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PREFACE











When taking into consideration the number of excellent
works now published on navigation there would seem
to be a small chance of finding a different angle from which
to discuss the subject. The purpose of the majority of
such books is to give instruction to beginners. This
book, however, is written particularly for the men who
do their work mostly by rote and wish to know more of
the reasons; or, perhaps, for schoolship graduates who may
here find a chance to extend their horizons.


I have not considered it desirable to avoid repetition
and in order to closely follow a line of thought have
freely repeated many points already taken up. This
has in a number of cases avoided the distraction of
seeking a page of reference elsewhere.


I have had in mind that it serve as supplementary
reading to the American Practical Navigator, Bowditch,
that great bulwark of navigation which for over a hundred
years has protected American ships through every deed
of valor and every commercial adventure. It is placed beyond
criticism by its venerable name and its remarkable
record and, as a reference book for the navigator, it stands
without a peer, but as a text book it founders the student.


If to such mariners as these a little insight is given
to the “Whys and Wherefores” of their work, I shall be
well repaid for the work of many watches below.


These discussions appeared several years ago, in a
less extended form, in the Master, Mate and Pilot, the
magazine formerly published by the American Association
of Masters, Mates and Pilots.


I have freely consulted the following standard works:
American Practical Navigator, Bowditch; Wrinkles in
Practical Navigation, Lecky; The Theory and Practice of
Navigation, Dunraven; General Astronomy, Young; Navigation
and Compass Adjustment, Muir; Guide to the
Marine Board’s Examinations, Reed.


I have received and am grateful for very valuable
help and suggestions from Mr. George W. Littlehales,
Hydrographic Engineer, U.S.N., Mr. Felix Riesenberg,
C.E., Commander New York State Schoolship Newport,
and George A. Collie (deceased), Nautical Expert, Hydrographic
Office, U.S.N.



G. B.




New York, April 15, 1918.
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THE WHYS AND WHEREFORES

OF NAVIGATION











CHAPTER I




Introductory Remarks




In embarking upon the study of navigation familiarity
with the compass is the first logical step: the quick
mental conversion of a course or direction given in points
to the same direction in degrees expressed in quadrants
as S. 35° E., and again into a system by which direction
is indicated by degrees from 0° to 360°. A mariner will
encounter all three of these systems and will find constant
conversion necessary back and forth for various purposes.
The 0° to 360° system is the most up-to-date and the
simplest form of handling direction.


Following the compass may be taken up the use and
description of other nautical instruments with which every
mariner is supposed to be familiar.


Dead reckoning is the first calculation to appear and
this involves the correction of the compass courses back
and forth between true, magnetic and compass directions.
This is dealt with under Azimuths and Amplitudes. In
practical navigation a vessel commences her voyage and

attempts to sail in a certain direction, but the well-known
elements of compass error, variation and deviation, current,
wind, seas and poor steering all divert the vessel from the
projected course. In dead reckoning a navigator strives
to keep track of his position by keeping a record of actual
courses steered and distances run. He then is obliged to
guess at the amount the vessel has diverted both in direction
and distance until an astronomical observation sets
him straight again. It is here particularly shown that
navigation becomes an art of estimating position and the
better the navigator’s bump of locality, the greater his
success. This is a peculiar gift and usually is born in the
man, at least it cannot be learned from books. The process
of finding latitude and longitude by dead reckoning
is supposed to be already well known to the reader and
will not be detailed at length.


However, every course angle is laid off from a meridian
(which is true N. and S.) and terminates in a parallel of
latitude. This meridian and parallel intersect at right
angles; hence these with the distance run (which is the
hypothenuse) form a plane right angle triangle, plane because
the curvature of the earth is not considered in short
distances. To solve this triangle, we have the course angle
and one side—the distance run. With these the other
two sides are easily found by computation, but more
easily by tables No. 1 and 2, Bowditch. The side along
the meridian is represented by the column headed Lat.
(difference of latitude) and the side lying in the parallel is
in the column headed Dep. (departure). Thus the values
of the sides of the triangle are given in miles and tenths,
showing the distance good made N. or S. and E. or W.



It will be noted that at the top of the pages of these
tables are four different courses and at the bottom are
likewise four courses making the same page serve for eight
different courses. This is accomplished by the fact that
triangles formed by these particular eight courses are the
same in shape. Thus N. 30° E., for instance, makes a
similar triangle to N. 30° W. (330°); S. 30° E. (150°);
or S. 30° W. (210°). They have identically the same
difference of latitude and departure. If this fact is not
clear draw a diagram and be convinced. In the cases of
N. 60° E. (60°); N. 60° W. (300°); S. 60° E. (120°);
S. 60° W. (240°), the same shaped triangle as above is
found, but reversed in that what was the difference of
latitude side now has become the departure side. The
values of these sides are read from the bottom of the page
and are found in the reverse columns to fit the reverse
triangle. The latitude value read from the top of the page
as 30° becomes a departure value when read from the
bottom with 60°.


The subject of Sailings is one of the early problems
confronting the student of navigation and will be considered
briefly. The above remarks on dead reckoning cover the
principle of plane sailing, the simple method where the
spherical surface of the earth is ignored and a flat ocean
substituted. This method will not serve for anything
but short distances of a few hundred miles without sufficient
error to render it impracticable. Traverse sailing is a
series of plane sailing courses made, for instance, by a
sailing vessel beating to windward.


In parallel sailing the vessel pursues a true E. or W.
course and runs along a parallel of latitude. Thus all her

progress is in the terms of departure with no difference of
latitude. As all meridians converge from the equator
towards the poles the length in miles of a degree of
longitude keeps on diminishing as the poles are approached
and, conversely, miles of departure have an
increasing value in degrees of longitude. So in parallel
sailing what we desire to know is what is the value in
the particular latitude of our course of our departure
(miles) in ° ´ ´´ of longitude. Having this and applying
it to the longitude left will give the longitude in. Middle
latitude sailing is very similar to parallel sailing in that
it is assumed, for the purpose of getting the difference of
longitude, that the whole departure of the course or courses
sailed has been made in the mean or middle latitude,
because the greater value (in the northern hemisphere)
in difference of longitude of a mile northward of the
middle latitude is counteracted by the corresponding lesser
value southward of the middle latitude.


Mercator sailing is perhaps the most extensively used,
as the Mercator principle is employed almost universally
in the construction of navigational charts. It is described
under Charts in this book.


Also under Charts is a description of the Gnomonic
Chart which is also called the Great Circle Chart and used
in Great Circle Sailing, also referred to in those pages.


The young navigator is counselled never to know where
his vessel is, lest through over confidence he be led into
close and dangerous quarters.







CHAPTER II




Nautical Astronomy







The sun is the center of the solar system, with all
the planets, including the earth, revolving around it,
some with orbits greater and others less than that of the
earth. The planets in some instances have satellites revolving
in turn around them, as the moon in the case
of the earth.


The movements of the earth will be, perhaps, more
readily understood by assuming a position at the North
Pole; here beneath the observer the earth is rotating left-handed—against
the hands of a watch, once each day;
while at the same time it is speeding onward through
space in a left-handed curve, which in the course of a
year resolves itself into a complete revolution around the
sun.


The sun and stars are considered to be stationary
for all navigational purposes, the apparent movements
of these bodies being entirely due to the motions of the
earth. The result of our daily rotation from west to
east is, that the heavenly bodies march past our meridian
in a majestic procession for 24 hours, after which
the performance is repeated. The uninitiated are here
forewarned against becoming confused by the assumption
used for convenience by navigators that the heavens revolve
around the earth.



