

The Project Gutenberg eBook of Hackers, Heroes of the Computer Revolution. Chapters 1 and 2

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

*** This is a COPYRIGHTED Project Gutenberg eBook. Details Below. ***

*** Please follow the copyright guidelines in this file. ***

Title: Hackers, Heroes of the Computer Revolution. Chapters 1 and 2

Author: Steven Levy

Release date: November 1, 1996 [eBook #729]

 Most recently updated: April 11, 2013

Language: English

*** START OF THE PROJECT GUTENBERG EBOOK HACKERS, HEROES OF THE COMPUTER REVOLUTION. CHAPTERS 1 AND 2 ***

Hackers, Heroes of the Computer Revolution, by Steven Levy

(C)1984 by Steven Levy

Chapters 1 and 2 of
Hackers, Heroes of the Computer Revolution
by Steven Levy

Who's Who

The Wizards and their Machines

Bob Albrecht
Found of People's Computer Company who took visceral pleasure
in exposing youngsters to computers.

Altair 8800

The pioneering microcomputer that galvanized hardware hackers.

Building this kit made you learn hacking. Then you tried to

figure out what to DO with it.

Apple II][
Steve Wozniak's friendly, flaky, good-looking computer,
wildly successful and the spark and soul of a thriving industry.

Atari 800
This home computer gave great graphics to game hackers like John Harris,
though the company that made it was loath to tell you how it worked.

Bob and Carolyn Box
World-record-holding gold prospectors turned software stars,
working for Sierra On-Line.

Doug Carlston
Corporate lawyer who chucked it all to form the Broderbund
software company.

Bob Davis

Left job in liquor store to become best-selling author

of Sierra On-Line computer game "Ulysses and the Golden Fleece."

Success was his downfall.

Peter Deutsch
Bad in sports, brilliant at math, Peter was still in short pants
when he stubled on the TX-0 at MIT—and hacked it
along with the masters.

Steve Dompier
Homebrew member who first made the Altair sing,
and later wrote the "Targe" game on the Sol
which entranced Tom Snyder.

John Draper

The notorious "Captain Crunch" who fearlessly explored

the phone systems, got jailed, hacked microprocessors.

Cigarettes made his violent.

Mark Duchaineau
The young Dungeonmaster who copy-protected On-Lines disks
at his whim.

Chris Esponosa
Fourteen-year-old follower of Steve Wozniak
and early Apple employee.

Lee Felsenstein
Former "military editor" of Berkeley Barb,
and hero of an imaginary science-fiction novel,
he designed computers with "junkyard" approach
and was central figure in Bay Area hardware
hacking in the seventies.

Ed Fredkin
Gentle founder of Information International,
thought himself world's greates programmer
until he met Stew Nelson. Father figure to hackers.

Gordon French
Silver-haired hardware hacker whose garage held not cars
but his homebrewed Chicken Hawk comptuer, then held the
first Homebrew Computer Club meeting.

Richard Garriott
Astronaut's son who, as Lord British,
created Ultima world on computer disks.

Bill Gates
Cocky wizard, Harvard dropout who wrote Altair BASIC,
and complained when hackers copied it.

Bill Gosper

Horwitz of computer keyboards, master math and LIFE hacker

at MIT AI lab, guru of the Hacker Ethic and student of

Chinese restaurant menus.

Richard Greenblatt
Single-minded, unkempt, prolific, and canonical MIT hacker
who went into night phase so often that he zorched
his academic career. The hacker's hacker.

John Harris
The young Atari 800 game hacker who became Sierra On-Line's
star programmer, but yearned for female companionship.

IBM-PC
IBM's entry into the personal computer market
which amazingly included a bit of the Hacker Ethic,
and took over. [H.E. as open architecture.]

IBM 704

IBM was The Enemy, and this was its machine,

the Hulking Giant computer in MIT's Building 26.

Later modified into the IBM 709, then the IBM 7090.

Batch-processed and intolerable.

Jerry Jewell

Vietnam vet turned programmer who founded Sirius Software.

Steven Jobs

Visionary, beaded, non-hacking youngster who took

Wozniak's Apple II][, made a lot of deals,

and formed a company that would make a billion dollars.

Tom Knight

At sixteen, an MIT hacker who would name the

Incompatible Time-sharing System. Later a

Greenblatt nemesis over the LISP machine schism.

Alan Kotok
The chubby MIT student from Jersey who worked
under the rail layout at TMRC, learned the phone system
at Western Electric, and became a legendary TX-0 and PDP-1 hacker.

Effrem Lipkin
Hacker-activist from New York who loved machines
but hated their uses. Co-Founded Community Memory;
friend of Felsenstein.

LISP Machine
The ultimate hacker computer, invented mosly by Greenblatt
and subject of a bitter dispute at MIT.

"Uncle" John McCarthy
Absent-minded but brilliant MIT [later Stanford] professor
who helped pioneer computer chess, artificial intelligence, LISP.

Bob Marsh
Berkeley-ite and Homebrewer who shared garage with Felsenstein
and founded Processor Technology, which made the Sol computer.

Roger Melen
Homebrewer who co-founded Cromemco company to make
circuit boards for Altair. His "Dazzler" played LIFE
programs on his kitchen table.

Louis Merton
Pseudonym for the AI chess hacker whose tendency
to go catatonic brought the hacker community together.

Jude Milhon

Met Lee Felsenstein through a classified ad in the

Berkeley Barb, and became more than a friend—

a member of the Community Memory collective.

Marvin Minsky
Playful and brilliant MIT prof who headed the AI lave
and allowed the hackers to run free.

Fred Moore
Vagabond pacifist who hated money, loved technology,
and co-founded Homebrew Club.

Stewart Nelson

Buck-toothed, diminutive, but fiery AI lab hacker

who connected the PDP-1 comptuer to hack the phone system.

Later co-founded the Systems Concepts company.

Ted Nelson
Self-described "innovator" and noted curmudgeon
who self-published the influential Computer Lib book.

Russel Noftsker
Harried administrator of MIT AI lab in the late sixties;
later president of Symbolics company.

Adam Osborne

Bangkok-born publisher-turned-computer-manufacturer

who considered himself a philsopher. Founded Osborne

Computer Company to make "adequate" machines.

PDP-1
Digital Equipment's first minicomputer, and in 1961
an interactive godsend to the MIT hackers and a
slap in the face to IBM fascism.

PDP-6
Designed in part by Kotok, this mainframe computer
was cornerstone of AI lab, with its gorgeious instruction set
and sixteen sexy registers.

Tom Pittman
The religious Homebrew hacker who lost his wife
but kept the faith with his Tiny Basic.

Ed Roberts
Enigmatic founder of MITS company who shook the world
with his Altair computer. He wanted to help people
build mental pyramids.

Steve [Slug] Russell
McCarthy's "coolie," who hacked the Spacewar program,
first videogame, on the PDP-1. Never made a dime from it.

Peter Samson

MIT hacker, one of the first, who loved systems, trains,

TX-0, music, parliamentary procedure, pranks, and hacking.

Bob Saunders
Jolly, balding TMRC hacker who married early,
hacked till late at night eating "lemon gunkies,"
and mastered the "CBS Strategy on Spacewar.

Warren Schwader
Big blond hacker from rural Wisconsin who went from
the assembly line to software stardom but couldn't
reconcile the shift with his devotion to Jehovah's Witnesses.

David Silver
Left school at fourteen to be mascot of AI lab;
maker of illicit keys and builder of a tiny robot
that did the impossible.

Dan Sokol
Long-haired prankster who reveled in revealing technological
secrets at Homebrew Club. Helped "liberate" Alair BASIC
on paper tape.

Les Solomon
Editor of Popular Electroics, the puller of strings
who set the computer revolution into motion.

Marty Spergel
The Junk Man, the Homebrew member who supplied circuits
and cables and could make you a deal for anything.

Richard Stallman

The Last of the Hackers, who vowed to defend

the principles of Hackerism to the bitter end.

Remained at MIT until there was no one to eat

Chinese food with.

Jeff Stephenson
Thirty-year-old martial arts veteran and hacker
who was astounded that joining Sierra On-Line
meant enrolling in Summer Camp.

Jay Sullivan
MAddeningly clam wizard-level programmer at Informatics who
impressed Ken Williams by knowing the meaning of the word "any."

Dick Sunderland
Chalk-complexioned MBA who believed that firm managerial
bureaucracy was a worth goal, but as president of Sierra On-Line
found that hackers didn't think that way.

Gerry Sussman
Young MIT hacker branded "loser" because he smoked a pipe
and "munged" his programs; later became "winner" by algorithmic magic.

Margot Tommervik
With her husband Al, long-haired Margot parlayed her
game show winnings into a magazine that deified the Apple Computer.

Tom Swift Terminal
Lee Felsenstein's legendary, never-to-be-built computer terminal
which would give the user ultimate leave to get his hands on the world.

TX-0

Filled a small room, but in the late fifties this $3 million machine

was the world's first personal computer—for the community of

MIT hackers that formed around it.

Jim Warren
Portly purveyor of "techno-gossip" at Homebrew,
he was first editor of hippie-styled Dr. Dobbs Journal,
later started the lucrative Computer Faire.

Randy Wigginton

Fifteen-year-old member of Steve Wozniak's kiddie corps,

he help Woz trundle the Apple II to Homebrew.

Still in high school when he became Apple's first software employee.

