bien en combinant de la poudre de charbon avec un oxide métallique dans de justes proportions. L'oxygène de l'oxide se combine avec le charbon, forme du gaz acide carbonique, & le métal devenu libre reparoît sous sa forme métallique.
C'est à M. Black que nous devons les premières connoissances qu'on ait eues sur cet acide. La propriété qu'il a de n'exister que sous forme de gaz au degré de température & de pression dans lequel nous vivons, l'avoit soustrait aux recherches des anciens Chimistes.
Si on pouvoit parvenir à décomposer cet acide par des moyens peu dispendieux, on auroit fait une découverte bien précieuse pour l'humanité, puisqu'on pourroit obtenir libres les masses immenses de carbone que contiennent les terres calcaires, les marbres, &c. On ne le peut pas par des affinités simples, puisque le corps qu'il faudroit employer pour décomposer l'acide carbonique, devroit être au moins aussi combustible que le charbon même, & qu'alors on ne feroit que changer un combustible contre un autre: mais il n'est pas impossible d'y parvenir par des affinités doubles; & ce qui porte à le croire, c'est que la nature résout complètement ce problême, & avec des matériaux qui ne lui coûtent rien dans l'acte de la végétation.
253
Noms des bases. | Noms des sels neutres. | |||||
Nomenclature nouvelle. | Nomenclature ancienne. | |||||
Combinaisons de l'acide muriatique avec: | Muriate | |||||
La baryte. | de baryte. | Sel marin à base de terre pesante. | ||||
La potasse. | de potasse. | Sel fébrifuge de Sylvius. | ||||
Sel marin à base d'alkali fixe végétal. | ||||||
La soude. | de soude. | Sel marin. | ||||
La chaux. | de chaux. | Sel marin à base terreuse. | ||||
Huile de chaux. | ||||||
La magnésie. | de magnésie. | Sel d'Epsom marin, sel marin à base de sel d'Epsom ou de magnésie. | ||||
L'ammoniaque. | d'ammoniaque. | Sel ammoniac. | ||||
L'alumine. | d'alumine. | Alun marin, sel marin à base de terre d'alun. | ||||
L'oxide de zinc. | de zinc. | Sel marin de zinc. | ||||
L'oxide de fer. | de fer. | Sel de fer, sel marin martial. | ||||
L'oxide de manganèse. | de manganèse. | Sel marin de manganèse. | ||||
L'oxide de cobalt. | de cobalt. | Sel marin de cobalt. | ||||
L'oxide de nickel. | de nickel. | Sel marin de nickel. | ||||
L'oxide de plomb. | de plomb. | Plomb corné. | ||||
L'oxide d'étain. | d'étain fumant. | Liqueur fumante de Libavius. | ||||
d'étain solide. | Beurre d'étain solide. | |||||
L'oxide de cuivre. | de cuivre. | Sel marin de cuivre. | ||||
L'oxide de bismuth. | de bismuth. | Sel marin de bismuth. | ||||
L'oxide d'antimoine. | d'antimoine. | Sel marin d'antimoine. | ||||
L'oxide d'arsenic. | d'arsenic. | Sel marin d'arsenic. | ||||
L'oxide de mercure | de mercure doux. | Mercure sublimé doux, aquila alba. | ||||
de mercure corrosif. | Mercure sublimé corrosif. | |||||
L'oxide d'argent. | d'argent. | Argent corné. | ||||
L'oxide d'or. | d'or. | Sel marin d'or. | ||||
L'oxide de platine. | de platine. | Sel marin de platine. |
254
Noms des bases. | Noms des sels neutres. | ||||
Nomenclature nouvelle. | Nomenclature ancienne. | ||||
Combinaisons de l'acide muriatique oxigéné avec: | La baryte. | Muriate oxygéné de baryte. | Cet ordre de sels qui étoit absolument inconnu aux anciens, a été découvert en 1786 par M. Berthollet. | ||
La potasse. | Muriate oxygéné de potasse. | ||||
La soude. | Muriate oxygéné de soude. | ||||
La chaux. | Muriate oxygéné de chaux. | ||||
La magnésie. | Muriate oxygéné de magnésie. | ||||
L'alumine. | Muriate oxygéné d'alumine. | ||||
L'oxide de zinc. | Muriate oxygéné de zinc. | ||||
L'oxide de fer. | Muriate oxygéné de fer. | ||||
L'oxide de manganèse. | Muriate oxygéné de manganèse. | ||||
L'oxide de cobalt. | Muriate oxygéné de cobalt. | ||||
L'oxide de nickel. | Muriate oxygéné de nickel. | ||||
L'oxide de plomb. | Muriate oxygéné de plomb. | ||||
L'oxide d'étain. | Muriate oxygéné d'étain. | ||||
L'oxide de cuivre. | Muriate oxygéné de cuivre. | ||||
L'oxide de bismuth. | Muriate oxygéné de bismuth. | ||||
L'oxide d'antimoine. | Muriate oxygéné d'antimoine. | ||||
L'oxide d'arsenic. | Muriate oxygéné d'arsenic. | ||||
L'oxide de mercure. | Muriate oxygéné de mercure. | ||||
L'oxide d'argent. | Muriate oxygéné d'argent. | ||||
L'oxide d'or. | Muriate oxygéné d'or. | ||||
L'oxide de platine. | Muriate oxygéné de platine. |
255
Sur l'Acide muriatique & sur le Tableau de ses combinaisons.
L'Acide muriatique est répandu très-abondamment dans le règne minéral: il y est uni avec différentes bases, principalement avec la soude, la chaux & la magnésie. C'est avec ces trois bases qu'on le rencontre dans l'eau de la mer & dans celle de plusieurs lacs: il est plus communément uni avec la soude dans les mines de sel gemme. Cet acide ne paroît pas avoir été décomposé jusqu'à ce jour dans aucune expérience chimique; en sorte que nous n'avons nulle idée de la nature de son radical: ce n'est même que par analogie que nous concluons qu'il contient le principe acidifiant ou oxygène. M. Berthollet avoit soupçonné que ce radical pouvoit être de nature métallique; mais comme il paroît que l'acide muriatique se forme journellement dans les lieux habités, par la combinaison de miasmes & de fluides aériformes, il faudroit supposer qu'il existe un gaz métallique dans l'atmosphère; ce qui n'est pas sans doute impossible, mais ce qu'on ne peut admettre, au moins que d'après des preuves. 256
L'acide muriatique ne tient que médiocrement aux bases avec lesquelles il est uni: l'acide sulfurique l'en chasse, & c'est principalement par l'intermède de cet acide que les Chimistes ont coutume de se le procurer. On pourroit employer d'autres acides pour remplir ce même objet, par exemple, l'acide nitrique, mais cet acide étant volatil, il auroit l'inconvénient de se mêler avec l'acide muriatique dans la distillation. Il faut dans cette opération employer environ une partie d'acide sulfurique concentré, & deux de sel marin. On se sert d'une cornue tubulée dans laquelle on introduit d'abord le sel; on y adapte un récipient également tubulé, à la suite duquel on ajoute deux ou trois bouteilles remplies d'eau, & qui sont jointes par des tubes, à la manière de M. Woulfe. La figure 1, planche IV, représente cet appareil. On lutte bien toutes les jointures, après quoi on introduit l'acide sulfurique dans la cornue par la tubulure, & on la referme aussitôt avec son bouchon de cristal. C'est une propriété de l'acide muriatique, de ne pouvoir exister que dans l'état de gaz, à la température & au degré de pression dans lequel nous vivons: il seroit donc impossible de le coercer, si on ne lui présentoit de l'eau avec laquelle il a une grande affinité. Il s'unit dans une très-grande proportion à celle 257 contenue dans les bouteilles adaptées au ballon; & lorsqu'elles en sont saturées, il en résulte ce que les anciens appeloient esprit de sel fumant, & ce que nous appelons aujourd'hui acide muriatique.
Celui qu'on obtient par ce procédé, n'est pas saturé d'oxygène autant qu'il le peut être, il est susceptible d'en prendre une nouvelle dose, si on le distille sur des oxides métalliques, tels que l'oxide de manganèse, l'oxide de plomb ou celui de mercure: l'acide qui se forme alors, & que nous nommons acide muriatique oxygéné, ne peut exister comme le précédent, lorsqu'il est libre, que dans l'état gazeux; il n'est plus susceptible d'être absorbé par l'eau en aussi grande quantité. Si on en imprègne ce fluide au-delà d'une certaine proportion, l'acide se précipite au fond du vase sous forme concrète. L'acide muriatique oxygéné est susceptible comme l'a démontré M. Berthollet, de se combiner avec un grand nombre de bases salifiables; les sels qu'il forme sont susceptibles de détoner avec le carbone & avec plusieurs substances métalliques: ces détonations sont d'autant plus dangereuses, que l'oxygène entre dans la composition du muriate oxygéné avec une très-grande quantité de calorique qui donne lieu par son expansion à des explosions très-dangereuses.
258
Nomenclature nouvelle. | |||
Noms des bases. | Noms des sel neutres. | ||
Combinaisons de l'acide nitro-muriatique avec: | L'alumine. | Nitro-muriate d'alumine. | |
L'ammoniaque. | Nitro-muriate d'ammoniaque. | ||
L'antimoine. | Nitro-muriate d'antimoine. | ||
L'argent. | Nitro-muriate d'argent. | ||
L'arsenic. | Nitro-muriate d'arsenic. | ||
La baryte. | Nitro-muriate de baryte. | ||
Le bismuth. | Nitro-muriate de bismuth. | ||
La chaux. | Nitro-muriate de chaux. | ||
Le cobalt. | Nitro-muriate de cobalt. | ||
Le cuivre. | Nitro-muriate de cuivre. | ||
L'étain. | Nitro-muriate d'étain. | ||
Le fer. | Nitro-muriate de fer. | ||
La magnésie. | Nitro-muriate de magnésie. | ||
Le manganèse. | Nitro-muriate de manganèse. | ||
Le mercure. | Nitro-muriate de mercure. | ||
Le molybdène. | Nitro-muriate de molybdène. | ||
Le nickel. | Nitro-muriate de nickel. | ||
L'or. | Nitro-muriate d'or. | ||
Le platine. | Nitro-muriate de platine. | ||
Le plomb. | Nitro-muriate de plomb. | ||
La potasse. | Nitro-muriate de potasse. | ||
La soude. | Nitro-muriate de soude. | ||
Le tungstène. | Nitro-muriate de tungstène. | ||
Le zinc. | Nitro-muriate de zinc. |
Nota. La plupart de ces combinaisons, sur-tout celles de l'acide nitro-muriatique avec les terres & les alkalis ont été peu examinées, on ignore s'il se forme un sel mixte, ou si les deux acides se séparent pour former deux sels distincts.
259
Sur l'Acide nitro-muriatique & sur le Tableau de ses combinaisons.
L'Acide nitro-muriatique, anciennement appelé eau régale, est formé par un mêlange d'acide nitrique & d'acide muriatique. Les radicaux de ces deux acides s'unissent ensemble dans cette combinaison, & il en résulte un acide à deux bases, qui a des propriétés particulières qui n'appartiennent à aucun des deux séparément, notamment celle de dissoudre l'or & le platine.
Dans les dissolutions nitro-muriatiques, comme dans toutes les autres, les métaux commencent par s'oxider avant de se dissoudre; ils s'emparent d'une portion de l'oxygène de l'acide, il se dégage en même-tems un gaz nitro-muriatique d'une espèce particulière, qui n'a encore été bien décrit par personne. Son odeur est très-désagréable, & il est aussi funeste qu'aucun autre aux animaux qui le respirent; il attaque les instrumens de fer & les rouille; l'eau en absorbe une assez grande quantité, & prend quelques caractères d'acidité. J'ai eu occasion de faire ces observations, lorsque j'ai traité le 260 platine & que je l'ai fait dissoudre très-en grand dans l'acide nitro-muriatique.