The planets and moon join the sun and stars in the
daily parade past our meridian, but their apparent movements
are not entirely an illusion, for they have motions
of their own that somewhat affect the precision of their
daily revolution. This is readily observed in the moon’s
hour of rising, which is very perceptibly later each evening.
Her actual revolution around the earth, being from
west to east, is contrary to the apparent diurnal motion
and thereby each evening finds her farther to the eastward
and consequently rising later. As a result of this
change in the time of rising, the moon must of necessity
rise in every hour of both day and night in the course
of a month—the time she requires to revolve around the
earth.


The onward movement of the earth in its orbit as
we face the sun in latitudes north of the tropics, is toward
our right, and this causes the sun to apparently move
slowly eastward or to the left among the stars, corresponding
exactly to our movement westward. This movement
is opposite to his daily course across the heavens.
As a year is required for the earth to accomplish our
revolution around the sun, it follows that this same length
of time is consumed by the sun in making its apparent
eastward revolution of the heavens.


The movements of the planets are more complex.
They all revolve around the sun in the same direction
as the earth, but as their orbits are of vastly different
sizes, they will be found in various positions relative to
the sun; they overhaul and pass each other, but owing
to their uniform direction of revolution they never meet.
The planetary system is like the horse race at a county

fair; the pole horse has the advantage, but the varying
speeds of the contestants soon place them at various parts
of the track.


From the earth the movements of the planets, aside
from the diurnal movement, are composed of their own
actual movement around the sun, combined with an apparent
motion, due to the earth’s onward movement precisely
as described above in the case of the sun. The
combined movement of a planet may be noted by reference
to the fixed stars beyond it.


The positions of heavenly bodies are determined by
two measurements—coordinates—the distance north or
south of the celestial equator, called the declination, and
the distance east from the prime celestial meridian taken
as a reference, called the right ascension, each of which
will be subsequently treated at length under its individual
heading. The movement of the planets eastward or
westward as described, constantly changes their right ascension;
and as their orbits are inclined at different angles
to the celestial equator, they are always changing
their declination.


The planets whose orbits are smaller than that of the
earth are called inferior, while those whose orbits are
of greater dimensions are known as superior planets.
Mercury and Venus are inferior planets and consequently
are always nearer the sun; their comparatively close proximity
making them appear to us as morning and evening
stars. In fact, Mercury is so close that it is unavailable,
owing to the brilliancy of the sun, for observation
with a sextant; while Venus, on the other hand, a little
more remote, is an excellent body to observe, and is

always found in the east or west, conveniently near the
prime vertical, the most favorable place for a time sight
for longitude. The twilight or dawn which usually prevails
at the time of a Venus sight gives the navigator a
good horizon to observe upon. Mars, Jupiter and Saturn
are superior planets and their travels are so extended
that they may be found almost anywhere in the heavens
within the limits of their declinations.


The earth’s orbit is slightly elliptical, with the sun
located a little out of center—a little nearer one end.
Should a line or axis be drawn through the long diameter,
its intersection with that part of the orbit nearest the sun
is called the Perihelion while the opposite point is known
as the Aphelion. The former is used as a point of reference
from which the earth’s position can be located in terms
of angular measurement from time to time. This angle,
known as the anomaly, is formed by the line from the sun
to the Perihelion and that drawn from the sun to the
earth. The latter distance is called the radius vector
of the earth. We (the earth), are at the Perihelion about
January 1, and consequently this angle at that date is
0°, but from this time on, the angle increases approximately
one degree a day throughout the year.


The plane of the earth’s equator makes at all times an
angle of about 23° 28´ with the plane of its orbit. This is
a highly important angle to mankind, for upon it depends
the climate of the world. The axis of the earth, if we can
conceive it as represented by a slender imaginary staff,
extends through the unlimited distance to a point in the
heavens—the celestial pole; this point is in the zenith for
a person at our north pole. Since the distance between

these points is mathematically infinite, any number of lines
parallel to this “staff” will appear to penetrate the sky at
the single point of the celestial pole. Thus the parallel
positions of the axis corresponding to the earth’s various
positions, even those at opposite sides of the orbit, converge
into this common point. To be clearer, the parallel
lines representing the different positions of the axis during
the year according to our geometry form a group of separate
points on the heavens, but the distance being beyond
all reckoning, our limited conceptions fail to identify the
group of points and it resolves into one point.


By the same line of reasoning the plane of the earth’s
equator remains parallel in all its positions throughout
the yearly cruise around the sun, and its projection marks
but one celestial equator upon the sky.


While the direction of the axis and corresponding
position of the equator are constant for all practical purposes,
there is, nevertheless, an extremely slow circular
movement of the axis, called the precession of the equinoxes,
a subject which is reserved for subsequent discussion.




Coordinates




In nautical astronomy the earth is assumed to be the
center of space with the heavens forming a globular
shell around it, known as the celestial sphere. All fixed
stars are assumed to lie on its concave surface from the
earth regardless of their actual distances. The tracks
of all other bodies moving, or appearing to move, across
the sky are considered to be on the surface of this sphere.



It is necessary, in order to conveniently define the
position of heavenly bodies to mark this celestial sphere
with imaginary circles to serve as coordinates, as we
mark the earth with meridians of longitude and parallels
of latitude.


Before going into the explanation of these coordinates,
it may be well to consider a few facts concerning
circles. A great circle is of course understood to be one
whose plane passes through the center of a sphere, dividing
it into two equal parts. There can be an infinite
number of these circles whose planes cut the sphere at
every possible inclination as long as they pass through
its center. A circle may be a great circle of either the
celestial sphere, the earth, or even of a baseball. The
poles of a great circle are the points on the surface of
its sphere, penetrated by the diameter perpendicular to
the plane of the great circle. As for example, the poles
of the earth are connected by the diameter that is perpendicular
to the plane of the equator. An angle at any
pole is measured on the great circle which subtends it.
For instance, angles at the poles of the earth are measured
on the equator; angles at the zenith on the horizon. With
these facts well in mind we will proceed, showing the scheme
of circles employed in laying off the surface of the heavens.


There are three systems of circles, each designed to
fulfil a different requirement.


The first system depends upon the position of the
observer and changes its whole imaginary structure to
correspond with his movements. The plumb-line, if extended
to the heavens overhead, will determine the zenith,
the point of origin of this system on the celestial sphere.

The corresponding point directly beneath us is known as
the nadir.


The great circle of the celestial sphere everywhere
equally distant from both the zenith and the nadir is
the horizon. It is plain that a new zenith and new
horizon are created with every movement of the observer.
The facts that man is on the surface and not at the
center of the earth, and that his eye is elevated above
its surface, each creates another horizon.


The rational horizon is marked by a plane, perpendicular
to a plumb-line and passing through the earth’s
center; while the sensible horizon is determined by a
plane, also perpendicular to the plumb-line, but passing
through the eye of the observer. It will therefore be
seen that these two parallel horizons are some 4000 miles
apart, the semi-diameter of the earth; but this distance
when projected on the celestial sphere becomes insignificant
when compared with the infinite distance of this
sphere from the earth, and the rational and sensible
horizons shrink into a single line so far as we can perceive.


While this statement is true when dealing with the
stars, it needs modifying when dealing with the sun and
moon, and in very accurate observations of planets, as
their distances are insufficient to eliminate the angle
formed between the line from the body to the center of
the earth, and that from the body to the observer. This
is allowed for when observing these bodies by applying
the correction of parallax to the observed altitude.


The visible horizon is the boundary seen between the
sea and sky. If the observer’s eye were at the level of

the sea, his visible horizon would coincide with the sensible
horizon, defined above; but the elevation above the
surface from which sights are taken causes the line of
vision, tangent to the sea, to be depressed below the plane
of the sensible horizon making an angle with it called the
dip of the horizon. In practice all altitudes of heavenly
bodies taken from a vessel are measured to the visible
horizon and corrected for the dip to reduce them to the
sensible horizon, then again corrected for parallax to obtain
the true altitude of the body above the rational horizon;
or what is the same thing, the altitude as observed
at the center of the earth.