Ken Williams
Arrogant and brilliant young programmer who saw the writing on the CRT
and started Sierra On-Line to make a killing and improve society
by selling games for the Apple computer.

Roberta Williams
Ken Williams' timid wife who rediscovered her own creativity
by writing "Mystery House," the first of her many bestselling
computer games.

Steven "Woz" Wozniak
Openhearted, technologically daring hardware hacker
from San Jose suburbs. Woz built the Apple Computer
for the pleasure of himself and friends.

PART ONE True Hackers
CAMBRIDGE: The Fifties and Sixties

CHAPTER 1 THE TECH MODEL RAILROAD CLUB

Just why Peter Samson was wandering around in Building 26 in the
middle of the night is a matter that he would find difficult to
explain. Some things are not spoken. If you were like the
people whom Peter Samson was coming to know and befriend in this,
his freshman year at the Massachusetts Institute of Technology in
the winter of 1958-59, no explanation would be required.
Wandering around the labyrinth of laboratories and storerooms,
searching for the secrets of telephone switching in machine
rooms, tracing paths of wires or relays in subterranean steam
tunnels . . . for some, it was common behavior, and there was
no need to justify the impulse, when confronted with a closed
door with an unbearably intriguing noise behind it, to open the
door uninvited. And then, if there was no one to physically bar
access to whatever was making that intriguing noise, to touch the
machine, start flicking switches and noting responses, and
eventually to loosen a screw, unhook a template, jiggle some
diodes and tweak a few connections. Peter Samson and his friends
had grown up with a specific relationship to the world, wherein
things had meaning only if you found out how they worked. And
how would you go about that if not by getting your hands on them?

It was in the basement of Building 26 that Samson and his friends
discovered the EAM room. Building 26 was a long glass-and-steel
structure, one of MIT's newer buildings, contrasting with the
venerable pillared structures that fronted the Institute on
Massachusetts Avenue. In the basement of this building void of
personality, the EAM room. Electronic Accounting Machinery. A
room that housed machines which ran like computers.

Not many people in 1959 had even seen a computer, let alone
touched one. Samson, a wiry, curly-haired redhead with a way of
extending his vowels so that it would seem he was racing through
lists of possible meanings of statements in mid-word, had viewed
computers on his visits to MIT from his hometown of Lowell,
Massachusetts, less than thirty miles from campus. This made him
a "Cambridge urchin," one of dozens of science-crazy high
schoolers in the region who were drawn, as if by gravitational
pull, to the Cambridge campus. He had even tried to rig up his
own computer with discarded parts of old pinball machines: they
were the best source of logic elements he could find.

LOGIC ELEMENTS: the term seems to encapsulate what drew Peter
Samson, son of a mill machinery repairman, to electronics. The
subject made sense. When you grow up with an insatiable
curiosity as to how things work, the delight you find upon
discovering something as elegant as circuit logic, where all
connections have to complete their loops, is profoundly
thrilling. Peter Samson, who early on appreciated the
mathematical simplicity of these things, could recall seeing a
television show on Boston's public TV channel, WGBH, which gave a
rudimentary introduction to programming a computer in its own
language. It fired his imagination: to Peter Samson, a computer
was surely like Aladdin's lamp—rub it, and it would do your
bidding. So he tried to learn more about the field, built
machines of his own, entered science project competitions and
contests, and went to the place that people of his ilk aspired
to: MIT. The repository of the very brightest of those weird
high school kids with owl-like glasses and underdeveloped
pectorals who dazzled math teachers and flunked PE, who dreamed
not of scoring on prom night, but of getting to the finals of the
General Electric Science Fair competition. MIT, where he would
wander the hallways at two o'clock in the morning, looking for
something interesting, and where he would indeed discover
something that would help draw him deeply into a new form of
creative process, and a new life-style, and would put him into
the forefront of a society envisioned only by a few
science-fiction writers of mild disrepute. He would discover a
computer that he could play with.

The EAM room which Samson had chanced on was loaded with large
keypunch machines the size of squat file cabinets. No one was
protecting them: the room was staffed only by day, when a select
group who had attained official clearance were privileged enough
to submit long manila cards to operators who would then use these
machines to punch holes in them according to what data the
privileged ones wanted entered on the cards. A hole in the card
would represent some instruction to the computer, telling it to
put a piece of data somewhere, or perform a function on a piece
of data, or move a piece of data from one place to another. An
entire stack of these cards made one computer program, a program
being a series of instructions which yield some expected result,
just as the instructions in a recipe, when precisely followed,
lead to a cake. Those cards would be taken to yet another
operator upstairs who would feed the cards into a "reader" that
would note where the holes were and dispatch this information to
the IBM 704 computer on the first floor of Building 26. The
Hulking Giant.

The IBM 704 cost several million dollars, took up an entire room,
needed constant attention from a cadre of professional machine
operators, and required special air-conditioning so that the
glowing vacuum tubes inside it would not heat up to
data-destroying temperatures. When the air-conditioning broke
down—a fairly common occurrences—a loud gong would sound, and
three engineers would spring from a nearby office to frantically
take covers off the machine so its innards wouldn't melt. All
these people in charge of punching cards, feeding them into
readers, and pressing buttons and switches on the machine were
what was commonly called a Priesthood, and those privileged
enough to submit data to those most holy priests were the
official acolytes. It was an almost ritualistic exchange.

ACOLYTE: Oh machine, would you accept my offer of information so
you may run my program and perhaps give me a computation?

PRIEST (on behalf of the machine): We will try. We promise
nothing.

As a general rule, even these most privileged of acolytes were
not allowed direct access to the machine itself, and they would
not be able to see for hours, sometimes for days, the results of
the machine's ingestion of their "batch" of cards.

This was something Samson knew, and of course it frustrated the
hell out of Samson, who wanted to get at the damn machine. For
this was what life was all about.

What Samson did not know, and was delighted to discover, was that
the EAM room also had a particular keypunch machine called the
407. Not only could it punch cards, but it could also read
cards, sort them, and print them on listings. No one seemed to
be guarding these machines, which were computers, sort of. Of
course, using them would be no picnic: one needed to actually
wire up what was called a plug board, a two-inch-by-two-inch
plastic square with a mass of holes in it. If you put hundreds
of wires through the holes in a certain order, you would get
something that looked like a rat's nest but would fit into this
electromechanical machine and alter its personality. It could do
what you wanted it to do.

So, without any authorization whatsoever, that is what Peter
Samson set out to do, along with a few friends of his from an MIT
organization with a special interest in model railroading. It
was a casual, unthinking step into a science-fiction future, but
that was typical of the way that an odd subculture was pulling
itself up by its bootstraps and growing to underground
prominence—to become a culture that would be the impolite,
unsanctioned soul of computerdom. It was among the first
computer hacker escapades of the Tech Model Railroad Club, or
TMRC.

 * * *

Peter Samson had been a member of the Tech Model Railroad Club
since his first week at MIT in the fall of 1958. The first event
that entering MIT freshmen attended was a traditional welcoming
lecture, the same one that had been given for as long as anyone
at MIT could remember. LOOK AT THE PERSON TO YOUR LEFT . . .
LOOK AT THE PERSON TO YOUR RIGHT . . . ONE OF YOU THREE WILL NOT
GRADUATE FROM THE INSTITUTE. The intended effect of the speech
was to create that horrid feeling in the back of the collective
freshman throat that signaled unprecedented dread. All their
lives, these freshmen had been almost exempt from academic
pressure. The exemption had been earned by virtue of brilliance.
Now each of them had a person to the right and a person to the
left who was just as smart. Maybe even smarter.

But to certain students this was no challenge at all. To these
youngsters, classmates were perceived in a sort of friendly haze:
maybe they would be of assistance in the consuming quest to find
out how things worked, and then to master them. There were
enough obstacles to learning already—why bother with stupid
things like brown-nosing teachers and striving for grades? To
students like Peter Samson, the quest meant more than the degree.

Sometime after the lecture came Freshman Midway. All the campus
organizations—special-interest groups, fraternities, and such—
set up booths in a large gymnasium to try to recruit new members.
The group that snagged Peter was the Tech Model Railroad Club.
Its members, bright-eyed and crew-cutted upperclassmen who spoke
with the spasmodic cadences of people who want words out of the
way in a hurry, boasted a spectacular display of HO gauge trains
they had in a permanent clubroom in Building 20. Peter Samson
had long been fascinated by trains, especially subways. So he
went along on the walking tour to the building, a shingle-clad
temporary structure built during World War II. The hallways were
cavernous, and even though the clubroom was on the second floor
it had the dank, dimly lit feel of a basement.

The clubroom was dominated by the huge train layout. It just
about filled the room, and if you stood in the little control
area called "the notch" you could see a little town, a little
industrial area, a tiny working trolley line, a papier-mache
mountain, and of course a lot of trains and tracks. The trains
were meticulously crafted to resemble their full-scale
counterparts, and they chugged along the twists and turns of
track with picture-book perfection.

And then Peter Samson looked underneath the chest-high boards
which held the layout. It took his breath away. Underneath this
layout was a more massive matrix of wires and relays,and crossbar
switches than Peter Samson had ever dreamed existed. There were
neat regimental lines of switches, and achingly regular rows of
dull bronze relays, and a long, rambling tangle of red, blue, and
yellow wires—twisting and twirling like a rainbow-colored
explosion of Einstein's hair. It was an incredibly complicated
system, and Peter Samson vowed to find out how it worked.