J'avois d'abord soupçonné que dans le mélange de l'acide nitrique & de l'acide muriatique, ce dernier s'emparoit d'une partie de l'oxygène de l'acide nitrique, & qu'alors porté à l'état d'acide muriatique oxygéné, il devenoit susceptible de dissoudre l'or; mais plusieurs faits se refusent à cette explication. S'il en étoit ainsi, en faisant chauffer de l'acide nitro-muriatique, il s'en dégageroit du gaz nitreux; & cependant on n'en obtient pas sensiblement. Je reviens donc à considérer l'acide nitro-muriatique comme un acide à deux bases, & j'adopte entièrement à cet égard les idées de M. Berthollet.
261
Noms des bases. | Noms des sels neutres. | ||||
Nomenclature nouvelle. | Nomenclat. ancienne. | ||||
Combinaisons de l'acide fluorique avec: | La chaux. | Fluate de chaux. | Toutes ces combinaisons ont été inconnues aux anciens Chimistes. | ||
La baryte. | Fluate de baryte. | ||||
La magnésie. | Fluate de magnésie. | ||||
La potasse. | Fluate de potasse. | ||||
La soude. | Fluate de soude. | ||||
L'ammoniaque. | Fluate d'ammoniaque. | ||||
L'oxide de zinc. | Fluate de zinc. | ||||
L'oxide de manganèse. | Fluate de manganèse. | ||||
L'oxide de fer. | Fluate de fer. | ||||
L'oxide de plomb. | Fluate de plomb. | ||||
L'oxide d'étain. | Fluate d'étain. | ||||
L'oxide de cobalt. | Fluate de cobalt. | ||||
L'oxide de cuivre. | Fluate de cuivre. | ||||
L'oxide de nickel. | Fluate de nickel. | ||||
L'oxide d'arsenic. | Fluate d'arsenic. | ||||
L'oxide de bismuth. | Fluate de bismuth. | ||||
L'oxide de mercure. | Fluate de mercure. | ||||
L'oxide d'argent. | Fluate d'argent. | ||||
L'oxide d'or. | Fluate d'or. | ||||
L'oxide de platine. Et par la voie sèche. |
Fluate de platine. | ||||
L'alumine. | Fluate d'alumine. |
262
Sur l'Acide fluorique, & sur le Tableau de ses combinaisons.
La nature nous offre l'acide fluorique tout formé dans le spath fluor, spath phosphorique ou fluate de chaux: il y est combiné avec la terre calcaire, & forme un sel insoluble.
Pour obtenir l'acide fluorique seul & dégagé de toute combinaison, on met du spath fluor ou fluate de chaux dans une cornue de plomb; on verse dessus de l'acide sulfurique, & on adapte à la cornue un récipient également de plomb, à moitié rempli d'eau. On donne une chaleur douce, & l'acide fluorique est absorbé par l'eau du récipient, à mesure qu'il se dégage. Comme cet acide est naturellement sous forme de gaz au degré de chaleur & de pression dans lequel nous vivons, on peut le recueillir dans cet état dans l'appareil pneumato-chimique au mercure, comme on y reçoit le gaz acide marin, le gaz acide sulfureux, le gaz acide carbonique.
On est obligé de se servir pour cette opération de vaisseaux métalliques, parce que l'acide 263 fluorique dissout le verre & la terre siliceuse; il communique même de la volatilité à ces deux substances, & il les enlève avec lui dans l'état de gaz.
C'est à M. Margraff que nous devons la première connoissance de cet acide; mais il ne l'a jamais obtenu que combiné avec une quantité considérable de silice: il ignoroit d'ailleurs que ce fût un acide particulier & sui generis.
M. le duc de Liancourt, dans un Mémoire imprimé sous le nom de M. Boulanger, a étendu beaucoup plus loin nos connoissances sur les propriétés de l'acide fluorique; enfin M. Schéele semble avoir mis la dernière main à ce travail.
Il ne reste plus aujourd'hui qu'à déterminer quelle est la nature du radical fluorique; mais comme il ne paroît pas qu'on soit encore parvenu à décomposer l'acide, on ne peut avoir aucun apperçu de la nature du radical. S'il y avoit quelques expériences à tenter à cet égard, ce ne pourroit être que par la voie des doubles affinités qu'on pourroit espérer quelque succès.
264
Nomenclature nouvelle. | |||
Noms des bases. | Noms des sel neutres. | ||
Combinaisons de l'acide boracique avec: | La chaux. | Borate de chaux. | |
La baryte. | Borate de baryte. | ||
La magnésie. | Borate de magnésie. | ||
La potasse. | Borate de potasse. | ||
La soude. | Borate de soude, ou borax. | ||
L'ammoniaque. | Borate d'ammoniaque. | ||
L'oxide de zinc. | Borate de zinc. | ||
L'oxide de fer. | Borate de fer. | ||
L'oxide de plomb. | Borate de plomb. | ||
L'oxide d'étain. | Borate d'étain. | ||
L'oxide de cobalt. | Borate de cobalt. | ||
L'oxide de cuivre. | Borate de cuivre. | ||
L'oxide de nickel. | Borate de nickel. | ||
L'oxide de mercure. | Borate de mercure. | ||
L'alumine. | Borate d'alumine. |
Nota. La plupart de ces combinaisons n'ont été ni nommées, ni connues par les anciens; ils donnoient à l'acide boracique le nom de sel sédatif, & ils donnoient le nom de borax à base d'alkali fixe végétal, borax à base d'alkali fixe minéral, borax à base de terre calcaire, aux combinaisons du sel sédatif avec la potasse, la soude & la chaux.
265
Sur l'Acide boracique, & sur le Tableau de ses combinaisons.
On donne le nom de boracique à un acide concret qu'on retire du borax, sel qui nous vient de l'Inde par le commerce. Quoique le borax ait été employé très-anciennement dans les arts, on n'a que des notions très-incertaines sur son origine, sur la manière de l'extraire & de le purifier. On a lieu de soupçonner que c'est un sel natif, qui se trouve naturellement dans les terres de quelques contrées de l'Inde & dans l'eau des lacs: tout le commerce de ce sel se fait par les Hollandois; ils ont été long-tems seuls en possession de le purifier; mais MM. l'Eguillier, dans une fabrique qu'ils ont élevée à Paris, sont parvenus à rivaliser avec eux: le procédé de cette purification, au surplus, est encore un mystère. L'analyse chimique nous a appris que le borax étoit un sel neutre avec excès de base; que cette base étoit la soude, & qu'elle étoit en partie neutralisée par un acide particulier, qui a été long-tems appelé sel sédatif de Homberg, & que nous avons désigné sous le nom d'acide boracique. On le rencontre 266 quelquefois libre dans l'eau des lacs; celle du lac Cherchiaio en Italie en contient 94 grains & demi par pinte.
Pour séparer l'acide boracique & l'obtenir libre, on commence par dissoudre le borax dans l'eau bouillante; on filtre la liqueur très-chaude & on y verse de l'acide sulfurique, ou un autre acide quelconque qui ait plus d'affinité avec la soude que n'en a l'acide boracique. Ce dernier se sépare aussitôt, & on l'obtient sous forme cristalline par refroidissement.
On a cru long-tems que l'acide boracique étoit un produit de l'opération par laquelle on l'obtenoit: on se persuadoit en conséquence qu'il étoit différent, suivant l'acide qu'on avoit employé pour le séparer d'avec la soude. Aujourd'hui il est bien reconnu que l'acide boracique est toujours identiquement le même, de quelque manière qu'il ait été dégagé, pourvu toutefois qu'il ait été bien dépouillé de tout acide étranger par le lavage, & qu'on l'ait purifié par une ou deux cristallisations successives.
L'acide boracique est soluble dans l'eau & dans l'alkool. Il a la propriété de communiquer à la flamme de ce dernier dans lequel on l'a dissous, une couleur verte, & cette circonstance avoit fait croire qu'il contenoit du cuivre: mais aucune expérience décisive n'a confirmé 267 ce résultat; il y a apparence que si le borax contient quelquefois du cuivre, il lui est accidentel.
Cet acide se combine avec les substances salifiables, par la voie humide & par la voie sèche. Il ne dissout pas directement les métaux par la voie humide, mais on peut parvenir à opérer la combinaison par double affinité.
Le Tableau ci-dessus présente les différentes substances avec lesquelles l'acide boracique peut s'unir dans l'ordre des affinités qui s'observent par la voie humide; il exige un changement notable, lorsqu'on opère par la voie sèche: alors l'alumine qui est placée la dernière, doit être placée immédiatement après la soude.
Le radical boracique est entièrement inconnu; l'oxygène y tient tellement, qu'il n'a pas encore été possible de l'en séparer par aucun moyen. Ce n'est même que par analogie qu'on peut conclure que l'oxygène fait partie de sa combinaison, comme de celle de tous les acides.
268
Noms des bases salifiables. | Noms des sels neutres. | Observation. | |||
Combinaisons de l'acide arsenique avec: | La chaux. | Arseniate de chaux. | Ce genre de sels étoit absolument inconnu aux anciens. M. Macquer, qui a découvert en 1746 la combinaison de l'acide arsenique avec la potasse & la soude, les avoit nommés sels neutres arsenicaux. | ||
La baryte. | Arseniate de baryte. | ||||
La magnésie. | Arseniate de magnésie. | ||||
La potasse. | Arseniate de potasse. | ||||
La soude. | Arseniate de soude. | ||||
L'ammoniaque. | Arseniate d'ammoniaque. | ||||
L'oxide de zinc. | Arseniate de zinc. | ||||
L'oxide de manganèse. | Arseniate de manganèse. | ||||
L'oxide de fer. | Arseniate de fer. | ||||
L'oxide de plomb. | Arseniate de plomb. | ||||
L'oxide d'étain. | Arseniate d'étain. | ||||
L'oxide de cobalt. | Arseniate de cobalt. | ||||
L'oxide de cuivre. | Arseniate de cuivre. | ||||
L'oxide de nickel. | Arseniate de nickel. | ||||
L'oxyde de bismuth. | Arseniate de bismuth. | ||||
L'oxide de mercure. | Arseniate de mercure. | ||||
L'oxide d'antimoine. | Arseniate d'antimoine. | ||||
L'oxide d'argent. | Arseniate d'argent. | ||||
L'oxide d'or. | Arseniate d'or. | ||||
L'oxide de platine. | Arseniate de platine. | ||||
L'alumine. | Arseniate d'alumine. |
269
Sur l'Acide arsenique, & sur le Tableau de ses combinaisons.
Dans un Mémoire imprimé dans le recueil de l'Académie, année 1746, M. Macquer a fait voir qu'en poussant au feu un mêlange d'oxide blanc d'arsenic & de nitre, on obtenoit un sel neutre, qu'il a nommé sel neutre arsenical. On ignoroit entièrement, à l'époque où M. Macquer a publié ce Mémoire, la cause de ce singulier phénomène, & comment une substance métallique pouvoit jouer le rôle d'un acide. Des expériences plus modernes nous ont appris que l'arsenic s'oxygénoit dans cette opération; qu'il enlevoit l'oxygène à l'acide nitrique, & qu'à l'aide de ce principe il se convertissoit en un véritable acide, qui se combinoit ensuite avec la potasse. On connoît aujourd'hui d'autres moyens, non-seulement d'oxygéner l'arsenic, mais encore d'obtenir l'acide arsenique libre & dégagé de toute combinaison. Le plus simple est de dissoudre l'oxide blanc d'arsenic dans trois fois son poids d'acide muriatique: on ajoute dans cette dissolution, pendant qu'elle est encore bouillante, une quantité d'acide nitrique 270 double du poids de l'arsenic, & on évapore jusqu'à siccité. L'acide nitrique se décompose dans cette opération; son oxygène s'unit à l'oxide d'arsenic pour l'acidifier; le radical nitrique se dissipe sous forme de gaz nitreux. A l'égard de l'acide muriatique, il se convertit en gaz muriatique, & on peut le retenir par voie de distillation. On s'assure qu'il ne reste plus d'acide étranger, en calcinant l'acide concret jusqu'à ce qu'il commence à rougir: ce qui reste ainsi dans le creuset est de l'acide arsenique pur.