From the zenith, an infinite number of great circles,
known as vertical circles, sweep around the celestial
sphere, cutting the horizon at right angles and passing
through the nadir. The one which cuts the north and
south points is called the celestial meridian, and is evidently
a projection of the terrestrial meridian. The vertical
circle passing through the east and west points is
called the prime vertical, and has a distinction above other
vertical circles by virtue of its being the most favorable
position for a body in observations for longitude. The
heavens are further swept by an infinite number of parallels
of altitude which are, as their name implies, parallel
to the horizon.


The azimuth of a body is its angular distance from
the north or south points of the horizon, determined by
the angle formed at the zenith, or by the arc of the horizon
between the meridian of the observer and the vertical
circle passing through the body. Amplitude is the
angle at the zenith formed by the prime vertical and the

vertical circle passing through the body or it is the angular
distance from the east or west points, measured on the
horizon, and is measured similarly to the azimuth.


The system of laying off the heavens just described
is well enough for the momentary locating of a body,
which is a very important feature in navigation, but for
some purposes a more stable point than the zenith, which
on shipboard is ever changing, is needed, from which to
form a system that is constant the world over. To meet
this demand we take the point in the sky penetrated by
the prolongation of the earth’s northern axis—the celestial
pole—and from this point meridians and parallels are
developed upon the celestial sphere as has been done on
the earth. In fact, it is as though these terrestrial coordinates
were projected to the heavens where they hold
the same relative positions as upon the earth. The northern
celestial pole is in the zenith at our north pole. The
same is true of the south pole. The celestial equator, or
equinoctial, is a great circle, which is midway between the
poles and everywhere 90° from them. It marks the termination
of the plane of our equator extended to the celestial
sphere, or in other words, it is always directly over
our equator.


The parallels of the celestial sphere evolved by this
system, corresponding to those of latitude upon the earth
are called parallels of declination, while the celestial meridians
having as their point of origin the prolongation
of the earth’s axis, are known as hour circles. The particular
hour circle passing through the zenith is one and the
same with the celestial meridian. It will be seen that this
circle must pass through the zenith, nadir and the poles.



The angle formed at the pole by the hour circle passing
through a body and a local meridian is the hour angle
of that body, and is measured westward through 24 hours,
although A.M. hour angles of the sun are reckoned eastward
through 12 hours.


At the north pole where the zenith is identical with
the celestial pole, the vertical circles, parallels of altitude
and rational horizon are coincident with the hour
circles, parallels of declination and the equator, respectively;
but departing from this point they form angles
with each other corresponding to the degrees of latitude
from the pole; at the equator the angle reaches 90°.


The system of circles described above is by far the
most extensively used, and positions determined by its
coordinates are comparatively constant, but there is still
a third system of circles which was used and handed down
to us by the ancients. In the place of the celestial equator,
a similar great circle is used, known as the ecliptic.
This circle is determined by the extension of the plane
of the earth’s orbit to the celestial sphere. The poles
of the ecliptic everywhere 90° from this circle are the
points from which meridians depart as upon the earth.
The prime meridian of this system passes through the
intersection of the celestial equator, and the ecliptic—the
vernal equinox or First Point of Aries. Celestial
latitude and longitude are the coordinates used with this
system, but navigators universally prefer to use the well-known
declination and right ascension. Hence the path of
usefulness of the former seldom leads beyond the observatories.







CHAPTER III




Declination and Right Ascension







Owing to the important place that declination holds
in nautical astronomy, a detailed explanation will appropriately
follow closely in the wake of the preceding remarks.
It must be made clear, before getting under way,
that declination is the distance, in degrees, minutes and
seconds, of a body north (+) or south (-) of the celestial
equator measured on the hour circle passing through the
body. This distance is identical with the latitude of the
place in the zenith of which the body happens to be.
What declination is to a body in the heavens, latitude is
to the place on the earth directly beneath it.


The declination of fixed stars changes very slowly from
month to month, but the planets meander about on the
celestial sphere in a way that is liable to puzzle anyone
other than an astronomer. This element, however, is
worked out in the observatory and given in the nautical
almanac in a way that relieves the navigator of worry
concerning the complex movements of these latter bodies.
The same may be said of the moon, but the subject will
be treated, somewhat superficially though sufficiently for
the needs and desires of the practical mariner, in a
special talk on the moon. This eliminates all the celestial
bodies except the sun, the most important; and for this

reason the facts relative to its declination will be considered
at some length.


As has already been stated, the sun is stationary, but
our movements around it to the right causes it to appear
to move to the left; precisely as you see, when under
way, an anchored vessel’s masts move to the left along
the land behind her, while you move on to the right. We
have no landmarks behind the sun by which to observe
his apparent movements, so in lieu of such ranges, we
resort to the fixed stars, which serve as excellent marks
to get a bearing on Old Sol and keep tab on him as he
moves eastward among them. This movement must in
no way be confounded with his apparent daily motion
westward. As an illustration, we may see Orion—a familiar
friend—swinging high in the western sky in the early evening;
some weeks later he is riding low, and yet a little
later still, he is swallowed up in the brilliancy of the
setting sun. In other words, the sun and Orion have
approached and passed each other. We know Orion does
not move, for he is composed of fixed stars, and this
seeming westward movement of his is in reality the apparent
eastward marching of the sun, which is due to the
earth’s movement of revolution. The sun in this apparent
movement eastward follows a course at a rate equal to
that of the earth, along a great circle of the celestial
sphere called the ecliptic, a circle that plays an important
part in the explanation of declination, particularly that of
the sun. The ecliptic is marked by the extension of the
earth’s orbit to the celestial sphere.


A few more words concerning great circles will be introduced
here, and the following statements, while they apply

to great circles in general, especially fit the relationship
of the equinoctial or celestial equator to the ecliptic.
These two great circles cut each other at an angle of 23°
28´. Great circles always bisect each other, and hence
any two great circles of the celestial sphere, regardless of
the angle they may take with the celestial equator, must
intersect each other at exactly opposite points, 180° apart.
What is true in this regard of the celestial sphere is equally
true of the great circles of the earth. A vertex of a great
circle is the point which departs the greatest distance
from the equator—the highest point of the circle reached
in declination. There are two vertices 180° apart with the
two points of intersection 90° in either direction. The
declination or latitude of either vertex is equal to the
angle at which the circles intersect each other. The intersections
are called the equinoxes, and it may be well to
say here that the word equinox has several meanings in
navigation, often rendering it necessary to judge by the
text which is intended. The vernal equinox, for instance,
refers to a certain time of year—March 21st. The sun is
that day directly overhead at the intersection of the
equator and the terrestrial ecliptic and this point is sometimes
called the vernal equinox. Again, the sun at the
same time occupies a point on the heavens also known
as the vernal equinox, which is at the intersection of the
celestial equator and the ecliptic. The point in the orbit
occupied by the earth at this time is also spoken of as the
vernal equinox.


The reader is now asked to arouse his imagination
and if possible to conceive himself a passenger in an
aeroplane equipped with some remarkable power capable

of carrying him to a position in space, above, yet a little
outside, the earth’s orbit, near the Perihelion, and there
to heave to and view awhile an astronomical picture.
Spread out before his unrestricted vision will be the earth,
its orbit, and the sun. It is to be hoped that the imagination
of the reader is still sufficiently supple to suppose
the plane of the orbit to be the surface of an infinite ocean
stretching away beyond human conception of distance and
“breaking” against the celestial sphere; the “surfline”
there marks the ecliptic; the “ocean’s” surface
representing the great plane of the ecliptic. The sun will
be seen as if at anchor in his proper place within the orbit.
The earth is “underway,” half submerged, and listed 23°
28´ toward our point of vantage. This inclination, or
direction of the axis, is in a general way toward the perihelion,
and within a few degrees of being parallel with
the long diameter of the orbit. The earth maintains this
nearly parallel position of its axis with the long diameter
throughout the period of its revolution; a fact of importance
to remember.