The Tech Model Railroad Club awarded its members a key to the
clubroom after they logged forty hours of work on the layout.
Freshman Midway had been on a Friday. By Monday, Peter Samson
had his key.

 * * *

There were two factions of TMRC. Some members loved the idea of
spending their time building and painting replicas of certain
trains with historical and emotional value, or creating realistic
scenery for the layout. This was the knife-and-paintbrush
contingent, and it subscribed to railroad magazines and booked
the club for trips on aging train lines. The other faction
centered on the Signals and Power Subcommittee of the club, and
it cared far more about what went on under the layout. This was
The System, which worked something like a collaboration between
Rube Goldberg and Wernher von Braun, and it was constantly being
improved, revamped, perfected, and sometimes "gronked"—in club
jargon, screwed up. S&P people were obsessed with the way The
System worked, its increasing complexities, how any change you
made would affect other parts, and how you could put those
relationships between the parts to optimal use.

Many of the parts for The System had been donated by the Western
Electric College Gift Plan, directly from the phone company. The
club's faculty advisor was also in charge of the campus phone
system, and had seen to it that sophisticated phone equipment was
available for the model railroaders. Using that equipment as a
starting point, the Railroaders had devised a scheme which
enabled several people to control trains at once, even if the
trains were at different parts of the same track. Using dials
appropriated from telephones, the TMRC "engineers" could specify
which block of track they wanted control of, and run a train from
there. This was done by using several types of phone company
relays, including crossbar executors and step switches which let
you actually hear the power being transferred from one block to
another by an other-worldly chunka-chunka-chunka sound.

It was the S&P group who devised this fiendishly ingenious
scheme, and it was the S&P group who harbored the kind of
restless curiosity which led them to root around campus buildings
in search of ways to get their hands on computers. They were
lifelong disciples of a Hands-On Imperative. Head of S&P was an
upperclassman named Bob Saunders, with ruddy, bulbous features,
an infectious laugh, and a talent for switch gear. As a child in
Chicago, he had built a high-frequency transformer for a high
school project; it was his six-foot-high version of a Tesla coil,
something devised by an engineer in the 1800s which was supposed
to send out furious waves of electrical power. Saunders said his
coil project managed to blow out television reception for blocks
around. Another person who gravitated to S&P was Alan Kotok, a
plump, chinless, thick-spectacled New Jerseyite in Samson's
class. Kotok's family could recall him, at age three, prying a
plug out of a wall with a screwdriver and causing a hissing
shower of sparks to erupt. When he was six, he was building and
wiring lamps. In high school he had once gone on a tour of the
Mobil Research Lab in nearby Haddonfield, and saw his first
computer—the exhilaration of that experience helped him decide
to enter MIT. In his freshman year, he earned a reputation as
one of TMRC's most capable S&P people.

The S&P people were the ones who spent Saturdays going to Eli
Heffron's junkyard in Somerville scrounging for parts, who would
spend hours on their backs resting on little rolling chairs they
called "bunkies" to get underneath tight spots in the switching
system, who would work through the night making the wholly
unauthorized connection between the TMRC phone and the East
Campus. Technology was their playground.

The core members hung out at the club for hours; constantly
improving The System, arguing about what could be done next,
developing a jargon of their own that seemed incomprehensible to
outsiders who might chance on these teen-aged fanatics, with
their checked short-sleeve shirts, pencils in their pockets,
chino pants, and, always, a bottle of Coca-Cola by their side.
(TMRC purchased its own Coke machine for the then forbidding sum
of $165; at a tariff of five cents a bottle, the outlay was
replaced in three months; to facilitate sales, Saunders built a
change machine for Coke buyers that was still in use a decade
later.) When a piece of equipment wasn't working, it was
"losing"; when a piece of equipment was ruined, it was "munged"
(Mash Until No Good); the two desks in the corner of the room
were not called the office, but the "orifice"; one who insisted
on studying for courses was a "tool"; garbage was called "cruft";
and a project undertaken or a product built not solely to fulfill
some constructive goal, but with some wild pleasure taken in mere
involvement, was called a "hack."

This latter term may have been suggested by ancient MIT lingo—
the word "hack" had long been used to describe the elaborate
college pranks that MIT students would regularly devise, such as
covering the dome that overlooked the campus with reflecting
foil. But as the TMRC people used the word, there was serious
respect implied. While someone might call a clever connection
between relays a "mere hack," it would be understood that, to
qualify as a hack, the feat must be imbued with innovation,
style, and technical virtuosity. Even though one might
self-deprecatingly say he was "hacking away at The System" (much
as an axe-wielder hacks at logs), the artistry with which one
hacked was recognized to be considerable.

The most productive people working on Signals and Power called
themselves "hackers" with great pride. Within the confines of
the clubroom in Building 20, and of the "Tool Room" (where some
study and many techno bull sessions took place), they had
unilaterally endowed themselves with the heroic attributes of
Icelandic legend. This is how Peter Samson saw himself and his
friends in a Sandburg-esque poem in the club newsletter:

Switch Thrower for the World,
Fuze Tester, Maker of Routes,
Player with the Railroads and the System's Advance Chopper;
Grungy, hairy, sprawling,
Machine of the Point-Function Line-o-lite:
They tell me you are wicked and I believe them; for I have seen
 your painted light bulbs under the lucite luring
 the system coolies . . .
Under the tower, dust all over the place, hacking with bifur-
 cated springs . . .
Hacking even as an ignorant freshman acts who has never lost
 occupancy and has dropped out
Hacking the M-Boards, for under its locks are the switches, and
 under its control the advance around the layout,
 Hacking!
Hacking the grungy, hairy, sprawling hacks of youth; uncabled,
 frying diodes, proud to be Switch-thrower, Fuze-
 tester, Maker of Routes, Player with Railroads,
 and Advance Chopper to the System.

Whenever they could, Samson and the others would slip off to the
EAM room with their plug boards, trying to use the machine to
keep track of the switches underneath the layout. Just as
important, they were seeing what the electromechanical counter
could do, taking it to its limit.

That spring of 1959, a new course was offered at MIT. It was the
first course in programming a computer that freshmen could take.
The teacher was a distant man with a wild shock of hair and an
equally unruly beard—John McCarthy. A master mathematician,
McCarthy was a classically absent-minded professor; stories
abounded about his habit of suddenly answering a question hours,
sometimes even days after it was first posed to him. He would
approach you in the hallway, and with no salutation would begin
speaking in his robotically precise diction, as if the pause in
conversation had been only a fraction of a second, and not a
week. Most likely, his belated response would be brilliant.

McCarthy was one of a very few people working in an entirely new
form of scientific inquiry with computers. The volatile and
controversial nature of his field of study was obvious from the
very arrogance of the name that McCarthy had bestowed upon it:
Artificial Intelligence. This man actually thought that
computers could be SMART. Even at such a science-intensive place
as MIT, most people considered the thought ridiculous: they
considered computers to be useful, if somewhat absurdly
expensive, tools for number-crunching huge calculations and for
devising missile defense systems (as MIT's largest computer, the
Whirlwind, had done for the early-warning SAGE system), but
scoffed at the thought that computers themselves could actually
be a scientific field of study, Computer Science did not
officially exist at MIT in the late fifties, and McCarthy and his
fellow computer specialists worked in the Electrical Engineering
Department, which offered the course, No. 641, that Kotok,
Samson, and a few other TRMC members took that spring.

McCarthy had started a mammoth program on the IBM 704—the
Hulking Giant—that would give it the extraordinary ability to
play chess. To critics of the budding field of Artificial
Intelligence, this was just one example of the boneheaded
optimism of people like John McCarthy. But McCarthy had a
certain vision of what computers could do, and playing chess was
only the beginning.

All fascinating stuff, but not the vision that was driving Kotok
and Samson and the others. They wanted to learn how to WORK the
damn machines, and while this new programming language called
LISP that McCarthy was talking about in 641 was interesting, it
was not nearly as interesting as the act of programming, or that
fantastic moment when you got your printout back from the
Priesthood—word from the source itself!—and could then spend
hours poring over the results of the program, what had gone wrong
with it, how it could be improved. The TMRC hackers were
devising ways to get into closer contact with the IBM 704, which
soon was upgraded to a newer model called the 709. By hanging
out at the computation center in the wee hours of the morning,
and by getting to know the Priesthood, and by bowing and scraping
the requisite number of times, people like Kotok were eventually
allowed to push a few buttons on the machine, and watch the
lights as it worked.

There were secrets to those IBM machines that had been
painstakingly learned by some of the older people at MIT with
access to the 704 and friends among the Priesthood. Amazingly, a
few of these programmers, grad students working with McCarthy,
had even written a program that utilized one of the rows of tiny
lights: the lights would be lit in such an order that it looked
like a little ball was being passed from right to left: if an
operator hit a switch at just the right time, the motion of the
lights could be reversed—Computer Ping-Pong! This obviously was
the kind of thing that you'd show off to impress your peers, who
would then take a look at the actual program you had written and
see how it was done.

To top the program, someone else might try to do the same thing
with fewer instructions—a worthy endeavor, since there was so
little room in the small "memory" of the computers of those days
that not many instructions could fit into them, John McCarthy had
once noticed how his graduate students who loitered around the
704 would work over their computer programs to get the most out
of the fewest instructions, and get the program compressed so
that fewer cards would need to be fed to the machine. Shaving
off an instruction or two was almost an obsession with them.
McCarthy compared these students to ski bums. They got the same
kind of primal thrill from "maximizing code" as fanatic skiers
got from swooshing frantically down a hill. So the practice of
taking a computer program and trying to cut off instructions
without affecting the outcome came to be called "program
bumming," and you would often hear people mumbling things like
"Maybe I can bum a few instructions out and get the octal
correction card loader down to three cards instead of four."