Il y a plusieurs autres manières d'oxygéner l'arsenic & de le convertir en un acide. Le procédé que Schéele a employé & que M. de Morveau a répété avec un grand succès dans le laboratoire de Dijon, consiste à distiller de l'acide muriatique oxygéné sur de la manganèse. Cet acide s'oxygène, comme je l'ai dit ailleurs, & passe sous la forme d'acide muriatique sur-oxygéné. On le reçoit dans un récipient dans lequel on a mis de l'oxide blanc d'arsenic recouvert d'un peu d'eau distillée. L'arsenic blanc décompose l'acide muriatique oxygéné, il lui enlève l'oxygène surabondant; d'une part, il se convertit en acide arsenique, & de l'autre l'acide muriatique oxygéné redevient acide muriatique ordinaire. On sépare ces deux acides 271 en distillant à une chaleur douce, qu'on augmente cependant sur la fin: l'acide muriatique passe & l'acide arsenique reste sous forme blanche & concrète. Dans cet état il est beaucoup moins volatil que l'oxide blanc d'arsenic.
Très-souvent l'acide arsenique tient en dissolution une portion d'oxide blanc d'arsenic qui n'a pas été suffisamment oxygéné. On n'est point exposé à cet inconvénient, quand on a opéré par l'acide nitrique, & qu'on en ajoute de nouveau, jusqu'à ce qu'il ne passât plus de gaz nitreux.
D'après ces différentes observations, je définirai l'acide arsenique, un acide métallique blanc, concret fixe au degré de feu qui le fait rougir, formé par la combinaison de l'arsenic avec l'oxygène, qui se dissout dans l'eau, & qui est susceptible de se combiner avec un grand nombre de bases salifiables.
272
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide molybdique avec: | L'alumine. | Molybdate d'alumine. | |
L'ammoniaque. | Molybdate d'ammoniaque. | ||
L'oxide d'antimoine. | Molybdate d'antimoine. | ||
L'oxide d'argent. | Molybdate d'argent. | ||
L'oxide d'arsenic. | Molybdate d'arsenic. | ||
La baryte. | Molybdate de baryte. | ||
L'oxide de bismuth. | Molybdate de bismuth. | ||
La chaux. | Molybdate de chaux. | ||
L'oxide de cobalt. | Molybdate de cobalt. | ||
L'oxide de cuivre. | Molybdate de cuivre. | ||
L'oxide d'étain. | Molybdate d'étain. | ||
L'oxide de fer. | Molybdate de fer. | ||
La magnésie. | Molybdate de magnésie. | ||
L'oxide de manganèse. | Molybdate de manganèse. | ||
L'oxide de mercure. | Molybdate de mercure. | ||
L'oxide de nickel. | Molybdate de nickel. | ||
L'oxide d'or. | Molybdate d'or. | ||
L'oxide de platine. | Molybdate de platine. | ||
L'oxide de plomb. | Molybdate de plomb. | ||
La potasse. | Molybdate de potasse. | ||
La soude. | Molybdate de soude. | ||
Le zinc. | Molybdate de zinc. |
* On a suivi dans le tableau l'ordre alphabétique, parce que l'on ne connoît pas bien les affinités de cet acide avec les différentes bases. C'est à M. Schéele qu'on doit la découverte de cet acide, comme de beaucoup d'autres.
Nota. Toute cette classe de sels a été nouvellement découverte, & n'avoit point encore été nommée.
273
Sur l'Acide molybdique, & sur le Tableau de ses combinaisons.
Le molybdène est une substance métallique particulière, qui est susceptible de s'oxygéner au point de se transformer en un véritable acide concret. Pour y parvenir, on introduit dans une cornue une partie de mine de molybdène, telle que la nature nous la présente, & qui est un véritable sulfure de molybdène; on y ajoute cinq ou six parties d'un acide nitrique affoibli d'un quart d'eau environ, & on distille. L'oxygène de l'acide nitrique se porte sur le molybdène & sur le soufre; il transforme l'un en un oxide métallique, & l'autre en acide sulfurique. On repasse de nouvel acide nitrique dans la même proportion & jusqu'à quatre ou cinq fois; & quand il n'y a plus de vapeurs rouges, le molybdène est oxygéné autant qu'il le peut être, du moins par ce moyen, & on le trouve au fond de la cornue sous forme blanche, pulvérulente, comme de la craie. Cet acide est peu soluble, & on peut, sans risquer d'en perdre beaucoup, le laver avec de l'eau chaude. Cette précaution est nécessaire pour le débarrasser des dernières portions d'acide sulfurique, qui pourroient y adhérer.
274
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide tungstique avec: | La chaux. | Tungstate de chaux. | |
La baryte. | Tungstate de baryte. | ||
La magnésie. | Tungstate de magnésie. | ||
La potasse. | Tungstate de potasse. | ||
La soude. | Tungstate de soude. | ||
L'ammoniaque | Tungstate d'ammoniaque. | ||
L'alumine. | Tungstate d'alumine. | ||
L'oxide d'antimoine. | Tungstate d'antimoine. | ||
L'oxide d'argent. | Tungstate d'argent. | ||
L'oxide d'arsenic. | Tungstate d'arsenic. | ||
L'oxide de bismuth. | Tungstate de bismuth. | ||
L'oxide de cobalt. | Tungstate de cobalt. | ||
L'oxide de cuivre. | Tungstate de cuivre. | ||
L'oxide d'étain. | Tungstate d'étain. | ||
L'oxide de fer. | Tungstate de fer. | ||
L'oxide de manganèse. | Tungstate de manganèse. | ||
L'oxide de mercure. | Tungstate de mercure. | ||
L'oxide de molybdène. | Tungstate de molybdène. | ||
L'oxide de nickel. | Tungstate de nickel. | ||
L'oxide d'or. | Tungstate d'or. | ||
L'oxide de platine. | Tungstate de platine. | ||
L'oxide de plomb. | Tungstate de plomb. | ||
L'oxide de zinc. | Tungstate de zinc. |
275
Sur l'Acide tungstique, & sur le Tableau de ses combinaisons.
On donne le nom de tungstène à un métal particulier dont la mine a été souvent confondue avec celles d'étain; dont la cristallisation a du rapport avec celle des grenats; dont la pesanteur spécifique excède 6000, celle de l'eau étant supposée 1000; enfin qui varie du blanc perlé au rougeâtre & au jaune. On le trouve en plusieurs endroits de la Saxe & en Bohême.
Le volfram est aussi une véritable mine de tungstène, qui se rencontre fréquemment dans les mines de Cornouailles.
Le métal qui porte le nom de tungstène, est dans l'état d'oxide dans ces deux espèces de mines. Il paroîtroit même qu'il est porté, dans la mine de tungstène, au-delà de l'état d'oxide; qu'il y fait fonction d'acide: il y est uni à la chaux.
Pour obtenir cet acide libre, on mêle une partie de mine de tungstène avec quatre parties de carbonate de potasse, & on fait fondre le mêlange dans un creuset. Lorsque la matière 276 est refroidie, on la met en poudre & on verse dessus douze parties d'eau bouillante; puis on ajoute de l'acide nitrique qui s'unit à la potasse avec laquelle il a plus d'affinité, & en dégage l'acide tungstique: cet acide se précipite aussitôt sous forme concrète. On peut y repasser de l'acide nitrique qu'on évapore à siccité, & continuer ainsi jusqu'à ce qu'il ne se dégage plus de vapeurs rouges; on est assuré pour lors qu'il est complètement oxygéné. Si on veut obtenir l'acide tungstique pur, il faut opérer la fusion de la mine avec le carbonate de potasse dans un creuset de platine; autrement la terre du creuset se mêleroit avec les produits, & altéreroit la pureté de l'acide.
Les affinités de l'acide tungstique avec les oxides métalliques ne sont point déterminées, & c'est pour cette raison qu'on les a rangées par ordre alphabétique; à l'égard des autres substances salifiables, on les a rangées dans l'ordre de leur affinité avec l'acide tungstique. Toute cette classe de sels n'avoit été ni connue ni nommée par les anciens.
277
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide tartareux avec: | La chaux. | Tartrite de chaux. | |
La baryte. | Tartrite de baryte. | ||
La magnésie. | Tartrite de magnésie. | ||
La potasse. | Tartrite de potasse. | ||
La soude. | Tartrite de soude. | ||
L'ammoniaque. | Tartrite d'ammoniaque. | ||
L'alumine. | Tartrite d'alumine. | ||
L'oxide de zinc. | Tartrite de zinc. | ||
L'oxide de fer. | Tartrite de fer. | ||
L'oxide de manganèse. | Tartrite de manganèse. | ||
L'oxide de cobalt. | Tartrite de cobalt. | ||
L'oxide de nickel. | Tartrite de nickel. | ||
L'oxide de plomb. | Tartrite de plomb. | ||
L'oxide d'étain. | Tartrite d'étain. | ||
L'oxide de cuivre. | Tartrite de cuivre. | ||
L'oxide de bismuth. | Tartrite de bismuth. | ||
L'oxide d'antimoine. | Tartrite d'antimoine. | ||
L'oxide d'arsenic. | Tartrite d'arsenic. | ||
L'oxide d'argent. | Tartrite d'argent. | ||
L'oxide de mercure. | Tartrite de mercure. | ||
L'oxide d'or. | Tartrite d'or. | ||
L'oxide de platine. | Tartrite de platine. |
278
Sur l'Acide tartareux, & sur le Tableau de ses combinaisons.
Tout le monde connoît le tartre qui s'attache autour des tonneaux dans lesquels la fermentation du vin s'est achevée. Ce sel est composé d'un acide particulier sui generis, combiné avec la potasse, mais de manière que l'acide est dans un excès considérable.
C'est encore M. Schéele qui a enseigné aux Chimistes le moyen d'obtenir l'acide tartareux pur. Il a observé d'abord que cet acide avoit plus d'affinité avec la chaux qu'avec la potasse; il prescrit en conséquence de commencer par dissoudre du tartre purifié dans de l'eau bouillante, & d'y ajouter de la chaux jusqu'à ce que tout l'acide soit saturé. Le tartrite de chaux qui se forme, est un sel presqu'insoluble qui tombe au fond de la liqueur, sur-tout quand elle est refroidie; on l'en sépare par décantation, on le lave avec de l'eau froide & on le sèche; après quoi on verse dessus de l'acide sulfurique étendu de 8 à 9 fois son poids d'eau, on fait digérer pendant douze heures, à une chaleur 279 douce, en observant de remuer de tems en tems: l'acide sulfurique s'empare de la chaux, forme du sulfate de chaux, & l'acide tartareux se trouve libre. Il se dégage pendant cette digestion une petite quantité de gaz qui n'a pas été examiné. Au bout de douze heures on décante la liqueur, on lave le sulfate de chaux avec de l'eau froide pour emporter les portions d'acide tartareux dont il est imprégné; on réunit tous les lavages à la première liqueur, on filtre, on évapore & on obtient l'acide tartareux concret. Deux livres de tartre purifié, donnent environ onze onces d'acide. La quantité d'acide sulfurique nécessaire pour cette quantité de tartre, est de 8 à 10 onces d'acide concentré qu'on étend, comme je viens de le dire, de 8 à 9 parties d'eau.
Comme le radical combustible est en excès dans cet acide, nous lui avons conservé la terminaison en eux, & nous avons nommé tartrites le résultat de sa combinaison avec les substances salifiables.