It will be readily seen that during the encircling of
the sun there must be one position where the northern
axis is inclined directly toward that body, another opposite
where it is headed away from him, and two positions
midway where the bearing of the axis (projected on the
plane of the orbit) is at right angles to the bearing of the
sun from the earth; another feature to be “salted down”
in the memory.


If the earth revolved on an even keel, the equator
and the “waterline” would be coincident, but fortunately
this is not the case, and owing to the inclination of the axis

another great circle is defined by the “waterline,” called
the terrestrial ecliptic, being directly beneath its celestial
namesake. The inclination of the northern pole being
in a general way toward the perihelion, correspondingly
depresses or “submerges” that half of the equator below
the plane of the ecliptic, represented by the “water surface,”
and at the same time the opposite side rolls the equator
above it. At two points (the equinoxes) on opposite
sides of the earth, and at right angles to the direction of
its inclination, the equator and terrestrial ecliptic cross
each other at the “water’s edge.”


The sun is always exactly overhead for that point of the
earth which is nearest to it. This is an essential fact to
remember in navigation. Bearing in mind that the sun is
stationary and ignoring for a time the rotation of the
earth, each advance in its orbit brings about a change of
bearing of the sun and a new position becomes the nearest
point, and thereby directly beneath the sun. The constant
changing of the sun’s bearing continues throughout the
year, or one revolution, and a circle of these overhead
positions is marked upon the earth, which is coincident
with the terrestrial ecliptic—the visionary “waterline.” It
is obvious that the vertical rays of the sun must apparently
follow this line, for it can only be overhead for
places that are in the same plane, and this again is the level
of the “ocean.”


This circle of overhead positions projected on the
celestial sphere marks the ecliptic—the “margin” of the
infinite ocean, and the path that the sun seems to follow
eastward among the stars.


The above paragraphs show us that the sun in following

this line around the earth crosses the equator twice,
and twice he attains a distance of 23° 28´ from it, and so
must be on the equator twice and reach a declination of
23° 28´ north and 23° 28´ south in the course of one year.


Returning to our imaginary illustration, we will now
follow the peregrinations of the earth for a year and note
the effect of its inclination in the different parts of the
orbit upon the declination of the sun.


It will be assumed that it is the 21st of March and
from our airy position we see the earth away on our
right nearly 90° from the Perihelion. As this is the vernal
equinox, there are a number of interesting points to be
considered: The direction of the earth’s axis, projected
on the plane of the orbit, is at right angles to the bearing
of the sun from the earth; the sun is directly over the intersection
of the equator and terrestrial ecliptic, and being
overhead for this point on the equator, the declination
must be 0°. Moreover, a line drawn from this intersection,
or terrestrial vernal equinox, through the center of
the sun and extended to the celestial sphere would strike
the corresponding intersection of the ecliptic and the
equinoctial or celestial equator—the celestial vernal equinox.
The arrival of the earth at this position is the
signal of spring for the northern hemisphere, likewise it
announces the advent of autumn to our southern neighbors
below the “Line.” The sun this day rises in the east
(approximately) and passing through the zenith, sets in
the west for those living on the equator. The explorer at
the north pole is cheered by the first light as the sun
appears in the horizon, while the south pole becomes
enshrouded in the long Antarctic night. Without lingering

for ceremonies over the change of seasons, the earth continues
steadily on its way toward the aphelion; the sun’s
vertical rays leave the intersection of the equator and the
terrestrial ecliptic, and follow along the latter, thus widening
its distance from the equator as the earth proceeds.
As the ecliptic in this half of the orbit is above, or north,
of the equator the former is in north latitude and the sun,
following along it, is thereby also in north declination. A
line from any place having the vertical rays, through the
sun to the celestial sphere, always terminates on the
celestial ecliptic, all being in the same plane, and shows the
corresponding celestial position of the sun on it. Its
declination distance from the celestial equator, in degrees,
minutes and seconds, is identical with that of the place
on the earth directly beneath it relative to our equator.
So by showing the course of the sun’s overhead positions
on the earth its celestial positions are, at the same time,
indicated. The overhead position of the sun on the terrestrial
ecliptic gradually departs from the equator culminating
about June 21st, the summer solstice, in a
declination of 23° 28´ at a point near the aphelion in the
orbit, 90° (approximately) from the equinox.


The positions in the orbit of the summer and winter
solstices are reached by the earth several days before the
points of the aphelion and perihelion. These respective
positions would be in conjunction were it not for a slow
and remarkable motion of the earth’s axis before spoken
of, and later to be described, called the precession of the
equinoxes.


The summer solstice is the great half-way point of the
earth’s annual circumnavigation of the sun; it is a matter

of moment all over the world, and another great change of
seasons is at hand. The sun is overhead for places along
the parallel of 23° 28´ N. and bears north 23° 28´ from the
zenith at noon from places on the equator.


At the north pole, since its appearance on the horizon
on March 21st, the sun has mounted to an altitude of
23° 28´ and to nearly 67° at places on the Arctic circle.
The earth’s northern axis is, in this position, inclined 23°
28´ directly toward the sun, which pours its rays continuously
upon the northern regions, uninterrupted even
by the earth’s daily rotation. It is on this day that the
whole Arctic zone enjoys the full glory of the midnight
sun. The earth’s continuous movement of revolution does
not allow a delay of this favorable season in northern latitudes,
but continues to make the sun’s vertical rays follow
the terrestrial ecliptic as before on its way toward the intersection
with the equator 90° away. On this leg of the
journey, the sun is traveling on the upper one of two converging
lines and thereby gradually lessening its distance
from the other—the equator—or, in other words, reducing
its declination. This continues until September 21st when
the autumnal equinox is reached and the sun’s declination
becomes 0°. The sun now being overhead at the intersection
of the equator and the terrestrial ecliptic, is on the
opposite side of the earth from the intersection of March
21st. In fact the conditions are similar, but now the
earth is on the opposite side of the sun, and the change of
seasons is the entrance of spring for the dwellers in southern
latitudes.


The sun has dropped lower and lower in the sky at
the north pole since June, until on this day it is in the

horizon and it is time for the Esquimos to seek their
igloos and prepare to hibernate during the long Arctic
night now ushered in.


The sunshine at the time of the equinoxes is equally
distributed over the northern and southern zones, and the
zenith distance of the sun at noon at any place is, theoretically,
equal to the latitude of the place (except a small
error due to change of declination accumulated subsequent,
or previous, to the instant of the equinox).


The conditions during the next six months are reversed
as the earth proceeds into that half of the orbit containing
the perihelion. Now the sun following the terrestrial
ecliptic enters southern latitudes or south declination,
for in this part of the orbit the equator is above (or north)
the plane of the ecliptic. The sun’s diverging course
from the equator leads it farther and farther southward
until on or about December 21st it arrives at the winter
solstice with a culmination of 23° 28´ south declination.
At this point the earth is but a few degrees from the
perihelion as it was from the aphelion at the summer
solstice.


The earth’s north pole is now inclined directly away
from the sun and its rays have entirely forsaken the
Arctic for the Antarctic zone; notwithstanding the earth’s
daily rotation, which brings alternating light and darkness
to the greater part of the world, the northern polar
regions are in a continuous shadow, and no sunlight reaches
these remote parts. At this time of the year the northern
hemisphere above the tropic of Cancer, is in an unfavorable
position relative to the sun, and as a result places situated
on parallels less remote than the Arctic are having long

nights and short days in proportion to their latitude north.
On the other hand, in the southern hemisphere the days are
longer and the nights shorter, as the southern latitude
increases until at the Antarctic circle night disappears and
the sunshine is uninterrupted. It is seen that this is an
exact reversal of the conditions at the summer solstice.