McCarthy in 1959 was turning his interest from chess to a new way
of talking to the computer, the whole new "language" called LISP.
Alan Kotok and his friends were more than eager to take over the
chess project. Working on the batch-processed IBM, they embarked
on the gargantuan project of teaching the 704, and later the 709,
and even after that its replacement the 7090, how to play the
game of kings. Eventually Kotok's group became the largest users
of computer time in the entire MIT computation center.

Still, working with the IBM machine was frustrating. There was
nothing worse than the long wait between the time you handed in
your cards and the time your results were handed back to you. If
you had misplaced as much as one letter in one instruction, the
program would crash, and you would have to start the whole
process over again. It went hand in hand with the stifling
proliferation of goddamn RULES that permeated the atmosphere of
the computation center. Most of the rules were designed to keep
crazy young computer fans like Samson and Kotok and Saunders
physically distant from the machine itself. The most rigid rule
of all was that no one should be able to actually touch or tamper
with the machine itself. This, of course, was what those Signals
and Power people were dying to do more than anything else in the
world, and the restrictions drove them mad.

One priest—a low-level sub-priest, really—on the late-night
shift was particularly nasty in enforcing this rule, so Samson
devised a suitable revenge. While poking around at Eli's
electronic junk shop one day, he chanced upon an electrical board
precisely like the kind of board holding the clunky vacuum tubes
which resided inside the IBM. One night, sometime before 4 A.M.,
this particular sub-priest stepped out for a minute; when he
returned, Samson told him that the machine wasn't working, but
they'd found the trouble—and held up the totally smashed module
from the old 704 he'd gotten at Eli's.

The sub-priest could hardly get the words out. "W-where did you
get that?"

Samson, who had wide green eyes that could easily look maniacal,
slowly pointed to an open place on the machine rack where, of
course, no board had ever been, but the space still looked sadly
bare. The sub-priest gasped. He made faces that indicated his
bowels were about to give out. He whimpered exhortations to the
deity. Visions, no doubt, of a million-dollar deduction from his
paycheck began flashing before him. Only after his supervisor, a
high priest with some understanding of the mentality of these
young wiseguys from the Model Railroad Club, came and explained
the situation did he calm down.

He was not the last administrator to feel the wrath of a hacker
thwarted in the quest for access.

 * * *

One day a former TMRC member who was now on the MIT faculty paid
a visit to the clubroom. His name was Jack Dennis. When he had
been an undergraduate in the early 1950s, he had worked furiously
underneath the layout. Dennis lately had been working a computer
which MIT had just received from Lincoln Lab, a military
development laboratory affiliated with the Institute. The
computer was called the TX-0, and it was one of the first
transistor-run computers in the world. Lincoln Lab had used it
specifically to test a giant computer called the TX-2, which had
a memory so complex that only with this specially built little
brother could its ills be capably diagnosed. Now that its
original job was over, the three-million-dollar TX-0 had been
shipped over to the Institute on "long-term loan," and apparently
no one at Lincoln Lab had marked a calendar with a return date.
Dennis asked the S&P people at TMRC whether they would like to
see it.

Hey you nuns! Would you like to meet the Pope?

The TX-0 was in Building 26, in the second-floor Radio Laboratory
of Electronics (RLE), directly above the first-floor Computation
Center which housed the hulking IBM 704. The RLE lab resembled
the control room of an antique spaceship. The TX-0, or Tixo, as
it was sometimes called, was for its time a midget machine, since
it was one of the first computers to use finger-size transistors
instead of hand-size vacuum tubes. Still, it took up much of the
room, along with its fifteen tons of supporting air-conditioning
equipment. The TX-O's workings were mounted on several tall,
thin chassis, like rugged metal bookshelves, with tangled wires
and neat little rows of tiny, bottle-like containers in which the
transistors were inserted. Another rack had a solid metal front
speckled with grim-looking gauges. Facing the racks was an
L-shaped console, the control panel of this H. G. Wells
spaceship, with a blue countertop for your elbows and papers. On
the short arm of the L stood a Flexowriter, which resembled a
typewriter converted for tank warfare, its bottom anchored in a
military gray housing. Above the top were the control panels,
boxlike protrusions painted an institutional yellow. On the
sides of the boxes which faced the user were a few gauges,
several lines of quarter-inch blinking lights, a matrix of steel
toggle switches the size of large grains of rice, and, best of
all, an actual cathode ray tube display, round and smoke-gray.

The TMRC people were awed. THIS MACHINE DID NOT USE CARDS. The
user would first punch in a program onto a long, thin paper tape
with a Flexowriter (there were a few extra Flexowriters in an
adjoining room), then sit at the console, feed in the program by
running the tape through a reader, and be able to sit there while
the program ran. If something went wrong with the program, you
knew immediately, and you could diagnose the problem by using
some of the switches, or checking out which of the lights were
blinking or lit. The computer even had an audio output: while
the program ran, a speaker underneath the console would make a
sort of music, like a poorly tuned electric organ whose notes
would vibrate with a fuzzy, ethereal din. The chords on this
"organ" would change, depending on what data the machine was
reading at any given microsecond; after you were familiar with
the tones, you could actually HEAR what part of your program the
computer was working on. You would have to discern this, though,
over the clacking of the Flexowriter, which could make you think
you were in the middle of a machine-gun battle. Even more
amazing was that, because of these "interactive" capabilities,
and also because users seemed to be allowed blocks of time to use
the TX-0 all by themselves, you could even modify a program WHILE
SITTING AT THE COMPUTER. A miracle!

There was no way in hell that Kotok, Saunders, Samson, and the
others were going to be kept away from that machine.
Fortunately, there didn't seem to be the kind of bureaucracy
surrounding the TX-0 that there was around the IBM 704. No cadre
of officious priests. The technician in charge was a canny
white-haired Scotsman named John McKenzie. While he made sure
that graduate students and those working on funded projects—
Officially Sanctioned Users—maintained access to the machine,
McKenzie tolerated the crew of TMRC madmen who began to hang out
in the RLE lab, where the TX-0 stood.

Samson, Kotok, Saunders, and a freshman named Bob Wagner soon
figured out that the best time of all to hang out in Building 26
was at night, when no person in his right mind would have signed
up for an hour-long session on the piece of paper posted every
Friday beside the air conditioner in the RLE lab. The TX-0 as a
rule was kept running twenty-four hours a day—computers back
then were too expensive for their time to be wasted by leaving
them idle through the night, and besides, it was a hairy
procedure to get the thing up and running once it was turned off.
So the TMRC hackers, who soon were referring to themselves as
TX-0 hackers, changed their life-style to accommodate the
computer. They laid claim to what blocks of time they could, and
would "vulture time" with nocturnal visits to the lab on the off
chance that someone who was scheduled for a 3 A.M. session might
not show up.

"Oh!" Samson would say delightedly, a minute or so after someone
failed to show up at the time designated in the logbook. "Make
sure it doesn't go to waste!"

It never seemed to, because the hackers were there almost all the
time. If they weren't in the RLE lab waiting for an opening to
occur, they were in the classroom next to the TMRC clubroom, the
Tool Room, playing a "hangman"-style word game that Samson had
devised called "Come Next Door," waiting for a call from someone
who was near the TX-0, monitoring it to see if someone had not
shown up for a session. The hackers recruited a network of
informers to give advance notice of potential openings at the
computer—if a research project was not ready with its program in
time, or a professor was sick, the word would be passed to TMRC
and the hackers would appear at the TX-0, breathless and ready to
jam into the space behind the console.

Though Jack Dennis was theoretically in charge of the operation,
Dennis was teaching courses at the time, and preferred to spend
the rest of his time actually writing code for the machine.
Dennis played the role of benevolent godfather to the hackers:
he would give them a brief hands-on introduction to the machine,
point them in certain directions, be amused at their wild
programming ventures. He had little taste for administration,
though, and was just as happy to let John McKenzie run things.
McKenzie early on recognized that the interactive nature of the
TX-0 was inspiring a new form of computer programming, and the
hackers were its pioneers. So he did not lay down too many
edicts.

The atmosphere was loose enough in 1959 to accommodate the
strays—science-mad people whose curiosity burned like a hunger,
who like Peter Samson would be exploring the uncharted maze of
laboratories at MIT. The noise of the air-conditioning, the
audio output, and the drill-hammer Flexowriter would lure these
wanderers, who'd poke their heads into the lab like kittens
peering into baskets of yarn.

One of those wanderers was an outsider named Peter Deutsch. Even
before discovering the TX-0, Deutsch had developed a fascination
for computers. It began one day when he picked up a manual that
someone had discarded, a manual for an obscure form of computer
language for doing calculations. Something about the orderliness
of the computer instructions appealed to him: he would later
describe the feeling as the same kind of eerily transcendent
recognition that an artist experiences when he discovers the
medium that is absolutely right for him. THIS IS WHERE I BELONG.
Deutsch tried writing a small program, and, signing up for time
under the name of one of the priests, ran it on a computer.
Within weeks, he had attained a striking proficiency in
programming. He was only twelve years old.