La base de l'acide tartareux est le radical carbone-hydreux ou hydro-carboneux, & il paroît qu'il y est moins oxygéné que dans l'acide oxalique. Les expériences de M. Hassenfratz paroissent prouver que l'azote entre aussi dans la combinaison de ce radical, même en 280 assez grande quantité. En oxygénant l'acide tartareux, on le convertit en acide oxalique, en acide malique & en acide acéteux: mais il est probable que la proportion de l'hydrogène & du carbone change dans ces conversions, & que la différence du degré d'oxygénation n'est pas la seule cause qui constitue la différence de ces acides.
L'acide tartareux, en se combinant avec les alkalis fixes, est susceptible de deux degrés de saturation: le premier constitue un sel avec excès d'acide, nommé très-improprement crême de tartre, & que nous avons nommé tartrite acidule de potasse. La même combinaison donne par un second degré de saturation un sel parfaitement neutre, que nous nommons simplement tartrite de potasse, & qui est connu en pharmacie sous le nom de sel végétal. Le même acide combiné avec la soude jusqu'à saturation, donne un tartrite de soude connu sous le nom de sel de seignette, ou de sel polycreste de la Rochelle.
281
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide malique avec: | L'alumine. | Malate d'alumine. | |
L'ammoniaque. | Malate d'ammoniaque. | ||
L'oxide d'antimoine. | Malate d'antimoine. | ||
L'oxide d'argent. | Malate d'argent. | ||
L'oxide d'arsenic. | Malate d'arsenic. | ||
La baryte. | Malate de baryte. | ||
L'oxide de bismuth. | Malate de bismuth. | ||
La chaux. | Malate de chaux. | ||
L'oxide de cobalt. | Malate de cobalt. | ||
L'oxide de cuivre. | Malate de cuivre. | ||
L'oxide d'étain. | Malate d'étain. | ||
L'oxide de fer. | Malate de fer. | ||
La magnésie. | Malate de magnésie. | ||
L'oxide de manganèse. | Malate de manganèse. | ||
L'oxide de mercure. | Malate de mercure. | ||
L'oxide de nickel. | Malate de nickel. | ||
L'oxide d'or. | Malate d'or. | ||
L'oxide de platine. | Malate de platine. | ||
L'oxide de plomb. | Malate de plomb. | ||
La potasse. | Malate de potasse. | ||
La soude. | Malate de soude. | ||
L'oxide de zinc. | Malate de zinc. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens.
282
Sur l'Acide malique, & sur le Tableau de ses combinaisons.
L'Acide malique se trouve tout formé dans le jus des pommes acides, mûres ou non mûres, & d'un grand nombre d'autres fruits. Pour l'obtenir, on commence par saturer le jus de pommes avec de la potasse ou de la soude. On verse ensuite sur la liqueur saturée, de l'acétite de plomb dissoute dans l'eau. Il se fait un échange de bases; l'acide malique se combine avec le plomb, & se précipite. On lave bien ce précipité, ou plutôt ce sel qui est à-peu-près insoluble; après quoi on y verse de l'acide sulfurique affoibli qui chasse l'acide malique, s'empare du plomb, forme avec lui un sulfate qui est de même très-peu soluble & qu'on sépare par filtration; il reste l'acide malique libre & en liqueur. Cet acide se trouve mêlé avec l'acide citrique & avec l'acide tartareux dans un grand nombre de fruits: il tient à-peu-près le milieu entre l'acide oxalique & l'acide acéteux; & c'est ce qui a porté M. Hermbstadt à lui donner le nom de vinaigre 283 imparfait. Il est plus oxygéné que l'acide oxalique, mais il l'est moins que l'acide acéteux. Il differe aussi de ce dernier par la nature de son radical, qui contient un peu plus de carbone & un peu moins d'hydrogène. On peut le former artificiellement, en traitant du sucre avec de l'acide nitrique. Si on s'est servi d'un acide étendu d'eau, il ne se forme point de cristaux d'acide oxalique; mais la liqueur contient réellement deux acides, savoir l'acide oxalique, l'acide malique, & probablement même un peu d'acide tartareux. Pour s'en assurer, il ne s'agit que de verser de l'eau de chaux sur la liqueur; il se forme du tartrite & de l'oxalate de chaux, qui se déposent au fond comme insolubles; il se forme en même tems du malate de chaux qui reste en dissolution. Pour avoir l'acide pur & libre, on décompose le malate de chaux par l'acétite de plomb, & on enlève le plomb à l'acide malique par l'acide sulfurique, de la même manière que quand on opère directement sur le jus des pommes.
284
Noms des bases salifiables. | Noms des sels neutres. | Observation. | |||
Combinaisons de l'acide citrique avec: | La baryte. | Citrate de baryte. | Toutes ces combinaisons étoient inconnues aux anciens chimistes. | ||
La chaux. | Citrate de chaux. | ||||
La magnésie. | Citrate de magnésie. | ||||
La potasse. | Citrate de potasse. | ||||
La soude. | Citrate de soude. | ||||
L'ammoniaque. | Citrate d'ammoniaque. | ||||
L'oxide de zinc. | Citrate de zinc. | ||||
L'oxide de manganèse. | Citrate de manganèse. | ||||
L'oxide de fer. | Citrate de fer. | ||||
L'oxide de plomb. | Citrate de plomb. | ||||
L'oxide de cobalt. | Citrate de cobalt. | ||||
L'oxide de cuivre. | Citrate de cuivre. | ||||
L'oxide d'arsenic. | Citrate d'arsenic. | ||||
L'oxide de mercure. | Citrate de mercure. | ||||
L'oxide d'antimoine. | Citrate d'antimoine. | ||||
L'oxide d'argent. | Citrate d'argent. | ||||
L'oxide d'or. | Citrate d'or. | ||||
L'oxide de platine. | Citrate de platine. | ||||
L'alumine. | Citrate d'alumine. |
* Les affinités de cet acide ont été déterminées par M. Bergman & par M. de Breney, de l'Académie de Dijon.
285
Sur l'Acide citrique, & sur le Tableau de ses combinaisons.
On donne le nom de citrique à l'acide en liqueur qu'on retire par expression du citron; on le rencontre dans plusieurs autres fruits mêlé avec l'acide malique. Pour l'obtenir pur & concentré, on lui laisse déposer sa partie muqueuse par un long repos dans un lieu frais, tel que la cave, ensuite on le concentre par un froid de 4 ou 5 degrés au-dessous de zéro du thermomètre de Réaumur: l'eau se gèle & l'acide reste en liqueur. On peut ainsi le réduire à un huitième de son volume. Un trop grand degré de froid nuiroit au succès de l'opération, parce que l'acide se trouveroit engagé dans la glace, & qu'on auroit de la peine à l'en séparer. Cette préparation de l'acide citrique est de M. Georgius. On peut l'obtenir d'une manière plus simple encore, en saturant du jus de citron avec de la chaux. Il se forme un citrate calcaire qui est indissoluble dans l'eau; on lave ce sel, & on verse dessus de l'acide sulfurique, qui s'empare de la chaux & qui forme du sulfate de chaux, sel presque insoluble. L'acide citrique reste libre dans la liqueur.
286
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide pyro-ligneux avec: | La chaux. | Pyro-lignite de chaux. | |
La baryte. | Pyro-lignite de baryte. | ||
La potasse. | Pyro-lignite de potasse. | ||
La soude. | Pyro-lignite de soude. | ||
La magnésie. | Pyro-lignite de magnésie. | ||
L'ammoniaque. | Pyro-lignite d'ammoniaque. | ||
L'oxide de zinc. | Pyro-lignite de zinc. | ||
L'oxide de manganèse. | Pyro-lignite de manganèse. | ||
L'oxide de fer. | Pyro-lignite de fer. | ||
L'oxide de plomb. | Pyro-lignite de plomb. | ||
L'oxide d'étain. | Pyro-lignite d'étain. | ||
L'oxide de cobalt. | Pyro-lignite de cobalt. | ||
L'oxide de cuivre. | Pyro-lignite de cuivre. | ||
L'oxide de nickel. | Pyro-lignite de nickel. | ||
L'oxide d'arsenic. | Pyro-lignite d'arsenic. | ||
L'oxide de bismuth. | Pyro-lignite de bismuth. | ||
L'oxide de mercure. | Pyro-lignite de mercure. | ||
L'oxide d'antimoine. | Pyro-lignite d'antimoine. | ||
L'oxide d'argent. | Pyro-lignite d'argent. | ||
L'oxide d'or. | Pyro-lignite d'or. | ||
L'oxide de platine. | Pyro-lignite de platine. | ||
L'alumine. | Pyro-lignite d'alumine. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
287
Sur l'Acide pyro-ligneux, & sur le Tableau de ses combinaisons.
Les anciens Chimistes avoient observé que la plupart des bois, & sur-tout ceux qui sont lourds & compactes, donnoient par la distillation à feu nud un esprit acide d'une nature particulière; mais personne, avant M. Goettling, ne s'étoit occupé d'en rechercher la nature. Le travail qu'il a donné sur ce sujet, se trouve dans le Journal de Crell, année 1779. L'acide pyro-ligneux qu'on obtient par la distillation du bois à feu nud, est de couleur brune; il est très-chargé d'huile & de charbon; pour l'obtenir plus pur, on le rectifie par une seconde distillation. Il paroît qu'il est à peu près le même, de quelque bois qu'il ait été tiré. M. de Morveau & M. Eloi Boursier de Clervaux se sont attachés à déterminer les affinités de cet acide avec les différentes bases salifiables; & c'est dans l'ordre qu'ils leur ont assigné, qu'on les présente ici. Le radical de cet acide est principalement formé d'hydrogène & de carbone.
288
Noms des bases. | Noms des sels neutres. | ||
Combinaisons de l'acide pyro-tartareux avec: | La potasse. | Pyro-tartrite de potasse. | |
La soude. | Pyro-tartrite de soude. | ||
La baryte . | Pyro-tartrite de baryte. | ||
La chaux. | Pyro-tartrite de chaux. | ||
La magnésie. | Pyro-tartrite de magnésie. | ||
L'ammoniaque. | Pyro-tartrite d'ammoniaque. | ||
L'alumine. | Pyro-tartrite d'alumine. | ||
L'oxide de zinc. | Pyro-tartrite de zinc. | ||
L'oxide de manganèse. | Pyro-tartrite de manganèse. | ||
L'oxide de fer. | Pyro-tartrite de fer. | ||
L'oxide de plomb. | Pyro-tartrite de plomb. | ||
L'oxide d'étain. | Pyro-tartrite d'étain. | ||
L'oxide de cobalt. | Pyro-tartrite de cobalt. | ||
L'oxide de cuivre. | Pyro-tartrite de cuivre. | ||
L'oxide de nickel. | Pyro-tartrite de nickel. | ||
L'oxide d'arsenic. | Pyro-tartrite d'arsenic. | ||
L'oxide de bismuth. | Pyro-tartrite de bismuth. | ||
L'oxide de mercure. | Pyro-tartrite de mercure. | ||
L'oxide d'antimoine. | Pyro-tartrite d'antimoine. | ||
L'oxide d'argent. | Pyro-tartrite d'argent. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
* On ne connoît pas encore les affinités de cet acide: mais comme il a beaucoup de rapport avec l'acide pyro-muqueux, on les a supposées les mêmes.
289
Sur l'Acide pyro-tartareux, & sur le Tableau de ses combinaisons.
On donne le nom de pyro-tartareux à un acide empyreumatique peu concentré qu'on retire du tartre purifié par voie de distillation. Pour l'obtenir, on remplit à moitié de tartrite acidule de potasse ou tartre en poudre, une cornue de verre; on y adapte un récipient tubulé auquel on ajoute un tube qui s'engage sous une cloche dans l'appareil pneumato-chimique. En graduant le feu, on obtient une liqueur acide empyreumatique mêlée avec de l'huile: on sépare ces deux produits au moyen d'un entonnoir, & c'est la liqueur acide qu'on a nommée acide pyro-tartareux. Il se dégage dans cette distillation une prodigieuse quantité de gaz acide carbonique. L'acide pyro-tartareux qu'on obtient, n'est pas parfaitement pur; il contient toujours de l'huile qu'il seroit à souhaiter qu'on en pût séparer. Quelques auteurs ont conseillé de le rectifier; mais les Académiciens de Dijon ont constaté que cette opération étoit dangereuse, & qu'il y avoit explosion.