The earth enters the last quadrant of the great ellipse
of its orbit, the sun now approaches the equator as the
earth nears the vernal equinox. The south declination
diminishes until on March 21st it becomes 0° and the
earth has completed its revolution. We will now go on
another tack and instead of considering only the effects
of declination due to the earth’s revolution, will assume
that the earth has been halted in its onward course of
revolution and is making its daily rotation in the same
position. The earth turning from west to east causes the
sun to appear to proceed from east to west in its diurnal
motion. Each rotation, requiring 24 hours, marks upon
the earth a circle of overhead positions parallel to the
equator and hence without change of declination. The
result of such a remarkable condition would be, no change
of seasons and no change in the length of the days and
nights. In reality, however, we are saved from such
monotony, for both the motion of rotation and revolution
of the earth are acting together and giving a compound
effect on the apparent movements of the sun. This alters
the daily circles just mentioned to a fine spiral of overhead
positions, ever changing in declination. The daily
difference of the sun’s declination shown in the Nautical
Almanac is equivalent to the distance between two threads
of this spiral.



The change of declination is most directly seen and
felt in the polar regions, where the activities of the denizens
are mostly limited to the favorable phases of this
change. At the north pole, after the sun has appeared
above the horizon, this spiral of declination can be continuously
followed. The sextant will disclose a constant
increase in altitude as the sun circles round and round the
sky, winding itself up and finally culminating at 23° 28´.
The process is then immediately reversed. The stars here
make daily circles of equal altitudes as their change of
declination is insignificant; but the circles of the planets
and the moon are converted into spirals, the fineness of
which is in proportion to the rate of their change of declination.


The fact that the sun reaches an altitude of 23° 28´ at
the pole at the summer solstice with its declination of a
like amount and that on March 21st, when the sun is in
the horizon with the altitude 0°, it is directly over the
equator with 0° declination, shows that at this place (the
pole) the altitude is equal to the declination. Should an
explorer travel southward 1°, his sextant would show an
altitude 1° greater than at the pole, yet moving about does
not affect the declination at a given time. It follows by
taking his altitude at noon the explorer in the polar
regions may readily learn his distance from the pole by
subtracting the declination in the Nautical Almanac from
his sextant reading.


It may not generally be known that the southern summer
is shorter than the summer of the northern hemisphere,
but such is the case by approximately eight days.
The reason of this inequality lies in the fact that the sun

is nearer one end of the orbital ellipse, and the short diameter
passing through this body divides the orbit into
unequal parts. The smaller part being that traveled by
the earth during the southern summer. Furthermore
the nearer proximity of the sun causes an accelerated
motion which further tends to lessen the time spent by
the earth in this part of the orbit.




Right Ascension




Declination and right ascension being used together
as coordinates, we will not separate them. It will be remembered
that the equator and the terrestrial ecliptic
cross each other on opposite sides of the earth; that on or
about March 21, the sun is overhead at the intersection
that is the vernal equinox. Now if at this intersection
on this day a plumb-line were carried upward, it would at
length reach the sun, and continued to infinity and projected
on the celestial sphere would locate a point called
the celestial vernal equinox, known by many as the First
Point of Aries. This point is one of the most important
celestial “landmarks” used in astronomy and navigation,
but, unfortunately, no heavenly body marks its place.
However, as its relative position among the neighboring
stars is well known, its exact location is easily ascertained.


The hour circle which passes through this point is
known as the equinoctial colure, and may be considered
the prime meridian of the heavens, for from it is measured
the right ascension of all bodies. Right ascension
of a body is the angle at the celestial pole between this
meridian of reference and the hour circle passing through

the body. It is always measured eastward through 24
hours of sidereal time (360°). The angle is measured by
the arc intercepted on the celestial equator. For example,
a star 15° east of the equinoctial colure has a right ascension
of 1 hour or 15°, but, if the star is 15° west, its right
ascension is 23 hours or 345°.


The positions of heavenly bodies are defined by right
ascension and declination exactly as positions upon the
earth are expressed by longitude and latitude, right ascension
corresponding to longitude and declination to latitude.


In the discussion of Time, to follow, more facts concerning
right ascension will be found.




Precession of the Equinoxes




A comparison of the present positions of the fixed
stars with their places as recorded in ancient times shows
a great discrepancy. The celestial latitudes, which were
reckoned from the ecliptic, show no appreciable change;
but in the declinations and right ascensions there is a great
departure from the old positions. The error of right
ascension was found by the old Greek astronomer, Hipparchus,
to appear as a uniform eastward movement of
all the stars, which led him to reason that, instead of the
stars themselves changing, their point of reference was
moving westward, thus lengthening all right ascensions.


The famous astronomer after further reasoning decided
that the position of the celestial pole was changing,
in fact that the line of the earth’s axis was describing a
circle on the heavens, which was left-handed or against
the hands of a watch as viewed from the north pole of

the earth. This movement was found to be extremely
slow, requiring 25,800 years to complete the circle which
has as its radius the amount of the inclination of the
earth’s axis—23° 28´.


If a match is put through a piece of cardboard about
the size of a half dollar to the distance of ¼ inch, and
spun, the motion of the cardboard just as it staggers
through loss of speed, gives some idea, although exaggerated,
of the precession movement of the plane of the
equator, which is of course infinitely slower. The movement
of the top of the match is a semblance of the corresponding
motion of the vanishing point of the axis on the
celestial sphere.


The earth, as already explained, points its axis at
practically the same spot in the heavens throughout the
year, and if it were not for this annual precession of 50´´
it would for all intents and purposes hold a permanent
direction. About December 21, the winter solstice, while
the earth is still some degrees from the perihelion, its
northern axis, is inclined directly away from the sun.
Each year this distance from the perihelion is becoming
greater, widening this angle between the direction of the
axis, projected on the plane of the orbit, and the major
diameter of the orbit, until in time the north pole will be
headed directly away from the sun in that part of the
orbit which the earth now occupies in September, and
so on.
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 This diagram shows the successive positions of the earth at the Vernal Equinox (March 21st) due to the revolution of
the axis and the consequent westward movement of the First Point of Aries.

Fig. 1.


In the year A.D. 1250 the winter solstice occurred at perihelion
and in the year 6400 A.D. the vernal equinox will
occur at this point of the orbit. That is, the axis of the
earth was inclined directly away from the sun at perihelion

in the former year but in the latter year the inclination
will have changed about 90° backward against the
earth’s course about the sun, and it will be the beginning
of spring (the vernal equinox) when the earth is at perihelion
instead of the first of winter as in 1250 A.D. Since
1250 A.D. the inclination has changed an equivalent of
about 11 days for now the earth is at perihelion about
January 1st, and the solstice occurring about December
21st, shows the present relative situation.


In other words, the vernal equinox is slipping back
in the orbit towards the perihelion, and as the solstices
maintain their positions at 90° from the equinoxes they
must likewise be “slipping a cog” each year.


The vernal equinox was situated many centuries ago
in the first part of the constellation of Aries, and was known
as the First Point of Aries, but owing to the movement
of precession it has dropped back or westward (as we face
our southern horizon) 50´´ a year until it has left that constellation
entirely and is now about leaving the constellation
of Pisces, some 30° from the position used by Hipparchus
in his calculations. The majority of navigators
still call this point of the celestial vernal equinox the First
Point of Aries.