He was a shy kid, strong in math and unsure of most everything
else. He was uncomfortably overweight, deficient in sports, but
an intellectual star performer. His father was a professor at
MIT, and Peter used that as his entree to explore the labs.

It was inevitable that he would be drawn to the TX-0. He first
wandered into the small "Kluge Room" (a "kluge" is a piece of
inelegantly constructed equipment that seems to defy logic by
working properly), where three off-line Flexowriters were
available for punching programs onto paper tape which would later
be fed into the TX-0. Someone was busy punching in a tape.
Peter watched for a while, then began bombarding the poor soul
with questions about that weird-looking little computer in the
next room. Then Peter went up to the TX-0 itself, examined it
closely, noting how it differed from other computers: it was
smaller, had a CRT display, and other neat toys. He decided
right then to act as if he had a perfect right to be there. He
got hold of a manual and soon was startling people by spouting
actual make-sense computer talk, and eventually was allowed to
sign up for night and weekend sessions, and to write his own
programs.

McKenzie worried that someone might accuse him of running some
sort of summer camp, with this short-pants little kid, barely
tall enough to stick his head over the TX-O's console, staring at
the code that an Officially Sanctioned User, perhaps some
self-important graduate student, would be hammering into the
Flexowriter, and saying in his squeaky, preadolescent voice
something like "Your problem is that this credit is wrong over
here . . . you need this other instruction over there," and the
self-important grad student would go crazy—WHO IS THIS LITTLE
WORM?—and start screaming at him to go out and play somewhere.
Invariably, though, Peter Deutsch's comments would turn out to be
correct. Deutsch would also brazenly announce that he was going
to write better programs than the ones currently available, and
he would go and do it.

Samson, Kotok, and the other hackers accepted Peter Deutsch: by
virtue of his computer knowledge he was worthy of equal
treatment. Deutsch was not such a favorite with the Officially
Sanctioned Users, especially when he sat behind them ready to
spring into action when they made a mistake on the Flexowriter.
These Officially Sanctioned Users appeared at the TX-0 with the
regularity of commuters. The programs they ran were statistical
analyses, cross correlations, simulations of an interior of the
nucleus of a cell. Applications. That was fine for Users, but
it was sort of a waste in the minds of the hackers. What hackers
had in mind was getting behind the console of the TX-0 much in
the same way as getting in behind the throttle of a plane, Or, as
Peter Samson, a classical music fan, put it, computing with the
TX-0 was like playing a musical instrument: an absurdly
expensive musical instrument upon which you could improvise,
compose, and, like the beatniks in Harvard Square a mile away,
wail like a banshee with total creative abandon.

One thing that enabled them to do this was the programming system
devised by Jack Dennis and another professor, Tom Stockman. When
the TX-0 arrived at MIT, it had been stripped down since its days
at Lincoln Lab: the memory had been reduced considerably, to
4,096 "words" of eighteen bits each. (A "bit" is a BInary digiT,
either a one or zero. These binary numbers are the only thing
computers understand. A series of binary numbers is called a
"word.") And the TX-0 had almost no software. So Jack Dennis,
even before he introduced the TMRC people to the TX-0, had been
writing "systems programs"—the software to help users utilize
the machine.

The first thing Dennis worked on was an assembler. This was
something that translated assembly language—which used three-
letter symbolic abbreviations that represented instructions to
the machine—into machine language, which consisted of the binary
numbers 0 and 1. The TX-0 had a rather limited assembly
language: since its design allowed only two bits of each
eighteen-bit word to be used for instructions to the computer,
only four instructions could be used (each possible two-bit
variation—00, 0 1, 10, and 11—represented an instruction).
Everything the computer did could be broken down to the execution
of one of those four instructions: it took one instruction to
add two numbers, but a series of perhaps twenty instructions to
multiply two numbers. Staring at a long list of computer
commands written as binary numbers—for example, 10011001100001—
could make you into a babbling mental case in a matter of
minutes. But the same command in assembly language might look
like this: ADD Y. After loading the computer with the assembler
that Dennis wrote, you could write programs in this simpler
symbolic form, and wait smugly while the computer did the
translation into binary for you, Then you'd feed that binary
"object" code back into the computer. The value of this was
incalculable: it enabled programmers to write in something that
LOOKED like code, rather than an endless, dizzying series of ones
and zeros.

The other program that Dennis worked on with Stockman was
something even newer—a debugger. The TX-0 came with a debugging
program called UT-3, which enabled you to talk to the computer
while it was running by typing commands directly into the
Flexowriter, But it had terrible problems-for one thing, it only
accepted typed-in code that used the octal numeric system.
"Octal" is a base-eight number system (as opposed to binary,
which is base two, and Arabic—ours-which is base ten), and it is
a difficult system to use. So Dennis and Stockman decided to
write something better than UT-3 which would enable users to use
the symbolic, easier-to-work-with assembly language. This came
to be called FLIT, and it allowed users to actually find program
bugs during a session, fix them, and keep the program running.
(Dennis would explain that "FLIT" stood for FLexowriter
Interrogation Tape, but clearly the name's real origin was the
insect spray with that brand name.) FLIT was a quantum leap
forward, since it liberated programmers to actually do original
composing on the machine—just like musicians composing on their
musical instruments. With the use of the debugger, which took up
one third of the 4,096 words of the TX-O's memory, hackers were
free to create a new, more daring style of programming.

And what did these hacker programs DO? Well, sometimes, it
didn't matter much at all what they did. Peter Samson hacked the
night away on a program that would instantly convert Arabic
numbers to Roman numerals, and Jack Dennis, after admiring the
skill with which Samson had accomplished this feat, said, "My
God, why would anyone want to do such a thing?" But Dennis knew
why. There was ample justification in the feeling of power and
accomplishment Samson got when he fed in the paper tape,
monitored the lights and switches, and saw what were once plain
old blackboard Arabic numbers coming back as the numerals the
Romans had hacked with.

In fact it was Jack Dennis who suggested to Samson that there
were considerable uses for the TX-O's ability to send noise to
the audio speaker. While there were no built-in controls for
pitch, amplitude, or tone character, there was a way to control
the speaker—sounds would be emitted depending on the state of
the fourteenth bit in the eighteen-bit words the TX-0 had in its
accumulator in a given microsecond. The sound was on or off
depending on whether bit fourteen was a one or zero. So Samson
set about writing programs that varied the binary numbers in that
slot in different ways to produce different pitches.

At that time, only a few people in the country had been
experimenting with using a computer to output any kind of music,
and the methods they had been using required massive computations
before the machine would so much as utter a note, Samson, who
reacted with impatience to those who warned he was attempting the
impossible, wanted a computer playing music right away. So he
learned to control that one bit in the accumulator so adeptly
that he could command it with the authority of Charlie Parker on
the saxophone. In a later version of this music compiler, Samson
rigged it so that if you made an error in your programming
syntax, the Flexowriter would switch to a red ribbon and print
"To err is human to forgive divine."

When outsiders heard the melodies of Johann Sebastian Bach in a
single-voice, monophonic square wave, no harmony, they were
universally unfazed. Big deal! Three million dollars for this
giant hunk of machinery, and why shouldn't it do at least as much
as a five-dollar toy piano? It was no use to explain to these
outsiders that Peter Samson had virtually bypassed the process by
which music had been made for eons. Music had always been made
by directly creating vibrations that were sound. What happened
in Samson's program was that a load of numbers, bits of
information fed into a computer, comprised a code in which the
music resided. You could spend hours staring at the code, and
not be able to divine where the music was. It only became music
while millions of blindingly brief exchanges of data were taking
place in the accumulator sitting in one of the metal, wire, and
silicon racks that comprised the TX-0. Samson had asked the
computer, which had no apparent knowledge of how to use a voice,
to lift itself in song—and the TX-0 had complied.

So it was that a computer program was not only metaphorically a
musical composition—it was LITERALLY a musical composition! It
looked like—and was—the same kind of program which yielded
complex arithmetical computations and statistical analyses.
These digits that Samson had jammed into the computer were a
universal language which could produce ANYTHING—a Bach fugue or
an anti-aircraft system.

Samson did not say any of this to the outsiders who were
unimpressed by his feat. Nor did the hackers themselves discuss
this—it is not even clear that they analyzed the phenomenon in
such cosmic terms. Peter Samson did it, and his colleagues
appreciated it, because it was obviously a neat hack. That was
justification enough.

 * * *

To hackers like Bob Saunders—balding, plump, and merry disciple
of the TX-0, president of TMRC's S&P group, student of systems—
it was a perfect existence. Saunders had grown up in the suburbs
of Chicago, and for as long as he could remember the workings of
electricity and telephone circuitry had fascinated him. Before
beginning MIT, Saunders had landed a dream summer job, working
for the phone company installing central office equipment, He
would spend eight blissful hours with soldering iron and pliers
in hand, working in the bowels of various systems, an idyll
broken by lunch hours spent in deep study of phone company
manuals. It was the phone company equipment underneath the TMRC
layout that had convinced Saunders to become active in the Model
Railroad Club.

Saunders, being an upperclassman, had come to the TX-0 later in
his college career than Kotok and Samson: he had used the
breathing space to actually lay the foundation for a social life,
which included courtship of and eventual marriage to Marge
French, who had done some non-hacking computer work for a
research project. Still, the TX-0 was the center of his college
career, and he shared the common hacker experience of seeing his
grades suffer from missed classes. It didn't bother him much,
because he knew that his real education was occurring in Room 240
of Building 26, behind the Tixo console. Years later he would
describe himself and the others as "an elite group. Other people
were off studying, spending their days up on four-floor buildings
making obnoxious vapors or off in the physics lab throwing
particles at things or whatever it is they do. And we were
simply not paying attention to what other folks were doing
because we had no interest in it. They were studying what they
were studying and we were studying what we were studying. And
the fact that much of it was not on the officially approved
curriculum was by and large immaterial."