290
Noms des bases. | Noms des sels neutres. | ||
Combinaisons de l'acide pyro-muqueux avec: | La potasse. | Pyro-mucite de potasse. | |
La soude. | Pyro-mucite de soude. | ||
La baryte. | Pyro-mucite de baryte. | ||
La chaux. | Pyro-mucite de chaux. | ||
La magnésie. | Pyro-mucite de magnésie. | ||
L'ammoniaque. | Pyro-mucite d'ammoniaque. | ||
L'alumine. | Pyro-mucite d'alumine. | ||
L'oxide de zinc. | Pyro-mucite de zinc. | ||
L'oxide de manganèse. | Pyro-mucite de manganèse. | ||
L'oxide de fer. | Pyro-mucite de fer. | ||
L'oxide de plomb. | Pyro-mucite de plomb. | ||
L'oxide d'étain. | Pyro-mucite d'étain. | ||
L'oxide de cobalt. | Pyro-mucite de cobalt. | ||
L'oxide de cuivre. | Pyro-mucite de cuivre. | ||
L'oxide de nickel. | Pyro-mucite de nickel. | ||
L'oxide d'arsenic. | Pyro-mucite d'arsenic. | ||
L'oxide de bismuth. | Pyro-mucite de bismuth. | ||
L'oxide d'antimoine. | Pyro-mucite d'antimoine. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
291
Sur l'Acide pyro-muqueux, & sur le Tableau de ses combinaisons.
On retire l'acide pyro-muqueux du sucre & de tous les corps sucrés par la distillation à feu nud. Comme ces substances se boursouflent considérablement au feu, on doit laisser vuides les sept huitièmes de la cornue. Cet acide est d'un jaune qui tire sur le rouge: on l'obtient moins coloré en le rectifiant par une seconde distillation. Il est principalement composé d'eau & d'une petite portion d'huile légèrement oxygénée. Quand il en tombe sur les mains, il les tache en jaune, & ces taches ne s'en vont qu'avec l'épiderme. La manière la plus simple de le concentrer, est de l'exposer à la gelée ou bien à un froid artificiel: si on l'oxygène par l'acide nitrique, on le convertit en partie en acide oxalique & en acide malique.
C'est mal à-propos qu'on a prétendu qu'il se dégage beaucoup de gaz pendant la distillation de cet acide; il n'en passe presque point quand la distillation est conduite lentement & par un degré de feu modéré.
292
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide oxalique avec: | La chaux. | Oxalate de chaux. | |
La baryte. | Oxalate de baryte. | ||
La magnésie. | Oxalate de magnésie. | ||
La potasse. | Oxalate de potasse. | ||
La soude. | Oxalate de soude. | ||
L'ammoniaque. | Oxalate d'ammoniaque. | ||
L'alumine. | Oxalate d'alumine. | ||
L'oxide de zinc. | Oxalate de zinc. | ||
L'oxide de fer. | Oxalate de fer. | ||
L'oxide de manganèse. | Oxalate de manganèse. | ||
L'oxide de cobalt. | Oxalate de cobalt. | ||
L'oxide de nickel. | Oxalate de nickel. | ||
L'oxide de plomb. | Oxalate de plomb. | ||
L'oxide de cuivre. | Oxalate de cuivre. | ||
L'oxide de bismuth. | Oxalate de bismuth. | ||
L'oxide d'antimoine. | Oxalate d'antimoine. | ||
L'oxide d'arsenic. | Oxalate d'arsenic. | ||
L'oxide de mercure. | Oxalate de mercure. | ||
L'oxide d'argent. | Oxalate d'argent. | ||
L'oxide d'or. | Oxalate d'or. | ||
L'oxide de platine. | Oxalate de platine. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
293
Sur l'Acide oxalique, & sur le Tableau de les combinaisons.
L'Acide oxalique se prépare principalement en Suisse & en Allemagne; il se tire du suc de l'oseille qu'on exprime, & dans lequel ses cristaux se forment par un long repos. Dans cet état il est en partie saturé par de l'alkali fixe végétal ou potasse; en sorte que c'est, à proprement parler, un sel neutre avec un grand excès d'acide. Quand on veut obtenir l'acide pur, il faut le former artificiellement, & on y parvient en oxygénant le sucre, qui paroît être le véritable radical oxalique. On verse en conséquence sur une partie de sucre six à huit parties d'acide nitrique, & on fait chauffer à une chaleur douce; il se produit une vive effervescence, & il se dégage une grande abondance de gaz nitreux; après quoi en laissant reposer la liqueur, il s'y forme des cristaux qui sont de l'acide oxalique très-pur. On les sèche sur un papier gris pour en séparer les dernières portions d'acide nitrique dont il pourroit être imbibé; & pour être encore plus sûr de la pureté de l'acide, on le dissout dans de l'eau distillée & on le fait cristalliser une seconde fois.
294
L'acide oxalique n'est pas le seul qu'on puisse obtenir du sucre en l'oxygénant. La même liqueur qui a donné des cristaux d'acide oxalique, par refroidissement contient en outre l'acide malique, qui est un peu plus oxigéné. Enfin, en oxygénant encore davantage le sucre, on le convertit en acide acéteux ou vinaigre.
L'acide oxalique uni à une petite quantité de soude ou de potasse, a, comme l'acide tartareux, la propriété d'entrer tout entier dans un grand nombre de combinaisons, sans se décomposer: il en résulte des sels à deux bases, qu'il a bien fallu nommer. Nous avons appelé le sel d'oseille oxalate acidule de potasse.
Il y a plus d'un siècle que l'acide oxalique est connu des Chimistes. M. Duclos en a fait mention dans les Mémoires de l'Académie des Sciences, année 1688. Il a été décrit avec assez de soin par Boerhaave: mais M. Schéele est le premier qui ait reconnu qu'il contenoit de la potasse toute formée, & qui ait démontré son identité avec l'acide qu'on forme par l'oxygénation du sucre.
295
Nomenclature nouvelle. | |||
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide acéteux avec: | La baryte. | Acétite de baryte. | |
La potasse. | Acétite de potasse. | ||
La soude. | Acétite de soude. | ||
La chaux. | Acétite de chaux. | ||
La magnésie. | Acétite de magnésie. | ||
L'ammoniaque. | Acétite d'ammoniaque. | ||
L'oxide de zinc. | Acétite de zinc. | ||
L'oxide de manganèse. | Acétite de manganèse. | ||
L'oxide de fer. | Acétite de fer. | ||
L'oxide de plomb. | Acétite de plomb. | ||
L'oxide d'étain. | Acétite d'étain. | ||
L'oxide de cobalt. | Acétite de cobalt. | ||
L'oxide de cuivre. | Acétite de cuivre. | ||
L'oxide de nickel. | Acétite de nickel. | ||
L'oxide d'arsenic. | Acétite d'arsenic. | ||
L'oxide de bismuth. | Acétite de bismuth. | ||
L'oxide de mercure. | Acétite de mercure. | ||
L'oxide d'antimoine. | Acétite d'antimoine. | ||
L'oxide d'argent. | Acétite d'argent. | ||
L'oxide d'or. | Acétite d'or. | ||
L'oxide de platine. | Acétite de platine. | ||
L'alumine. | Acétite d'alumine. |
Nomenclature ancienne. | |||
Noms des bases. | Noms des sels neutres. | ||
Combinaisons de l'acide du vinaigre avec: | La terre pesante. | Inconnue des anciens. La découverte en est due à M. de Morveau qui l'a nommée acète barotique. | |
L'alkali fixe végétal. | Terre foliée de tartre très-secrète de Muller, arcane de tartre de Basile Valentin, & de Paracelse, Magistère purgatif de tartre de Schroëder, sel essentiel de vin de Zwelfer, tartre régénéré de Tachénius, sel diurétique de Sylvius, de Wilson. | ||
L'alkali fixe minéral. | Terre foliée à base d'alkali minéral, terre foliée minérale, terre foliée cristallisable, sel acéteux minéral. | ||
La terre calcaire. | Sel de craie, sel de corail, sel d'yeux d'écrevisses; Hartman en a fait mention. | ||
La base du sel d'epsom. | Inconnue des anciens; M. Wenzel est le premier qui en ait parlé. | ||
L'alkali volatil. | Esprit de Mendérérus ou de Menderet, sel acéteux ammoniacal. | ||
La chaux de zinc. | Cette combinaison a été connue de Glauber, Schwedemberg, Respour, Pott, de M. de Lassone, & de M. Wenzel, mais ils ne l'ont pas désignée par un nom particulier. | ||
La chaux de manganèse. | Inconnue des anciens. | ||
La chaux de fer. | Vinaigre martial. Cette combinaison a été décrite par Scheffer, par MM. Monnet, Wenzel & le Duc d'Ayen. | ||
La chaux de plomb. | Sucre de Saturne, vinaigre de Saturne, sel de Saturne. | ||
La chaux d'étain. | Cette combinaison a été connue de MM. Lémery, Margraff, Monnet, Weslendorf & Wenzel, mais ils ne lui ont pas donné de nom. | ||
La chaux de cobalt. | Encre de simpathie de M. Cadet. | ||
La chaux de cuivre. | Verd de gris, cristaux de verdet, cristaux de Vénus, verdet, verdet distillé. | ||
La chaux de nickel. | Inconnue des anciens. | ||
La chaux d'arsenic. | Liqueur fumante, arsenico-acéteuse, ou phosphore liquide de M. Cadet. | ||
La chaux de bismuth. | Sucre de bismuth de M. Geoffroi. Cette combinaison a été connue de MM. Gellert, Pott, Weslendorf, Bergman & de Morveau. | ||
La chaux de mercure. | Terre foliée mercurielle. M. Gebaver a fait mention en 1748, de cette combinaison; elle a été décrite par MM. Hellot, Margraff, Baumé, Navier, Monnet, Wenzel: c'est le fameux reméde anti-vénérien de Keyser. | ||
La chaux d'antimoine. | |||
La chaux d'argent. | Inconnue des anciens, décrite par MM. Margraff, Monnet & Wenzel. | ||
La chaux d'or. | Cette combinaison est peu connue, Schroëder & Juncker en ont fait mention. | ||
La chaux de platine. | Cette combinaison est inconnue. | ||
L'alumine. | Le vinaigre ne dissout, comme s'en est assuré M. Wenzel, que très-peu d'alumine. |
* Les anciens Chimistes n'ont guère connu de ces sels que l'acétite de potasse, celui de soude, celui d'ammoniaque, celui de cuivre & celui de plomb; la découverte de l'acétite d'arsenic est due à M. Cadet, (voyez tome III des Savans Etrangers.) On doit principalement à M. Wenzel, aux Académiciens de Dijon, à M. de Lassonne & à M. Proust, la connoissance que nous avons des propriétés des autres acétites. Il seroit possible que le radical acéteux, outre l'hydrogène & le carbone, contînt encore un peu d'azote. Il y a lieu de le soupçonner d'après la propriété qu'a l'acétite de potasse de donner de l'ammoniaque par la distillation, à moins cependant que l'azote qui concoure à la formation de cette ammoniaque, ne soit dû à la décomposition de la potasse elle-même.
Sur le Radical acéteux oxygéné par un premier degré d'oxygénation, ou Acide acéteux, & sur ses combinaisons avec les bases salifiables.