Holding these facts in mind, it may be clear that as
the earth approaches that part of the orbit where the
vernal equinox occurs it has turned its pole, and correspondingly
points on the equator, 50´´ to the right or
west during the year; thus causing the point of the terrestrial
equinox to meet (or come under) the sun that
much sooner. In other words, referring to the effect as
seen on the heavens, the celestial equinox was advanced

to the westward that much to meet the sun in its eastward
movement among the stars and will become the
nearest point to the sun, 50´´ before the position of the
equinox of last year. As the points in the orbit where
the vernal equinox occurs year by year works back toward
the perihelion, the range line through the sun to the
heavens beyond must each year correspondingly edge its
way westward along the celestial ecliptic through different
constellations. This is what is known as the precession
of the equinoxes.


The course of the celestial pole in the heavens is
shown by a circle drawn about the pole of the ecliptic
using 23° 28´ as a radius. This path will pass 1¼° from
our pole star and this position marks the present termination
of our extended axis; half way around the circle
it passes the first magnitude star Vega close aboard, thus
making this the future pole star some 12,000 years hence.
If there be such creatures as navigators in those far-away
days, latitude by Vega will no doubt be a popular sight
among them.


The cause of this remarkable movement of the earth
is due to the fact that the earth is not a true sphere, and
the influence of the sun is not exerted equally upon its
mass. Its flattening at the poles is attended by a corresponding
bulging along the equatorial belt. When the
earth is in the vicinity of the perihelion, leaning away
from the sun, the half of this ring of extra matter on the
side towards the sun is above the plane of the ecliptic or
orbit. The tendency of the added attraction exerted upon
it, is to draw the earth to an upright position, or in other
words, at this time the sun is pulling stronger on the

northern or upper side than on the lower. Again, when
near the aphelion and summer solstice, leaning towards
the sun, that part of the ring of extra matter on the side
towards the sun is below the level of the orbit, and the
attraction is again tending as before to pull the earth
upright. At the equinoxes there is an equal amount of
this extra matter above and below the plane of the orbit
evenly distributing the attraction.


The effect of this influence would in time bring the
earth’s equator and the plane of the ecliptic into coincidence
and the earth’s pole would be directly beneath the
pole of the ecliptic, were it not for its rotation. The two
forces acting upon the earth result in the slow revolution
of the axis. The exact effect of these forces is rather
complex but it is a demonstration of the principle of the
gyroscope. The movement of the axis is affected very
slightly by other influences than that of the sun, the most
notable of which is the moon, whose monthly revolutions
around the earth produce a similar influence in the bulging
mass within the tropics, but as its revolutions are so
rapid, it has but a slight effect on the precession movement
of the earth. It is sufficient, however, to cause the
extended axis to nod slightly and make a waved circle
of precession on the heavens. This is called “Nutation,”
from the Latin word nuto, meaning to nod.







CHAPTER IV




Time






A thorough understanding of time, one of the most
important elements in navigation, clears the way to a better
idea of the theory of finding one’s position at sea;
there is, in the minds of many, considerable fog hanging
about certain portions of this subject, and it is hoped
that this explanation will clear some of this away.


Worcester’s Dictionary defines time as measured duration.
It is the interval between events. It flows ceaselessly
and with uniformity, yet the mortal mind is unable
to conceive its beginning or its end. Man, in order to
measure his activities, has blocked it off into different denominations
convenient for his uses. Of these, the navigator
uses the following in his determinations and reckonings:
years, months, days, hours, minutes and seconds.


Certain astronomical phenomena were naturally enlisted
by the ancient astronomers to furnish standards for
time measurements; the value of a year was determined by
the time necessary for a complete revolution of the earth
around the sun, while the length of a day was fixed by
the time of a rotation of the earth on its axis. The precision
with which these evolutions are accomplished gives
the required accuracy. The revolution of the earth governs
the change of seasons, while the rotation is responsible

for the alternating periods of day and night. With the
exception of the month, the other measurements of time
mentioned above are denominations of these standards.
The month, one-twelfth of a year, is measured by the
revolution of the moon around the earth.


Solar time, as its name implies, is measured by the
apparent diurnal movement of the sun. It is the variety
of time in universal use by which is regulated the daily
activities of life; and this is indeed quite natural, for of
necessity the work and play of the world depend upon the
light and darkness that this body serves out to us.


While we are unconscious of the earth’s rotation, its
effect is seen in the apparent daily course of the sun
across the heavens, caused by our turning past it, yet in
common practice the sun is assumed to revolve around the
earth, and is usually thus spoken of for the purpose of
simpler explanation.


The time at each meridian is necessarily different
from that of every other, as only one of them holds the
same position relative to the sun at the same time or
putting it in another way, only one meridian can cross
the sun at the same time, determining local noon for
those places located upon it. It is forenoon for that part
of the world westward of the sun and afternoon for that
portion eastward of it. As the earth turns from west to
east, the places or meridians to the eastward are first
favored with the sun’s light, and those meridians cross
this body before those to the westward. The sun apparently
moves from the eastward to the westward, crossing
each meridian in succession until in a few hours it is afternoon
for places to the eastward and noon with us. The

sun is now in our meridian, and it is forenoon for people
to the westward of us. For example, at 7 A.M., 75th meridian
time, it is noon in England and dead of night in our
Pacific Coast; at our noon (75th), it is late afternoon in
England and breakfast time in California.


It requires 24 hours, solar time, for the sun to make its
apparent revolution around the earth, this course being a
circle; it contains 360° of arc. It follows that in one hour
it passes over 15° of arc, while 4 minutes are required
for 1° to be traveled. Thus it is evident that any arc of
the circumference of the earth, or difference of longitude,
which is the same thing, has an equivalent time value
and vice versa. That is, the arc comprised between the
meridian of Greenwich and the 60th meridian west, for
instance, besides being measured as 60° W., is equal to 4
hours of time. Again 4 hours of Greenwich time indicates
that the sun has crossed the Greenwich meridian 4 hours
ago and is at that particular instant crossing the meridian
60° west of Greenwich. If the arc were between Greenwich
and a place 60° E., the equivalent time interval
would also be 4 hours, because 60° of arc is everywhere
equal to 4 hours of time; but the time at Greenwich, with
sun on the 60th meridian east, is 20 hours of the previous
day, or 8 A.M. of the present day. Thus: May 14, 20
hours, or May 15, 8 A.M.


The meridians extend from pole to pole, and it matters
not what parallel you may be on, whether north or
south latitude, your distance can always be measured to
the Greenwich meridian in arc or time precisely as well as
though you were on the exact parallel of Greenwich itself.
If the time at Greenwich is carried, and the local time of

any other meridian is desired, turn the difference of longitude
into time and apply it with regard to signs: - if
west of Greenwich and + if east. The local time at any
place can thus be calculated; or to go farther, if the time
of any meridian is at hand, the time of any other place
can be readily found.


Every meridian carries a time of its own, and the
instant of the click of a telegraph key may be recorded
all over the world in the local time of each locality, yet
the interval between this and a subsequent click has an
absolute value which is the same at every place, regardless
of whether it is expressed in solar, sidereal or lunar
time, and its actual value is invariable.


For convenience, on land, our country is blocked off
into belts of standard time, 15° wide, each carrying the
time of its central meridian. For instance, 75th meridian
time is used by the eastern states, while just westward
the clocks’ faces show an hour earlier time, that of the
90° belt, and so on.


It is a good rule to remember in reckoning all kinds
of time that the clock’s face shows earlier time to the
westward, and from this it is easy to deduce the proper
application of a correction.


There are two kinds of solar time used in navigation;
the first to be considered is apparent time, the kind shown
by the sun dial, or measured by the sun as we see it. It
is noon of the apparent day when the sun is seen with
the sextant to dip while taking a meridian altitude. It is
at the moment of dipping that the navigator announces
12 o’clock, and with the striking of eight bells begins a
new apparent day on shipboard.