The hackers came out at night. It was the only way to take full
advantage of the crucial "off-hours" of the TX-0. During the
day, Saunders would usually manage to make an appearance in a
class or two. Then some time spent performing "basic
maintenance"—things like eating and going to the bathroom. He
might see Marge for a while. But eventually he would filter over
to Building 26. He would go over some of the programs of the
night before, printed on the nine-and-a-half-inch-wide paper that
the Flexowriter used. He would annotate and modify the listing
to update the code to whatever he considered the next stage of
operation. Maybe then he would move over to the Model Railroad
Club, and he'd swap his program with someone, checking
simultaneously for good ideas and potential bugs. Then back to
Building 26, to the Kluge Room next to the TX-0, to find an
off-line Flexowriter on which to update his code. All the while
he'd be checking to see if someone had canceled a one-hour
session on the machine; his own session was scheduled at
something like two or three in the morning. He'd wait in the
Kluge Room, or play some bridge back at the Railroad Club, until
the time came.

Sitting at the console, facing the metal racks that held the
computer's transistors, each transistor representing a location
that either held or did not hold a bit of memory, Saunders would
set up the Flexowriter, which would greet him with the word
"WALRUS." This was something Samson had hacked, in honor of
Lewis Carroll's poem with the line "The time has come, the Walrus
said . . ." Saunders might chuckle at that as he went into the
drawer for the paper tape which held the assembler program and
fed that into the tape reader. Now the computer would be ready
to assemble his program, so he'd take the Flexowriter tape he'd
been working on and send that into the computer. He'd watch the
lights go on as the computer switched his code from "source" (the
symbolic assembly language) to "object" code (binary), which the
computer would punch out into another paper tape. Since that
tape was in the object code that the TX-0 understood, he'd feed
it in, hoping that the program would run magnificently.

There would most probably be a few fellow hackers kibitzing
behind him, laughing and joking and drinking Cokes and eating
some junk food they'd extracted from the machine downstairs.
Saunders preferred the lemon jelly wedges that the others called
"lemon gunkies." But at four in the morning, anything tasted
good. They would all watch as the program began to run, the
lights going on, the whine from the speaker humming in high or
low register depending on what was in Bit 14 in the accumulator,
and the first thing he'd see on the CRT display after the program
had been assembled and run was that the program had crashed. So
he'd reach into the drawer for the tape with the FLIT debugger
and feed THAT into the computer. The computer would then be a
debugging machine, and he'd send the program back in. Now he
could start trying to find out where things had gone wrong, and
maybe if he was lucky he'd find out, and change things by putting
in some commands by flicking some of the switches on the console
in precise order, or hammering in some code on the Flexowriter.
Once things got running—and it was always incredibly satisfying
when something worked, when he'd made that roomful of transistors
and wires and metal and electricity all meld together to create a
precise output that he'd devised—he'd try to add the next
advance to it. When the hour was over—someone already itching
to get on the machine after him—Saunders would be ready to spend
the next few hours figuring out what the heck had made the
program go belly-up.

The peak hour itself was tremendously intense, but during the
hours before, and even during the hours afterward, a hacker
attained a state of pure concentration. When you programmed a
computer, you had to be aware of where all the thousands of bits
of information were going from one instruction to the next, and
be able to predict—and exploit—the effect of all that movement.
When you had all that information glued to your cerebral being,
it was almost as if your own mind had merged into the environment
of the computer. Sometimes it took hours to build up to the
point where your thoughts could contain that total picture, and
when you did get to that point, it was such a shame to waste it
that you tried to sustain it by marathon bursts, alternatively
working on the computer or poring over the code that you wrote on
one of the off-line Flexowriters in the Kluge Room. You would
sustain that concentration by "wrapping around" to the next day.

Inevitably, that frame of mind spilled over to what random shards
of existence the hackers had outside of computing. The
knife-and-paintbrush contingent at TMRC were not pleased at all
by the infiltration of Tixo-mania into the club: they saw it as
a sort of Trojan horse for a switch in the club focus, from
railroading to computing. And if you attended one of the club
meetings held every Tuesday at five-fifteen, you could see the
concern: the hackers would exploit every possible thread of
parliamentary procedure to create a meeting as convoluted as the
programs they were hacking on the TX-0. Motions were made to
make motions to make motions, and objections ruled out of order
as if they were so many computer errors. A note in the minutes
of the meeting on November 24, 1959, suggests that "we frown on
certain members who would do the club a lot more good by doing
more S&P-ing and less reading Robert's Rules of Order." Samson
was one of the worst offenders, and at one point, an exasperated
TMRC member made a motion "to purchase a cork for Samson's oral
diarrhea."

Hacking parliamentary procedure was one thing, but the logical
mind-frame required for programming spilled over into more
commonplace activities. You could ask a hacker a question and
sense his mental accumulator processing bits until he came up
with a precise answer to the question you asked. Marge Saunders
would drive to the Safeway every Saturday morning in the
Volkswagen and upon her return ask her husband, "Would you like
to help me bring in the groceries?" Bob Saunders would reply,
"No." Stunned, Marge would drag in the groceries herself. After
the same thing occurred a few times, she exploded, hurling curses
at him and demanding to know why he said no to her question.

"That's a stupid question to ask," he said. "Of course I won't
LIKE to help you bring in the groceries. If you ask me if I'll
help you bring them in, that's another matter."

It was as if Marge had submitted a program into the TX-0, and the
program, as programs do when the syntax is improper, had crashed.
It was not until she debugged her question that Bob Saunders
would allow it to run successfully on his own mental computer.

CHAPTER 2
THE HACKER ETHIC

Something new was coalescing around the TX-0: a new way of life,
with a philosophy, an ethic, and a dream.

There was no one moment when it started to dawn on the TX-0
hackers that by devoting their technical abilities to computing
with a devotion rarely seen outside of monasteries they were the
vanguard of a daring symbiosis between man and machine. With a
fervor like that of young hot-rodders fixated on souping up
engines, they came to take their almost unique surroundings for
granted, Even as the elements of a culture were forming, as
legends began to accrue, as their mastery of programming started
to surpass any previous recorded levels of skill, the dozen or so
hackers were reluctant to acknowledge that their tiny society, on
intimate terms with the TX-0, had been slowly and implicitly
piecing together a body of concepts, beliefs, and mores.

The precepts of this revolutionary Hacker Ethic were not so much
debated and discussed as silently agreed upon. No manifestos
were issued. No missionaries tried to gather converts. The
computer did the converting, and those who seemed to follow the
Hacker Ethic most faithfully were people like Samson, Saunders,
and Kotok, whose lives before MIT seemed to be mere preludes to
that moment when they fulfilled themselves behind the console of
the TX-0. Later there would come hackers who took the implicit
Ethic even more seriously than the TX-0 hackers did, hackers like
the legendary Greenblatt or Gosper, though it would be some years
yet before the tenets of hackerism would be explicitly
delineated.

Still, even in the days of the TX-0, the planks of the platform
were in place. The Hacker Ethic:

ACCESS TO COMPUTERS—AND ANYTHING WHICH MIGHT TEACH YOU SOMETHING
ABOUT THE WAY THE WORLD WORKS—SHOULD BE UNLIMITED AND TOTAL.
ALWAYS YIELD TO THE HANDS-ON IMPERATIVE!

Hackers believe that essential lessons can be learned about the
systems—about the world—from taking things apart, seeing how
they work, and using this knowledge to create new and even more
interesting things. They resent any person, physical barrier, or
law that tries to keep them from doing this.

This is especially true when a hacker wants to fix something that
(from his point of view) is broken or needs improvement.
Imperfect systems infuriate hackers, whose primal instinct is to
debug them. This is one reason why hackers generally hate
driving cars—the system of randomly programmed red lights and
oddly laid out one-way streets causes delays which are so
goddamned UNNECESSARY that the impulse is to rearrange signs,
open up traffic-light control boxes . . .redesign the entire
system.

In a perfect hacker world, anyone pissed off enough to open up a
control box near a traffic light and take it apart to make it
work better should be perfectly welcome to make the attempt.
Rules which prevent you from taking matters like that into your
own hands are too ridiculous to even consider abiding by. This
attitude helped the Model Railroad Club start, on an extremely
informal basis, something called the Midnight Requisitioning
Committee. When TMRC needed a set of diodes, or some extra
relays, to build some new feature into The System, a few S&P
people would wait until dark and find their way into the places
where those things were kept. None of the hackers, who were as a
rule scrupulously honest in other matters, seemed to equate this
with "stealing." A willful blindness.

ALL INFORMATION SHOULD BE FREE.

If you don't have access to the information you need to improve
things, how can you fix them? A free exchange of information
particularly when the information was in the form of a computer
program, allowed for greater overall creativity. When you were
working on a machine like the TX-0, which came with almost no
software, everyone would furiously write systems programs to make
programming easier—Tools to Make Tools, kept in the drawer by
the console for easy access by anyone using the machine. This
prevented the dread, time-wasting ritual of reinventing the
wheel: instead of everybody writing his own version of the same
program, the best version would be available to everyone, and
everyone would be free to delve into the code and improve on
THAT. A world studded with feature-full programs, bummed to the
minimum, debugged to perfection.