Le radical acéteux est composé de la réunion du carbone & de l'hydrogène portés à l'état d'acide par l'addition de l'oxygène. Cet acide est par conséquent composé des mêmes principes que l'acide tartareux, que l'acide oxalique, que l'acide citrique, que l'acide malique, &c. mais la proportion des principes est différente pour chacun de ces acides, & il paroît que l'acide acéteux est le plus oxygéné de tous. J'ai quelques raisons de croire qu'il contient aussi un peu d'azote, & que ce principe qui n'existe pas dans les autres acides végétaux que je viens de nommer, si ce n'est peut-être dans l'acide tartareux, est une des causes qui le différencie. Pour produire l'acide acéteux ou vinaigre, on expose le vin à une température douce, en y ajoutant un ferment, qui consiste principalement dans la lie qui s'est précédemment séparée d'autre vinaigre pendant sa fabrication, ou dans d'autres matières de 296 même nature. La partie spiritueuse du vin (le carbone & l'hydrogène) s'oxygènent dans cette opération, c'est par cette raison qu'elle ne peut se faire qu'à l'air libre, & qu'elle est toujours accompagnée d'une diminution du volume de l'air. Il faut en conséquence, pour faire de bon vinaigre, que le tonneau dans lequel on opère ne soit qu'à moitié plein. L'acide qui se forme ainsi est très-volatil; il est étendu d'une très-grande quantité d'eau & mêlé de beaucoup de substances étrangères. Pour l'avoir pur on le distille à une chaleur douce, dans des vaisseaux de grès ou de verre: mais ce qui paroît avoir échappé aux Chimistes, c'est que l'acide acéteux change de nature dans cette opération; l'acide qui passe dans la distillation, n'est pas exactement de même nature que celui qui reste dans l'alambic; ce dernier paroîtroit être plus oxygéné.
La distillation ne suffit pas pour débarrasser l'acide acéteux du phlegme étranger qui s'y trouve mêlé; le meilleur moyen de le concentrer sans en altérer la nature, consiste à l'exposer à un froid de quatre ou six degrés au-dessous de la congellation: la partie aqueuse gèle, & l'acide reste liquide. Il paroît que l'acide acéteux libre de toute combinaison, est naturellement dans l'état de gaz, au degré de 297 température & de pression dans lequel nous vivons, & que nous ne pouvons le retenir qu'en le combinant avec une grande quantité d'eau.
Il est d'autres procédés plus chimiques pour obtenir l'acide acéteux: ils consistent à oxygéner l'acide du tartre, l'acide oxalique ou l'acide malique par l'acide nitrique; mais il y a lieu de croire que la proportion des bases qui composent le radical, change dans cette opération. Au surplus M. Hassenfratz est occupé dans ce moment à répéter les expériences d'après lesquelles on a prétendu établir la possibilité de ces conversions.
La combinaison de l'acide acéteux avec les différentes bases salifiables, se fait avec assez de facilité; mais la plupart des sels qui en résultent ne sont pas cristallisables; à la différence des sels formés par l'acide tartareux & l'acide oxalique, qui sont en général peu solubles. Le tartrite & l'oxalate de chaux ne le sont pas même sensiblement. Les malates tiennent un espèce de milieu entre les oxalates & les acétates pour la solubilité, comme l'acide qui les forme en tient un pour le degré d'oxigénation.
Il faut, comme pour tous les autres acides, que les métaux soient oxygénés, pour pouvoir être dissous dans l'acide acéteux.
298
Noms des bases salifiables. | Noms des sels neutres. | Observation. | |||
Combinaisons de l'acide acétique avec: | La baryte. | Acétate de baryte. | Tous ces sels étoient inconnus des anciens, & même aujourd'hui, les Chimistes qui sont les plus au courant des découvertes modernes, ne peuvent pas prononcer avec certitude, si la plupart des sels acéteux doivent être rangés dans la classe des acétites ou des acétates. | ||
La potasse. | Acétate de potasse. | ||||
La soude. | Acétate de soude. | ||||
La chaux. | Acétate de chaux. | ||||
La magnésie. | Acétate de magnésie. | ||||
L'ammoniaque. | Acétate d'ammoniaque. | ||||
L'oxide de zinc. | Acétate de zinc. | ||||
L'oxide de manganèse. | Acétate de manganèse. | ||||
L'oxide de fer. | Acétate de fer. | ||||
L'oxide de plomb. | Acétate de plomb. | ||||
L'oxide d'étain. | Acétate d'étain. | ||||
L'oxide de cobalt. | Acétate de cobalt. | ||||
L'oxide de cuivre. | Acétate de cuivre. | ||||
L'oxide de nickel. | Acétate de nickel. | ||||
L'oxide d'arsenic. | Acétate d'arsenic. | ||||
L'oxide de bismuth. | Acétate de bismuth. | ||||
L'oxide de mercure. | Acétate de mercure. | ||||
L'oxide d'antimoine. | Acétate d'antimoine. | ||||
L'oxide d'argent. | Acétate d'argent. | ||||
L'oxide d'or. | Acétate d'or. | ||||
L'oxide de platine. | Acétate de platine. | ||||
L'alumine. | Acétate d'alumine. |
299
Sur l'Acide acétique, & sur le Tableau de ses combinaisons.
Nous avons donné au vinaigre radical le nom d'acide acétique, parce que nous avons supposé qu'il étoit plus chargé d'oxygène que le vinaigre ou acide acéteux. Dans cette supposition, le vinaigre radical ou acide acétique seroit le dernier degré d'oxygénation que puisse prendre le radical hydro-carboneux; mais quelque probable que soit cette conséquence, elle demande à être confirmée par des expériences plus décisives. Quoi qu'il en soit, pour préparer le vinaigre radical, on prend de l'acétite de potasse, qui est une combinaison d'acide acéteux & de potasse, ou de l'acétite de cuivre, qui est une combinaison du même acide avec du cuivre; on verse dessus un tiers de son poids d'acide sulfurique concentré, & par la distillation on obtient un vinaigre très-concentré, qu'on nomme vinaigre radical ou acide acétique. Mais, comme je viens de l'indiquer, il n'est point encore rigoureusement démontré que cet acide soit plus oxygéné que l'acide acéteux ordinaire, ni même qu'il n'en differe pas par la différence de proportion des principes du radical.
300
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide succinique avec: | La baryte. | Succinate de baryte. | |
La chaux. | Succinate de chaux. | ||
La potasse. | Succinate de potasse. | ||
La soude. | Succinate de soude. | ||
L'ammoniaque. | Succinate d'ammoniaque. | ||
La magnésie. | Succinate de magnésie. | ||
L'alumine. | Succinate d'alumine. | ||
L'oxide de zinc. | Succinate de zinc. | ||
L'oxide de fer. | Succinate de fer. | ||
L'oxide de manganèse. | Succinate de manganèse. | ||
L'oxide de cobalt. | Succinate de cobalt. | ||
L'oxide de nickel. | Succinate de nickel. | ||
L'oxide de plomb. | Succinate de plomb. | ||
L'oxide d'étain. | Succinate d'étain. | ||
L'oxide de cuivre. | Succinate de cuivre. | ||
L'oxide de bismuth. | Succinate de bismuth. | ||
L'oxide d'antimoine. | Succinate d'antimoine. | ||
L'oxide d'arsenic. | Succinate d'arsenic. | ||
L'oxide de mercure. | Succinate de mercure. | ||
L'oxide d'argent. | Succinate d'argent. | ||
L'oxide d'or. | Succinate d'or. | ||
L'oxide de platine. | Succinate de platine. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
301
Sur l'Acide succinique, & sur le Tableau de ses combinaisons.
L'Acide succinique se retire du succin, karabé ou ambre jaune, par distillation. Il suffit de mettre cette substance dans une cornue, & de donner une chaleur douce; l'acide succinique se sublime sous forme concrète dans le col de la cornue. Il faut éviter de pousser trop loin la distillation, pour ne pas faire passer l'huile. L'opération finie, on met le sel égoutter sur du papier gris; après quoi on le purifie par des dissolutions & cristallisations répétées.
Cet acide exige 24 parties d'eau froide pour être tenu en dissolution, mais il est beaucoup plus dissoluble dans l'eau chaude; il n'altère que foiblement les teintures bleues végétales, & il n'a pas dans un degré très-éminent les qualités d'acide. M. de Morveau est le premier des Chimistes qui ait essayé de déterminer ses différentes affinités, & c'est d'après lui qu'elles sont indiquées dans le Tableau joint à ces observations.
302
Noms des bases. | Noms des sels neutres. | ||
Combinaisons de l'acide benzoïque avec: | L'alumine. | Benzoate d'alumine. | |
L'ammoniaque. | Benzoate d'ammoniaque. | ||
La baryte. | Benzoate de baryte. | ||
La chaux. | Benzoate de chaux. | ||
La magnésie. | Benzoate de magnésie. | ||
La potasse. | Benzoate de potasse. | ||
La soude. | Benzoate de soude. | ||
L'oxide d'antimoine. | Benzoate d'antimoine. | ||
L'oxide d'argent. | Benzoate d'argent. | ||
L'oxide d'arsenic. | Benzoate d'arsenic. | ||
L'oxide de bismuth. | Benzoate de bismuth. | ||
L'oxide de cobalt. | Benzoate de cobalt. | ||
L'oxide de cuivre. | Benzoate de cuivre. | ||
L'oxide d'étain. | Benzoate d'étain. | ||
L'oxide de fer. | Benzoate de fer. | ||
L'oxide de manganèse. | Benzoate de manganèse. | ||
L'oxide de mercure. | Benzoate de mercure. | ||
L'oxide de molybdène. | Benzoate de molybdène. | ||
L'oxide de nickel. | Benzoate de nickel. | ||
L'oxide de plomb. | Benzoate de plomb. | ||
L'oxide de tungstène. | Benzoate de tungstène. | ||
L'oxide de zinc. | Benzoate de zinc. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes, & même encore aujourd'hui, on n'a rien de satisfaisant encore sur les propriétés de l'acide benzoïque & sur ses affinités.
303
Sur l'Acide benzoïque, & sur le Tableau de ses combinaisons avec les bases salifiables.
Cet acide a été connu des anciens Chimistes, sous le nom de fleurs de benjoin; on l'obtenoit par voie de sublimation. Depuis, M. Geoffroy a découvert qu'on pouvoit, également l'extraire par la voie humide: enfin M. Schéele, d'après un grand nombre d'expériences qu'il a faites sur le benjoin, s'est arrêté au procédé qui suit. On prend de bonne eau de chaux, dans laquelle même il est avantageux de laisser de la chaux en excès; on la fait digérer portion par portion sur du benjoin réduit en poudre fine, en remuant continuellement le mêlange. Après une demi-heure de digestion, on décante & on remet de nouvelle eau de chaux, & ainsi plusieurs fois, jusqu'à ce qu'on s'apperçoive que l'eau de chaux ne se neutralise plus. On rassemble toutes les liqueurs, on les rapproche par évaporation; & quand elles sont réduites autant qu'elles le peuvent être sans cristalliser, on laisse refroidir: on verse de l'acide muriatique goutte à goutte, jusqu'à ce qu'il ne se fasse plus de précipité. La substance qu'on obtient par ce procédé, est l'acide benzoïque concret.
304
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide camphorique avec: | L'alumine. | Camphorate d'alumine. | |
L'ammoniaque. | Camphorate d'ammoniaque. | ||
L'oxide d'antimoine. | Camphorate d'antimoine. | ||
L'oxide d'argent. | Camphorate d'argent. | ||
L'oxide d'arsenic. | Camphorate d'arsenic. | ||
La baryte. | Camphorate de baryte. | ||
L'oxide de bismuth. | Camphorate de bismuth. | ||
La chaux. | Camphorate de chaux. | ||
L'oxide de cobalt. | Camphorate de cobalt. | ||
L'oxide de cuivre. | Camphorate de cuivre. | ||
L'oxide d'étain. | Camphorate d'étain. | ||
L'oxide de fer. | Camphorate de fer. | ||
La magnésie. | Camphorate de magnésie. | ||
L'oxide de manganèse. | Camphorate de manganèse. | ||
L'oxide de mercure. | Camphorate de mercure. | ||
L'oxide de nickel. | Camphorate de nickel. | ||
L'oxide d'or. | Camphorate d'or. | ||
L'oxide de platine. | Camphorate de platine. | ||
L'oxide de plomb. | Camphorate de plomb. | ||
La potasse. | Camphorate de potasse. | ||
La soude. | Camphorate de soude. | ||
L'oxide de zinc. | Camphorate de zinc. |
Nota. Toutes ces combinaisons étoient inconnues aux anciens Chimistes.