The Day Lost and the Day Gained.—The fact that
the sun seems to travel from east to west, determining the
local time for successive meridians or places along the
way, causes an interesting condition in reckoning time
aboard ship. A vessel steaming westward on a parallel
sails with the sun; in the forenoon she is sailing away
from it, at noon the sun overhauls the vessel and they
race together, but it becomes a hopeless chase for the
steamer during the afternoon. In consequence of their
similar course, however, the vessel will hold the sun longer,
and the length of daylight will be increased over that time
allotted a stationary position in proportion to the speed of
the vessel. On the other hand, a vessel steaming eastward
each hour advances to meet the sun; at noon the
effect is as if they pass each other, and during the remainder
of the day they are moving in opposite directions,
hence this vessel has a shorter term of light and
is deprived of its full share of sunshine.


In practice these facts require the continuous setting
back of the ship’s clock, keeping apparent time on a
westbound vessel. Take a concrete case for illustration:
to-day assume we are at sea on the 45th meridian west
and set the clock at the dipping of the sun, apparent noon;
the vessel is westbound, steaming along the equator, and
rolls along at a good 15-knot clip. In 24 hours by the
clock we will cover 360 miles, or 360´ of arc on the equator,
which is equal to 6° difference of longitude. (Should
the easting or westing be made in higher latitudes, the
difference of longitude will be increased proportionately.)
So when the ship’s clock shows noon we will be 6° farther
west than at the preceding noon, or in 51° west. The

navigator, should he observe the sun, would find it had
not reached its highest altitude (the meridian), and he
would be obliged to wait (approximately) 24 minutes,
the equivalent in time of 6°, before the sun would dip.
The clock is carrying 45th meridian time, and we are now
determining noon for the 51st meridian. He sings out
8 bells, but the clock shows 12.24 P.M. The ship has
gained 24 minutes by sailing with the sun, and the clock
is set back and a fresh start is made.


A vessel sailing east has the opposite experience. The
navigator, if guided by the ship’s clock, would find that
the sun had dipped some 24 minutes before noon if a
run similar to the above mentioned was made eastward.
In this case the apparent time of the 51st meridian is shown
by the clock, while the ship has moved on to the 45th,
and the time of noon is correspondingly approximately
24 minutes earlier than the clock admits.


In the above example, the clock in the first instance
is 24 minutes fast and is set back that amount to correct
it for the time of the 51° meridian W.; but this time cannot
be thus arbitrarily thrown away without some subsequent
reckoning. There is just so much time all over the
world, and there are no gaps or extra intervals; it is
absolute in its uniform flow. Therefore, there must be
a way of squaring ourselves with Old Father Time.


But let us follow the voyage farther and see what
transpires: Continuing the course westward and ignoring
for convenience all intervening land, each day it becomes
necessary to set the clock back 24 minutes until we have
circumnavigated the earth. Suppose we took our departure
from the Greenwich meridian and kept our log

throughout the voyage with great care, expecting, according
to our reckoning, to arrive on a Saturday, we would indeed
be mystified on arrival to hear the ringing of church bells
and find that it was Sunday. We have lost a whole day
according to our log, by throwing away 24 minutes at a
time. The time of the world goes on just the same, regardless
of how we juggle the hands of the clock. Now,
if we try a similar voyage eastward around the earth, we
will be setting the clock ahead 24 minutes each day, and
when the anchor is dropped on our return, we will discover
that it is Friday instead of Saturday. The ship’s
clock has skipped this 24 minutes each day, and our log
is a day ahead of what it should be.


In order to prevent this difference of date, it was decided
years ago to establish an international date line, which
should correspond approximately, with the 180th meridian.
The logs of vessels going west around the earth will
be a day behind the calendar when they reach Greenwich,
so a day is dropped from the reckoning when crossing the
180th meridian; that is, if it is Monday, the next day in
the log will be Wednesday. On the contrary vessels bound
eastward will be a day ahead when they reach their destination
of Greenwich, so the date of crossing the date line
is entered twice in the log, as for instance, there will
appear two Mondays. By this method the accumulated
errors of chasing local time, are in a measure straightened
out, and ship’s logs are kept in agreement with the calendar
of those at home. Thus it will be seen that it is the accumulation
of time thus gained or lost that obliges navigators
to add or drop a day to or from their logs when crossing
the 180th meridian.



In slow cargo steamers and sailing vessels, particularly
when the course creates but little departure, the
change of time due to difference of longitude is not sufficiently
large to cause much inconvenience and can be
taken care of by setting the clock back or ahead at noon.
But with the development of the modern steamer, speed
has increased to such an extent that the easting or westing
of certain day’s runs correspond to a considerable
amount of time, and to correct the clock to local time,
all at once, would be a source of inconvenience and a
bother. This is especially true where a fast steamer covers
much easting and westing in high latitudes where the convergence
of the meridians has shortened the degrees of
longitude, thereby increasing the difference of longitude
over a similar day’s run in lower latitudes. Hence, in
order to more equally distribute its error, the longitude
at noon is anticipated by the navigator and the clocks
set at 8 A.M. for the local time of the approaching noon
meridian.


When the clocks are set at noon, they are correct
only for the moment and then start an accumulating error,
depending in amount upon the rapidity of the easting or
westing made. But by anticipating the longitude at
noon, the forenoon watch will experience a decreasing
error instead of one accumulated for twenty hours, and
still increasing. It serves to keep the time of day more
nearly correct.


In the transatlantic service, where high speed is maintained
and the courses result in a large amount of easting
and westing, another method is used for convenience.
The navigator estimates the noon position of the next

day and accordingly divides the error into thirds. The
amount of the first third is applied at 11 P.M., the second
at 3 A.M. and the last third at 5 A.M. By this method
the error is distributed between the “first,” “mid” and
“morning” watches. It is a matter of considerable
moment, and no joke, to the hard-working stokers to have
the clock set back on them the full amount of the day’s
run all at one time; and likewise going east, it would be
giving an unfair advantage to those on duty to set the
clock ahead nearly an hour during the morning watch.


The apparent or real sun is not a very accurate timekeeper
and its days are unequal in length. The aborigines
and even our ancestors were content with the time of day
indicated by the sun dial, but as the generations have
passed, each bringing increased development, time has
become valuable; the crude timepieces have been forced
aside by more reliable instruments until to-day we figure
down at times to a one hundredth part of a second.


It is impossible to construct a clock that will follow
the irregularities of the apparent sun, so an imaginary sun
has been devised which is assumed to make its revolution
at a uniform speed along the celestial equator with exactly
24 hours between its transits of the same meridian. This
interval is the average of all apparent days in one year.


The varying rate of the sun’s apparent motion is due
to several causes which will be subsequently discussed
under the Equation of Time.


The time measured by the transit and progress of
the mean sun is called mean time; if at Greenwich, it is
Greenwich mean noon and Greenwich mean time (G. M.
T.); if it represents the time of the observer’s place or

meridian, it is local mean time (L. M. T.). It is mean time
that is shown by all clocks and chronometers used in
every day life.


The distance between the apparent and mean suns,
expressed in time, is known as the Equation of Time, and
the application of this correction depends upon which sun
is ahead. It is tabulated in the nautical almanac for every
two hours of Greenwich mean time, with hourly differences,
so it can be reduced for longitude in time to any
meridian, or corrected to any intermediate Greenwich
time. It is applied according to the sign accompanying
it, and can be used to change apparent into mean, or
mean into apparent time.


The progress of the mean sun across the sky with
reference to the meridian is measured by the angle at
the pole (expressed in time), between the meridian and
the hour circle passing through the mean sun. This is
the hour angle of the mean sun as well as the local mean
time.