The belief, sometimes taken unconditionally, that information
should be free was a direct tribute to the way a splendid
computer, or computer program, works—the binary bits moving in
the most straightforward, logical path necessary to do their
complex job, What was a computer but something which benefited
from a free flow of information? If, say, the accumulator found
itself unable to get information from the input/output (i/o)
devices like the tape reader or the switches, the whole system
would collapse. In the hacker viewpoint, any system could
benefit from that easy flow of information.

MISTRUST AUTHORITY—PROMOTE DECENTRALIZATION.

The best way to promote this free exchange of information is to
have an open system, something which presents no boundaries
between a hacker and a piece of information or an item of
equipment that he needs in his quest for knowledge, improvement,
and time on-line. The last thing you need is a bureaucracy.
Bureaucracies, whether corporate, government, or university, are
flawed systems, dangerous in that they cannot accommodate the
exploratory impulse of true hackers. Bureaucrats hide behind
arbitrary rules (as opposed to the logical algorithms by which
machines and computer programs operate): they invoke those rules
to consolidate power, and perceive the constructive impulse of
hackers as a threat.

The epitome of the bureaucratic world was to be found at a very
large company called International Business Machines—IBM. The
reason its computers were batch-processed Hulking Giants was only
partially because of vacuum tube technology, The real reason was
that IBM was a clumsy, hulking company which did not understand
the hacking impulse. If IBM had its way (so the TMRC hackers
thought), the world would be batch-processed, laid out on those
annoying little punch cards, and only the most privileged of
priests would be permitted to actually interact with the
computer.

All you had to do was look at someone in the IBM world, and note
the button-down white shirt, the neatly pinned black tie, the
hair carefully held in place, and the tray of punch cards in
hand. You could wander into the Computation Center, where the
704, the 709, and later the 7090 were stored—the best IBM had to
offer—and see the stifling orderliness, down to the roped-off
areas beyond which non-authorized people could not venture. And
you could compare that to the extremely informal atmosphere
around the TX-0, where grungy clothes were the norm and almost
anyone could wander in.

Now, IBM had done and would continue to do many things to advance
computing. By its sheer size and mighty influence, it had made
computers a permanent part of life in America. To many people,
the words IBM and computer were virtually synonymous. IBM's
machines were reliable workhorses, worthy of the trust that
businessmen and scientists invested in them. This was due in
part to IBM's conservative approach: it would not make the most
technologically advanced machines, but would rely on proven
concepts and careful, aggressive marketing. As IBM's dominance
of the computer field was established, the company became an
empire unto itself, secretive and smug.

What really drove the hackers crazy was the attitude of the IBM
priests and sub-priests, who seemed to think that IBM had the
only "real" computers, and the rest were all trash. You couldn't
talk to those people—they were beyond convincing. They were
batch-processed people, and it showed not only in their
preference of machines, but in their idea about the way a
computation center, and a world, should be run. Those people
could never understand the obvious superiority of a decentralized
system, with no one giving orders: a system where people could
follow their interests, and if along the way they discovered a
flaw in the system, they could embark on ambitious surgery. No
need to get a requisition form. just a need to get something
done.

This antibureaucratic bent coincided neatly with the
personalities of many of the hackers, who since childhood had
grown accustomed to building science projects while the rest of
their classmates were banging their heads together and learning
social skills on the field of sport. These young adults who were
once outcasts found the computer a fantastic equalizer,
experiencing a feeling, according to Peter Samson, "like you
opened the door and walked through this grand new universe . . ."
Once they passed through that door and sat behind the console of
a million-dollar computer, hackers had power. So it was natural
to distrust any force which might try to limit the extent of that
power.

HACKERS SHOULD BE JUDGED BY THEIR HACKING, NOT BOGUS CRITERIA
SUCH AS DEGREES, AGE, RACE, OR POSITION.

The ready acceptance of twelve-year-old Peter Deutsch in the TX-0
community (though not by non-hacker graduate students) was a good
example. Likewise, people who trotted in with seemingly
impressive credentials were not taken seriously until they proved
themselves at the console of a computer. This meritocratic trait
was not necessarily rooted in the inherent goodness of hacker
hearts—it was mainly that hackers cared less about someone's
superficial characteristics than they did about his potential to
advance the general state of hacking, to create new programs to
admire, to talk about that new feature in the system.

YOU CAN CREATE ART AND BEAUTY ON A COMPUTER.

Samson's music program was an example. But to hackers, the art
of the program did not reside in the pleasing sounds emanating
from the on-line speaker. The code of the program held a beauty
of its own. (Samson, though, was particularly obscure in
refusing to add comments to his source code explaining what he
was doing at a given time. One well-distributed program Samson
wrote went on for hundreds of assembly language instructions,
with only one comment beside an instruction which contained the
number 1750. The comment was RIPJSB, and people racked their
brains about its meaning until someone figured out that 1750 was
the year Bach died, and that Samson had written an abbreviation
for Rest In Peace Johann Sebastian Bach.)

A certain esthetic of programming style had emerged. Because of
the limited memory space of the TX-0 (a handicap that extended to
all computers of that era), hackers came to deeply appreciate
innovative techniques which allowed programs to do complicated
tasks with very few instructions. The shorter a program was, the
more space you had left for other programs, and the faster a
program ran. Sometimes when you didn't need speed or space much,
and you weren't thinking about art and beauty, you'd hack
together an ugly program, attacking the problem with "brute
force" methods. "Well, we can do this by adding twenty numbers,"
Samson might say to himself, "and it's quicker to write
instructions to do that than to think out a loop in the beginning
and the end to do the same job in seven or eight instructions."
But the latter program might be admired by fellow hackers, and
some programs were bummed to the fewest lines so artfully that
the author's peers would look at it and almost melt with awe.

Sometimes program bumming became competitive, a macho contest to
prove oneself so much in command of the system that one could
recognize elegant shortcuts to shave off an instruction or two,
or, better yet, rethink the whole problem and devise a new
algorithm which would save a whole block of instructions. (An
algorithm is a specific procedure which one can apply to solve a
complex computer problem; it is sort of a mathematical skeleton
key.) This could most emphatically be done by approaching the
problem from an offbeat angle that no one had ever thought of
before but that in retrospect made total sense. There was
definitely an artistic impulse residing in those who could
utilize this genius-from-Mars techniques black-magic, visionary
quality which enabled them to discard the stale outlook of the
best minds on earth and come up with a totally unexpected new
algorithm.

This happened with the decimal print routine program. This was a
subroutines program within a program that you could sometimes
integrate into many different programs—to translate binary
numbers that the computer gave you into regular decimal numbers.
In Saunders' words, this problem became the "pawn's ass of
programming—if you could write a decimal print routine which
worked you knew enough about the computer to call yourself a
programmer of sorts." And if you wrote a GREAT decimal print
routine, you might be able to call yourself a hacker. More than
a competition, the ultimate bumming of the decimal print routine
became a sort of hacker Holy Grail.

Various versions of decimal print routines had been around for
some months. If you were being deliberately stupid about it, or
if you were a genuine moron—an out-and-out "loser"—it might
take you a hundred instructions to get the computer to convert
machine language to decimal. But any hacker worth his salt could
do it in less, and finally, by taking the best of the programs,
bumming an instruction here and there, the routine was diminished
to about fifty instructions.

After that, things got serious. People would work for hours,
seeking a way to do the same thing in fewer lines of code. It
became more than a competition; it was a quest. For all the
effort expended, no one seemed to be able to crack the fifty-line
barrier. The question arose whether it was even possible to do
it in less. Was there a point beyond which a program could not
be bummed?

Among the people puzzling with this dilemma was a fellow named
Jenson, a tall, silent hacker from Maine who would sit quietly in
the Kluge Room and scribble on printouts with the calm demeanor
of a backwoodsman whittling. Jenson was always looking for ways
to compress his programs in time and space—his code was a
completely bizarre sequence of intermingled Boolean and
arithmetic functions, often causing several different
computations to occur in different sections of the same
eighteen-bit "word." Amazing things, magical stunts.

Before Jenson, there had been general agreement that the only
logical algorithm for a decimal print routine would have the
machine repeatedly subtracting, using a table of the powers of
ten to keep the numbers in proper digital columns. Jenson
somehow figured that a powers-of-ten table wasn't necessary; he
came up with an algorithm that was able to convert the digits in
a reverse order but, by some digital sleight of hand, print them
out in the proper order. There was a complex mathematical
justification to it that was clear to the other hackers only when
they saw Jenson's program posted on a bulletin board, his way of
telling them that he had taken the decimal print routine to its
limit. FORTY-SIX INSTRUCTIONS. People would stare at the code
and their jaws would drop. Marge Saunders remembers the hackers
being unusually quiet for days afterward.

"We knew that was the end of it," Bob Saunders later said. "That
was Nirvana."

COMPUTERS CAN CHANGE YOUR LIFE FOR THE BETTER.

This belief was subtly manifest. Rarely would a hacker try to
impose a view of the myriad advantages of the computer way of
knowledge to an outsider. Yet this premise dominated the
everyday behavior of the TX-0 hackers, as well as the generations
of hackers that came after them.