305
Sur l'Acide camphorique, & sur le Tableau de ses combinaisons.
Le camphre est une espèce d'huile essentielle concrète, qu'on retire par sublimation d'un laurier qui croît à la Chine & au Japon. M. Kosegarten a distillé jusqu'à huit fois de l'acide nitrique sur du camphre, & il est parvenu ainsi à l'oxygéner & à le convertir en un acide très-analogue à l'acide oxalique. Il en differe cependant à quelques égards, & c'est ce qui nous a déterminé à lui conserver, jusqu'à nouvel ordre, un nom particulier.
Le camphre étant un radical carbone-hydreux ou hydro-carboneux, il n'est pas étonnant qu'en l'oxygénant il forme de l'acide oxalique, de l'acide malique & plusieurs autres acides végétaux. Les expériences rapportées par M. Kosegarten, ne démentent pas cette conjecture, & la plus grande partie des phénomènes qu'il a observés dans la combinaison de cet acide avec les bases salifiables s'observent de même dans les combinaisons de l'acide oxalique ou de l'acide malique; je serois donc assez porté à regarder l'acide camphorique comme un mêlange d'acide oxalique & d'acide malique.
306
Noms des bases. | Noms des sels neutres. |
Nomenclature nouvelle. | |
L'alumine. | Gallate d'alumine. |
L'ammoniaque. | Gallate d'ammoniaque. |
L'oxide d'antimoine. | Gallate d'antimoine. |
L'oxide d'argent. | Gallate d'argent. |
L'oxide d'arsenic. | Gallate d'arsenic. |
La baryte. | Gallate de baryte. |
L'oxide de bismuth. | Gallate de bismuth. |
La chaux. | Gallate de chaux. |
L'oxide de cobalt. | Gallate de cobalt. |
L'oxide de cuivre. | Gallate de cuivre. |
L'oxide d'étain. | Gallate d'étain. |
L'oxide de fer. | Gallate de fer. |
La magnésie. | Gallate de magnésie. |
L'oxide de manganèse. | Gallate de manganèse. |
L'oxide de mercure. | Gallate de mercure. |
L'oxide de nickel. | Gallate de nickel. |
L'oxide d'or. | Gallate d'or. |
L'oxide de platine. | Gallate de platine. |
L'oxide de plomb. | Gallate de plomb. |
La potasse. | Gallate de potasse. |
La soude. | Gallate de soude. |
L'oxide de zinc. | Gallate de zinc. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens Chimistes.
307
Sur l'Acide gallique, & sur le Tableau de ses combinaisons.
L'acide gallique ou principe astringent se tire de la noix de galle, soit par la simple infusion ou décoction dans l'eau, soit par une distillation à un feu très-doux. Ce n'est que depuis un très petit nombre d'années qu'on a donné une attention plus particulière à cette substance. MM. les Commissaires de l'Académie de Dijon en ont suivi toutes les combinaisons & ont donné le travail le plus complet qu'on eût fait jusqu'alors. Quoique les propriétés acides de ce principe ne soient pas très-marquées, il rougit la teinture de tournesol, il décompose les sulfures, il s'unit à tous les métaux, quand ils ont été préalablement dissous par un autre acide, & il les précipite sous différentes couleurs. Le fer, par cette combinaison, donne un précipité d'un bleu ou d'un violet foncé. Cet acide, si toutefois il mérite ce nom, se trouve dans un grand nombre de végétaux, tels que le chêne, le saule, l'iris des marais, le fraisier, le nimphea, le quinquina, l'écorce & la fleur de grenade, & dans beaucoup de bois & d'écorces. On ignore absolument quel est son radical.
308
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide lactique avec: | L'alumine. | Lactate d'alumine. | |
L'ammoniaque. | Lactate d'ammoniaque. | ||
L'oxide d'antimoine. | Lactate d'antimoine. | ||
L'oxide d'argent. | Lactate d'argent. | ||
L'oxide d'arsenic. | Lactate d'arsenic. | ||
La baryte. | Lactate de baryte. | ||
L'oxide de bismuth. | Lactate de bismuth. | ||
La chaux. | Lactate de chaux. | ||
L'oxide de cobalt. | Lactate de cobalt. | ||
L'oxide de cuivre. | Lactate de cuivre. | ||
L'oxide d'étain. | Lactate d'étain. | ||
L'oxide de fer. | Lactate de fer. | ||
L'oxide de manganèse. | Lactate de manganèse. | ||
L'oxide de mercure. | Lactate de mercure. | ||
L'oxide de nickel. | Lactate de nickel. | ||
L'oxide d'or. | Lactate d'or. | ||
L'oxide de platine. | Lactate de platine. | ||
L'oxide de plomb. | Lactate de plomb. | ||
La potasse. | Lactate de potasse. | ||
La soude. | Lactate de soude. | ||
L'oxide de zinc. | Lactate de zinc. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens Chimistes.
309
Sur l'Acide lactique, & sur le Tableau de ses combinaisons.
M. Schéele est celui auquel nous devons les seules connoissances exactes que nous ayons sur l'acide lactique. Cet acide se rencontre dans le petit lait, & il y est uni à un peu de terre. Pour l'obtenir on fait réduire par évaporation du petit lait au huitième de son volume; on filtre pour bien séparer toute la partie caseuse; on ajoute de la chaux, qui s'empare de l'acide dont il est question & qu'on en dégage ensuite par l'addition de l'acide oxalique: on sait en effet que ce dernier acide forme avec la chaux un sel insoluble. Après que l'oxalate de chaux a été séparé par décantation, on évapore la liqueur jusqu'à consistance de miel; on ajoute de l'esprit-de-vin qui dissout l'acide, & on filtre pour en séparer le sucre de lait & les autres substances étrangères. Il ne reste plus ensuite, pour avoir l'acide lactique seul, que de chasser l'esprit-de-vin par évaporation ou par distillation.
Cet acide s'unit avec presque toutes les bases salifiables, & forme avec elles des sels incristallisables. Il paroît se rapprocher, à beaucoup d'égards, de l'acide acéteux.
310
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide saccholactique avec: | La chaux. | Saccholate de chaux. | |
La baryte. | Saccholate de baryte. | ||
La magnésie. | Saccholate de magnésie. | ||
La potasse. | Saccholate de potasse. | ||
La soude. | Saccholate de soude. | ||
L'ammoniaque. | Saccholate d'ammoniaque. | ||
L'alumine. | Saccholate d'alumine. | ||
L'oxide de zinc. | Saccholate de zinc. | ||
L'oxide de manganèse. | Saccholate de manganèse. | ||
L'oxide de fer. | Saccholate de fer. | ||
L'oxide de plomb. | Saccholate de plomb. | ||
L'oxide d'étain. | Saccholate d'étain. | ||
L'oxide de cobalt. | Saccholate de cobalt. | ||
L'oxide de cuivre. | Saccholate de cuivre. | ||
L'oxide de nickel. | Saccholate de nickel. | ||
L'oxide d'arsenic. | Saccholate d'arsenic. | ||
L'oxide de bismuth. | Saccholate de bismuth. | ||
L'oxide de mercure. | Saccholate de mercure. | ||
L'oxide d'antimoine. | Saccholate d'antimoine. | ||
L'oxide d'argent. | Saccholate d'argent. |
Nota. Toutes ces combinaisons ont été inconnues des anciens Chimistes.
311
Sur l'Acide saccholactique, & sur le Tableau de ses combinaisons.
On peut extraire du petit lait par évaporation, une espèce de sucre qui a beaucoup de rapports avec celui des cannes à sucre, & qui est très-anciennement connu dans la pharmacie.
Ce sucre est susceptible, comme le sucre ordinaire, de s'oxygéner par différens moyens, & principalement par sa combinaison avec l'acide nitrique: on repasse à cet effet plusieurs fois de nouvel acide; on concentre ensuite la liqueur par évaporation; on met à cristalliser & on obtient de l'acide oxalique: en même tems il se sépare une poudre blanche très-fine, qui est susceptible de se combiner avec les alkalis, avec l'ammoniaque, avec les terres, même avec quelques métaux. C'est à cet acide concret découvert par Schéele, qu'on a donné le nom d'acide saccho-lactique. Son action sur les métaux est peu connue; on sait seulement qu'il forme avec eux des sels très-peu solubles. L'ordre des affinités qu'on a suivi dans le Tableau, est celui indiqué par M. Bergman.
312
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide formique avec: | La baryte. | Formiate de baryte. | |
La potasse. | Formiate de potasse. | ||
La soude. | Formiate de soude. | ||
La chaux. | Formiate de chaux. | ||
La magnésie. | Formiate de magnésie. | ||
L'ammoniaque. | Formiate d'ammoniaque. | ||
L'oxide de zinc. | Formiate de zinc. | ||
L'oxide de manganèse. | Formiate de manganèse. | ||
L'oxide de fer. | Formiate de fer. | ||
L'oxide de plomb. | Formiate de plomb. | ||
L'oxide d'étain. | Formiate d'étain. | ||
L'oxide de cobalt. | Formiate de cobalt. | ||
L'oxide de cuivre. | Formiate de cuivre. | ||
L'oxide de nickel. | Formiate de nickel. | ||
L'oxide de bismuth. | Formiate de bismuth. | ||
L'oxide d'argent. | Formiate d'argent. | ||
L'alumine. | Formiate d'alumine. |
Nota. Toutes ces combinaisons ont été inconnues des anciens Chimistes.
313
Sur l'Acide formique, & sur le Tableau de ses combinaisons.
L'Acide formique a été connu dès le siècle dernier. Samuel Ficher est le premier qui l'ait obtenu en distillant des fourmis. M. Margraff a suivi ce même objet dans un Mémoire qu'il a publié en 1749, & MM. Ardwisson & OEhrn, dans une dissertation qu'ils ont publiée à Léipsic en 1777.
L'acide formique se tire d'une grosse espèce de fourmi rousse, formica rufa, qui habite les bois & qui y forme de grandes fourmillières. Si c'est par distillation qu'on veut opérer, on introduit les fourmis dans une cornue de verre ou dans une cucurbite garnie de son chapiteau; on distille à une chaleur douce, & on trouve l'acide formique dans le récipient: on en tire environ moitié du poids des fourmis.
Lorsqu'on veut procéder par voie de lixiviation, on lave les fourmis à l'eau froide, on les étend sur un linge, & on y passe de l'eau bouillante, qui se charge de la partie acide; on peut même exprimer légèrement ces insectes dans le linge, & l'acide en est plus fort. Pour l'obtenir pur & concentré, on le rectifie & on en sépare le phlegme par la gelée.
314
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide bombique avec: | L'alumine. | Bombiate d'alumine. | |
L'ammoniaque. | Bombiate d'ammoniaque. | ||
L'oxide d'antimoine. | Bombiate d'antimoine. | ||
L'oxide d'argent. | Bombiate d'argent. | ||
L'oxide d'arsenic. | Bombiate d'arsenic. | ||
La baryte. | Bombiate de baryte. | ||
L'oxide de bismuth. | Bombiate de bismuth. | ||
La chaux. | Bombiate de chaux. | ||
L'oxide de cobalt. | Bombiate de cobalt. | ||
L'oxide de cuivre. | Bombiate de cuivre. | ||
L'oxide d'étain. | Bombiate d'étain. | ||
L'oxide de fer. | Bombiate de fer. | ||
L'oxide de manganèse. | Bombiate de manganèse. | ||
La magnésie. | Bombiate de magnésie. | ||
L'oxide de mercure. | Bombiate de mercure. | ||
L'oxide de nickel. | Bombiate de nickel. | ||
L'oxide d'or. | Bombiate d'or. | ||
L'oxide de platine. | Bombiate de platine. | ||
L'oxide de plomb. | Bombiate de plomb. | ||
La potasse. | Bombiate de potasse. | ||
La soude. | Bombiate de soude. | ||
L'oxide de zinc. | Bombiate de zinc. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens Chimistes.