Surely the computer had changed THEIR lives, enriched their
lives, given their lives focus, made their lives adventurous. It
had made them masters of a certain slice of fate. Peter Samson
later said, "We did it twenty-five to thirty percent for the sake
of doing it because it was something we could do and do well, and
sixty percent for the sake of having something which was in its
metaphorical way alive, our offspring, which would do things on
its own when we were finished. That's the great thing about
programming, the magical appeal it has . . . Once you fix a
behavioral problem [a computer or program] has, it's fixed
forever, and it is exactly an image of what you meant."

LIKE ALADDIN'S LAMP, YOU COULD GET IT TO DO YOUR BIDDING.

Surely everyone could benefit from experiencing this power.
Surely everyone could benefit from a world based on the Hacker
Ethic. This was the implicit belief of the hackers, and the
hackers irreverently extended the conventional point of view of
what computers could and should do—leading the world to a new
way of looking and interacting with computers.

This was not easily done. Even at such an advanced institution
as MIT, some professors considered a manic affinity for computers
as frivolous, even demented. TMRC hacker Bob Wagner once had to
explain to an engineering professor what a computer was. Wagner
experienced this clash of computer versus anti-computer even more
vividly when he took a Numerical Analysis class in which the
professor required each student to do homework using rattling,
clunky electromechanical calculators. Kotok was in the same
class, and both of them were appalled at the prospect of working
with those lo-tech machines. "Why should we," they asked, "when
we've got this computer?"

So Wagner began working on a computer program that would emulate
the behavior of a calculator. The idea was outrageous. To some,
it was a misappropriation of valuable machine time. According to
the standard thinking on computers, their time was too precious
that one should only attempt things which took maximum advantage
of the computer, things that otherwise would take roomfuls of
mathematicians days of mindless calculating. Hackers felt
otherwise: anything that seemed interesting or fun was fodder for
computing—and using interactive computers, with no one looking
over your shoulder and demanding clearance for your specific
project, you could act on that belief. After two or three months
of tangling with intricacies of floating-point arithmetic
(necessary to allow the program to know where to place the
decimal point) on a machine that had no simple method to perform
elementary multiplication, Wagner had written three thousand
lines of code that did the job. He had made a ridiculously
expensive computer perform the function of a calculator that cost
a thousand times less. To honor this irony, he called the
program Expensive Desk Calculator, and proudly did the homework
for his class on it.

His grade—zero. "You used a computer!" the professor told him.

"This CAN'T be right."

Wagner didn't even bother to explain. How could he convey to his
teacher that the computer was making realities out of what were
once incredible possibilities? Or that another hacker had even
written a program called Expensive Typewriter that converted the
TX-0 to something you could write text on, could process your
writing in strings of characters and print it out on the
Flexowriter—could you imagine a professor accepting a classwork
report WRITTEN BY THE COMPUTER? How could that professor—how
could, in fact, anyone who hadn't been immersed in this uncharted
man-machine universe—understand how Wagner and his fellow
hackers were routinely using the computer to simulate, according
to Wagner, "strange situations which one could scarcely envision
otherwise"? The professor would learn in time, as would
everyone, that the world opened up by the computer was a
limitless one.

If anyone needed further proof, you could cite the project that
Kotok was working on in the Computation Center, the chess program
that bearded Al professor "Uncle" John McCarthy, as he was
becoming known to his hacker students, had begun on the IBM 704.
Even though Kotok and the several other hackers helping him on
the program had only contempt for the IBM batch-processing
mentality that pervaded the machine and the people around it,
they had managed to scrounge some late-night time to use it
interactively, and had been engaging in an informal battle with
the systems programmers on the 704 to see which group would be
known as the biggest consumer of computer time. The lead would
bounce back and forth, and the white-shirt-and-black-tie 704
people were impressed enough to actually let Kotok and his group
touch the buttons and switches on the 704: rare sensual contact
with a vaunted IBM beast.

Kotok's role in bringing the chess program to life was indicative
of what was to become the hacker role in Artificial Intelligence:
a Heavy Head like McCarthy or like his colleague Marvin Minsky
would begin a project or wonder aloud whether something might be
possible, and the hackers, if it interested them, would set about
doing it.

The chess program had been started using FORTRAN, one of the
early computer languages. Computer languages look more like
English than assembly language, are easier to write with, and do
more things with fewer instructions; however, each time an
instruction is given in a computer language like FORTRAN, the
computer must first translate that command into its own binary
language. A program called a compiler does this, and the
compiler takes up time to do its job, as well as occupying
valuable space within the computer. In effect, using a computer
language puts you an extra step away from direct contact with the
computer, and hackers generally preferred assembly or, as they
called it, "machine" language to less elegant, "higher-level"
languages like FORTRAN.

Kotok, though, recognized that because of the huge amounts of
numbers that would have to be crunched in a chess program, part
of the program would have to be done in FORTRAN, and part in
assembly. They hacked it part by part, with "move generators,"
basic data structures, and all kinds of innovative algorithms for
strategy. After feeding the machine the rules for moving each
piece, they gave it some parameters by which to evaluate its
position, consider various moves, and make the move which would
advance it to the most advantageous situation. Kotok kept at it
for years, the program growing as MIT kept upgrading its IBM
computers, and one memorable night a few hackers gathered to see
the program make some of its first moves in a real game. Its opener
was quite respectable, but after eight or so exchanges there was real
trouble, with the computer about to be checkmated. Everybody
wondered how the computer would react. It too a while (everyone
knew that during those pauses the computer was actually "thinking,"
if your idea of thinking included mechanically considering
various moves, evaluating them, rejecting most, and using a
predefined set of parameters to ultimately make a choice). Finally,
the computer moved a pawn two squares forward—illegally jumping
over another piece. A bug! But a clever one—it got the computer
out of check. Maybe the program was figuring out some new
algorithm with which to conquer chess.

At other universities, professors were making public proclamations
that computers would never be able to beat a human being in chess.
Hackers knew better. They would be the ones who would guide
computers to greater heights than anyone expected. And the hackers,
by fruitful, meaningful association with the computer, would be
foremost among the beneficiaries.

But they would not be the only beneficiaries. Everyone could gain
something by the use of thinking computers in an intellectually
automated world. And wouldn't everyone benefit even more by
approaching the world with the same inquisitive intensity,
skepticism toward bureaucracy, openness to creativity,
unselfishness in sharing accomplishments, urge to make improvements,
and desire to build as those who followed the Hacker Ethic?
By accepting others on the same unprejudiced basis by which
computers accepted anyone who entered code into a Flexowriter?
Wouldn't we benefit if we learned from computers the means of
creating a perfect system? If EVERYONE could interact with
computers with the same innocent, productive, creative impulse
that hackers did, the Hacker Ethic might spread through society
like a benevolent ripple, and computers would indeed change
the world for the better.

In the monastic confines of the Massachusetts Institute of Technology,
people had the freedom to live out this dream—the hacker dream.
No one dared suggest that the dream might spread. Instead, people
set about building, right there at MIT, a hacker Xanadu the likes
of which might never be duplicated.

Hackers, Heroes of the Computer Revolution, by Steven Levy

(C)1984 by Steven Levy

*** END OF THE PROJECT GUTENBERG EBOOK HACKERS, HEROES OF THE COMPUTER REVOLUTION. CHAPTERS 1 AND 2 ***

Updated editions will replace the previous one—the old editions will
be renamed.

Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works

1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.

This particular work is one of the few individual works protected
by copyright law in the United States and most of the remainder of the
world, included in the Project Gutenberg collection with the
permission of the copyright holder. Information on the copyright owner
for this particular work and the terms of use imposed by the copyright
holder on this work are set forth at the beginning of this work.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:

 This eBook is for the use of anyone anywhere in the United States and most
 other parts of the world at no cost and with almost no restrictions
 whatsoever. You may copy it, give it away or re-use it under the terms
 of the Project Gutenberg License included with this eBook or online
 at www.gutenberg.org. If you
 are not located in the United States, you will have to check the laws
 of the country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:

 	• You pay a royalty fee of 20% of the gross profits you derive from
 the use of Project Gutenberg™ works calculated using the method
 you already use to calculate your applicable taxes. The fee is owed
 to the owner of the Project Gutenberg™ trademark, but he has
 agreed to donate royalties under this paragraph to the Project
 Gutenberg Literary Archive Foundation. Royalty payments must be paid
 within 60 days following each date on which you prepare (or are
 legally required to prepare) your periodic tax returns. Royalty
 payments should be clearly marked as such and sent to the Project
 Gutenberg Literary Archive Foundation at the address specified in
 Section 4, “Information about donations to the Project Gutenberg
 Literary Archive Foundation.”

 	• You provide a full refund of any money paid by a user who notifies
 you in writing (or by e-mail) within 30 days of receipt that s/he
 does not agree to the terms of the full Project Gutenberg™
 License. You must require such a user to return or destroy all
 copies of the works possessed in a physical medium and discontinue
 all use of and all access to other copies of Project Gutenberg™
 works.

 	• You provide, in accordance with paragraph 1.F.3, a full refund of
 any money paid for a work or a replacement copy, if a defect in the
 electronic work is discovered and reported to you within 90 days of
 receipt of the work.

 	• You comply with all other terms of this agreement for free
 distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.

Section 2. Information about the Mission of Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.

Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

Table of Contents

		PART ONE True Hackers CAMBRIDGE: The Fifties and Sixties

	CHAPTER 2 THE HACKER ETHIC

	THE FULL PROJECT GUTENBERG LICENSE

OEBPS/Images/cover00044.jpeg