315
Sur l'Acide bombique, & sur le Tableau de ses combinaisons.
Lorsque le ver à soie se change en crisalide, ses humeurs paroissent prendre un caractère d'acidité. Il laisse même échapper au moment où il se transforme en papillon, une liqueur rousse très-acide, qui rougit le papier bleu, & qui a fixé l'attention de M. Chaussier, membre de l'Académie de Dijon. Après plusieurs tentatives pour obtenir cet acide pur, voici le procédé auquel il a cru devoir s'arrêter. On fait infuser des crisalides de vers à soie dans de l'alcohol: ce dissolvant se charge de l'acide, sans attaquer les parties muqueuses ou gommeuses; & en faisant évaporer l'esprit-de-vin, on a l'acide bombique assez pur. On n'a pas encore déterminé avec précision les propriétés & les affinités de cet acide. Il y a apparence que la famille des insectes en fourniroit beaucoup d'analogues. Son radical, ainsi que celui de tous les acides du règne animal, paroît être composé de carbone, d'hydrogène, d'azote & peut-être de phosphore.
316
Noms des bases salifiables. | Noms des sels neutres. | ||
Nomenclature nouvelle. | |||
Combinaisons de l'acide sébacique avec: | La baryte. | Sébate de baryte. | |
La potasse. | Sébate de potasse. | ||
La soude. | Sébate de soude. | ||
La chaux. | Sébate de chaux. | ||
La magnésie. | Sébate de magnésie. | ||
L'ammoniaque. | Sébate d'ammoniaque. | ||
L'alumine. | Sébate d'alumine. | ||
L'oxide de zinc. | Sébate de zinc. | ||
L'oxide de manganèse. | Sébate de manganèse. | ||
L'oxide de fer. | Sébate de fer. | ||
L'oxide de plomb. | Sébate de plomb. | ||
L'oxide d'étain. | Sébate d'étain. | ||
L'oxide de cobalt. | Sébate de cobalt. | ||
L'oxide de cuivre. | Sébate de cuivre. | ||
L'oxide de nickel. | Sébate de nickel. | ||
L'oxide d'arsenic. | Sébate d'arsenic. | ||
L'oxide de bismuth. | Sébate de bismuth. | ||
L'oxide de mercure. | Sébate de mercure. | ||
L'oxide d'antimoine. | Sébate d'antimoine. | ||
L'oxide d'argent. | Sébate d'argent. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens Chimistes.
317
Sur l'Acide sébacique, & sur le Tableau de ses combinaisons.
Pour obtenir l'acide sébacique, on prend du suif qu'on fait fondre dans un poëlon de fer; on y jette de la chaux vive pulvérisée, & on remue continuellement. La vapeur qui s'élève du mêlange est très-piquante, & on doit tenir les vaisseaux élevés afin d'éviter de la respirer. Sur la fin on hausse le feu. L'acide sébacique dans cette opération se porte sur la chaux & forme du sébate calcaire, espèce de sel peu soluble: pour le séparer des parties grasses dont il est empâté, on fait bouillir à grande eau la masse; le sébate calcaire se dissout, le suif se fond & surnage. On sépare ensuite le sel en faisant évaporer l'eau, on le calcine à une chaleur modérée; on redissout, on fait cristalliser de nouveau & on parvient à l'avoir pur.
Pour obtenir l'acide libre, on verse de l'acide sulfurique sur le sébate de chaux ainsi purifié, & on distille; l'acide sébacique passe clair dans le récipient.
318
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide lithique avec: | L'alumine. | Lithiate d'alumine. | |
L'ammoniaque. | Lithiate d'ammoniaque. | ||
L'oxide d'antimoine. | Lithiate d'antimoine. | ||
L'oxide d'argent. | Lithiate d'argent. | ||
L'oxide d'arsenic. | Lithiate d'arsenic. | ||
La baryte. | Lithiate de baryte. | ||
L'oxide de bismuth. | Lithiate de bismuth. | ||
La chaux. | Lithiate de chaux. | ||
L'oxide de cobalt. | Lithiate de cobalt. | ||
L'oxide de cuivre. | Lithiate de cuivre. | ||
L'oxide d'étain. | Lithiate d'étain. | ||
L'oxide de fer. | Lithiate de fer. | ||
La magnésie. | Lithiate de magnésie. | ||
L'oxide de manganèse. | Lithiate de manganèse. | ||
L'oxide de mercure. | Lithiate de mercure. | ||
L'oxide de nickel. | Lithiate de nickel. | ||
L'oxide d'or. | Lithiate d'or. | ||
L'oxide de platine. | Lithiate de platine. | ||
L'oxide de plomb. | Lithiate de plomb. | ||
La potasse. | Lithiate de potasse. | ||
La soude. | Lithiate de soude. | ||
L'oxide de zinc. | Lithiate de zinc. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens.
319
Sur l'Acide lithique, & sur le Tableau de ses combinaisons.
Le calcul de la vessie, d'après les dernières expériences de Bergman & de Schéele, paroîtroit être une espèce de sel concret à base terreuse, légèrement acide, qui demande une grande quantité d'eau pour être dissous. Mille grains d'eau bouillante en dissolvent à peine trois grains, & la majeure partie recristallise par le refroidissement. C'est cet acide concret auquel M. de Morveau a donné le nom d'acide lithiasique, & que nous nommons acide lithique. La nature & les propriétés de cet acide sont encore peu connues. Il y a quelqu'apparence que c'est un sel acidule déjà combiné à une base, & plusieurs raisons me portent à croire que c'est un phosphate acidule de chaux. Si cette présomption se confirme, il faudra le rayer de la classe des acides particuliers.
320
Noms des bases salifiables. | Noms des sels neutres. | ||
Combinaisons de l'acide prussique avec: | La potasse. | Prussiate de potasse. | |
La soude. | Prussiate de soude. | ||
L'ammoniaque. | Prussiate d'ammoniaque. | ||
La chaux. | Prussiate de chaux. | ||
La baryte. | Prussiate de baryte. | ||
La magnésie. | Prussiate de magnésie. | ||
L'oxide de zinc. | Prussiate de zinc. | ||
L'oxide de fer. | Prussiate de fer. | ||
L'oxide de manganèse. | Prussiate de manganèse. | ||
L'oxide de cobalt. | Prussiate de cobalt. | ||
L'oxide de nickel. | Prussiate de nickel. | ||
L'oxide de plomb. | Prussiate de plomb. | ||
L'oxide d'étain. | Prussiate d'étain. | ||
L'oxide de cuivre. | Prussiate de cuivre. | ||
L'oxide de bismuth. | Prussiate de bismuth. | ||
L'oxide d'antimoine. | Prussiate d'antimoine. | ||
L'oxide d'arsenic. | Prussiate d'arsenic. | ||
L'oxide d'argent. | Prussiate d'argent. | ||
L'oxide de mercure. | Prussiate de mercure. | ||
L'oxide d'or. | Prussiate d'or. | ||
L'oxide de platine. | Prussiate de platine. |
Nota. Toutes ces combinaisons ont été inconnues aux anciens.
321
Sur l'Acide prussique, & sur le Tableau de ses combinaisons.
Je ne m'étendrai point ici sur les propriétés de l'acide prussique, ni sur les procédés qu'on emploie pour l'obtenir pur & dégagé de toute combinaison. Les expériences qui ont été faites à cet égard, me paroissent laisser encore quelques nuages sur la vraie nature de cet acide. Il me suffira de dire qu'il se combine avec le fer, & qu'il lui donne la couleur bleue; qu'il est également susceptible de s'unir avec presque tous les métaux, mais que les alkalis, l'ammoniaque & la chaux le leur enlèvent en vertu de leur plus grande force d'affinité. On ne connoît point le radical de l'acide prussique; mais les expériences de M. Schéele & sur-tout celles de M. Berthollet, donnent lieu de croire qu'il est composé de carbone & d'azote; c'est donc un acide à base double: quant à l'acide phosphorique qui s'y rencontre, il paroît, d'après les expériences de M. Hassenfratz, qu'il y est accidentel.
Quoique l'acide prussique s'unisse avec les 322 métaux, avec les alkalis & avec les terres, à la manière des acides, il n'a cependant qu'une partie des propriétés qu'on a coutume d'attribuer aux acides. Il seroit donc possible que ce fût improprement qu'on l'eût rangé dans cette classe. Mais, comme je l'ai déjà fait observer, il me paroît difficile de prendre une opinion déterminée sur la nature de cette substance, jusqu'à ce que la matière ait été éclaircie par de nouvelles expériences.
Fin du Tome premier.
~~~~~
[1] Partie 2, Chapitre I.
[2] Je donnerai ailleurs la définition de la liqueur qu'on nomme éther, & j'en déveloperai les propriétés. Je me contenterai de dire dans ce moment, qu'on désigne par ce nom une liqueur inflammable très-volatile, d'une pesanteur spécifique beaucoup moindre que l'eau, & même que l'esprit-de-vin.
[3] Mém. Académ. 1780, page 335.
[4] On trouvera dans la dernière partie de cet Ouvrage, le détail des procédés qu'on emploie pour séparer les différentes espèces de gaz & pour les peser.
[A]Ajout dans l'errata du tome 2:
«On a critiqué même avec assez d'amertume cette expression hydrogène, parce qu'on a prétendu qu'elle signifioit fils de l'eau, & non pas qui engendre l'eau. Mais qu'importe, si l'expression est également juste dans les deux sens? les expériences rapportées dans ce Chapitre, prouvent que l'eau, en se décomposant, donne naissance à l'hydrogène, & sur-tout l'hydrogène donne naissance à l'eau en se combinant avec l'oxigène. On peut donc dire également que l'eau engendre l'hydrogène, & que l'hydrogène engendre l'eau.»
[5] Voyez la description de cet appareil dans la troisième partie de cet Ouvrage.
[B]Ajout dans l'errata du tome 2:
Nota. On conçoit que je suppose ici des végétaux réduits à l'état de dessication parfaite, & qu'à l'égard de l'huile, je n'entends pas parler des végétaux qui en fournissent, soit par expression à froid, soit par une chaleur qui n'excede pas celle de l'eau bouillante. Il n'est ici question que de l'huile empyreumatique qu'on obtient par la distillation à feu nud, à un degré de feu supérieur à l'eau bouillante. C'est cette huile seule que j'annonce être un produit de l'opération. On peut voir ce que j'ai publié à cet égard dans le volume de l'Académie, année 1786.
[6] On regardera peut-être comme un défaut de la méthode que j'ai adoptée, de m'avoir contraint à rejetter les alkalis de la classe des sels, & je conviens que c'est un reproche qu'on peut lui faire; mais cet inconvénient se trouve compensé par de si grands avantages, que je n'ai pas cru qu'il dût m'arrêter.
[7] Voyez Mémoires de l'Académie, année 1776, page 671, & 1778, page 535.
~~~~~
Ce Traité élémentaire de chimie d'Antoine de Lavoisier se compose de deux tomes. Une version complète de cette publication accompagne la publication individuelle de chacun de ces deux tomes.
La version électronique html restitue le mieux la présentation du livre papier.
L'errata de cette édition, placé à la fin du tome 2, a été pris en compte.
Veuillez noter que les planches sont présentées à la fin du tome 2.
Nous avons utilisé une typographie plus moderne que celle de la version papier en remplaçant les ſ par des s.
La ponctuation n'a pas été modifiée hormis quelques corrections mineures.
L'orthographe a été conservée. Seuls quelques mots ont été modifiés. Ils sont soulignés par des tirets. Passer la souris sur le mot pour voir le texte original.