Civil Time is a variety of mean time, and is reckoned
through 12 hours from midnight to noon, and again
12 hours from noon to midnight, dividing the day into
the well-known periods of A.M. and P.M. With this kind
of time, the day begins at midnight and the hour angle
until noon is measured eastward through 180° of the
revolution and westward through the remaining half from
noon to midnight. In other words, 4:00 P.M. signifies
that the sun has a westerly hour angle of 4 hours, while
8:00 A.M. indicates that the sun is 4 hours eastward of
the meridian.


Astronomical time is reckoned westward through the

whole 24 hours of the day, 0 hours being noon. From
noon to noon is an astronomic day. Thus 5 P.M. civil
is the same as 5 hours astronomical time, while 5 A.M.,
May 14th is the same as May 13th, 17 hours.


In every solar observation for time the real or apparent
sun is observed and hence the time derived from the sight
must be local apparent; to which the equation of time
must be applied to convert it into local mean time. It
has already been made clear that the longitude is equal
to the difference between the local mean time and Greenwich
mean time, or between local apparent time and
Greenwich apparent time.




Sidereal Time




Sidereal is derived from the Latin word sidus, meaning
of or belonging to the stars. Sidereal time is measured
by the apparent diurnal revolution of the stars, resulting
from the rotation of the earth. By their use the
conditions which render the sun inaccurate as a timekeeper
are eliminated; for the period of rotation of the
earth is so regular that the passages of the stars across
the meridian occur with great precision. This exactness
enables the astronomer to keep the observatory clock
checked to a remarkable degree of accuracy. These observatory
clocks carry sidereal time, and for convenience
it is customary to divide their faces into 24 instead of
12 hours.


Sidereal time is the bedrock of all time; for it is by
converting it into solar time and sending it throughout
the country by telegraph and radio that the people of

the world get the standard by which to set their clocks and
chronometers. Sidereal time is not practicable for every
day use as its noon occurs, without regard to light or darkness,
at every hour of day or night during a year. In
March, at the time of the vernal equinox, it agrees with the
solar clocks, but in September at the autumnal equinox,
its noon occurs at the solar midnight.


While the sun is employed as the object of reference
in solar time, it may appear strange that no particular
star is thus used in sidereal; but in lieu of a definite stellar
object by which to measure the sidereal movement of the
heavens, we refer to the celestial vernal equinox.


This point was located in the constellation of Aries
centuries ago, and hence its popular name—The First
Point of Aries; but this has become a misnomer, for the
point has long ago moved westward into another constellation,
as discussed under the Precession of the Equinoxes.
Navigators still cling to the name, however, and
the equinox continues to serve its purpose, regardless of
its slow drift westward.


This imaginary point of reference crosses the observer’s
meridian much as the stars do, with the difference
that it is always on the celestial equator and acquires
no declination. The value of this point becomes further
enhanced by the fact that it always lies in the same direction
regardless of our position in the orbit. In other
words, the distance of the equinox being infinite, lines
drawn from perihelion and aphelion, respectively, to it,
fail to produce an appreciable angle.


In explanation of this statement, it must be understood
that for all uses on the earth the terrestrial system

of direction (that is, using the bearing of the north pole
as a standard, with east to the left and west to the right
when the back is toward the pole) is entirely adequate,
but when dealing with the direction of celestial bodies, a
broader standard must be considered. North and South
both have a definite place in the heavens, being the points
of the extended axis of the earth, but east and west are
only relative expressions. To demonstrate this: it is
possible for a man, traveling westward on the Trans
Siberian Railroad, to see from the rear platform, in the
evening, a certain star bearing eastward. At the same
moment it is possible for an officer of a transpacific liner
in the early morning, to be taking a sight of this same star
bearing westward. In terms of absolute direction that star
bore the same from both sides of the world.


On the 21st of March the earth, sun, and celestial
vernal equinox are in range, with the sun between the
earth and the equinox. For a place in north latitude on
the meridian of the terrestrial equinox, the sun as usual
bears south at noon this day, and hence the range mentioned
above bears south at that time.


This coincidence of bearing is only momentary, for
the earth with its onward motion immediately moves out
of range and forms an angle between the sun and the
celestial equinox. At noon on the day succeeding the
equinox the sun bears to the left of the so-called First
Point of Aries (celestial vernal equinox). The sun according
to terrestrial direction always bears south by true
compass at noon, yet the First Point of Aries being at an
infinite distance always bears the same by absolute direction.
If this point could be seen and a bearing of it taken

by compass simultaneously with the sun, it would be,
perhaps, S. 1° W. and so on widening the angle, roughly
speaking, a degree each day.
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The interval between two successive transits of the
sun across the meridian constitutes a solar day, and likewise
the period required for a certain star to return to
the same meridian is a sidereal day, but these two days
are not of the same length. The solar day we know is
24 hours long, but its sidereal contemporary has a length
of only 23 hours, 56 minutes (approximately) solar time.
The sidereal clocks, however, are geared to show 24 hours,
sidereal time, in 23 hours, 56 minutes, solar time. By
this it will be seen that in any given period the face of
the sidereal clock will show more hours than the solar
clock.


Both the solar and sidereal clocks start even at the
vernal equinox, about March 21st, but from then on, the

sidereal clock gains on the solar time clock about 4 minutes
a day until in a year it is a full 24 hours ahead, showing
that there is one more day in a sidereal year than
in a solar year. The approximate relation of the times
shown by these clocks is readily calculated by allowing
a gain in the sidereal clock of one hour for each 15 days
after March 21st, or two hours for each month.


In order to aid in a simpler explanation, let us again
follow the earth around its orbit and note the conditions
that distinguish sidereal from solar time. Let us once
more assume it to be the time of the vernal equinox, the
clocks, both sidereal and solar, now show 0 hours, and
the sun, the earth and the First Point of Aries are in
range. The earth immediately moves out of line by virtue
of its onward motion, and the sun correspondingly appears
to move eastward; this is imperceptible at first,
however, and not noticeable without a careful measurement,
as it seems to be swallowed up in the contrary
(westward) diurnal movement.


After 24 hours of rotation from the instant of the
equinox the earth turns the meridian until it causes the
First Point of Aries to transit, marking sidereal noon of
the first day. The sidereal clock at this moment reads 24
hours, but a glance at the solar clock shows 11 hours 56
minutes A.M., about 4 minutes short of (solar) noon. An
observation will show that the sun has apparently moved
about a degree eastward of the hour circle passing through
the First Point of Aries since the preceding noon, and
the earth must turn this extra degree before the sun
will be brought to the meridian, thus occupying the 4
minutes mentioned above. In other words, the earth turns

360° in a sidereal day but must turn about 361° in a solar
day.


Three months after the vernal equinox, the angle
between the First Point of Aries and the sun becomes, in
round numbers, 90°, and it requires 6 hours for the earth
to bring the sun to the meridian after the passage of
the First Point of Aries. In plainer language, when the
First Point of Aries crosses the meridian (sidereal noon)
the sun is about 90° to the left—about rising in the eastern
sky; the earth must make a quarter turn, or 6 hours, before
it will be solar noon. Thus it will be seen that at this
point sidereal time is 6 hours ahead of solar time.


In six months, when the First Point of Aries is on
the meridian the noonday sun is shining on the antipodes,
and it lacks 12 hours of solar noon. The difference between
the sidereal and solar clocks has now reached 12
hours and through a continuation of the same process
the interval between their readings, widens throughout the
remainder of the year.


When the 21st of March comes around again, and
the meridian presents itself to the sun and the First Point
of Aries in range, a careful count of the number of times
this latter point has crossed the meridian during the year,
discloses 366¼ transits. That is, the earth has actually
turned about its axis 366¼ times. The sun is found to
have passed the meridian only 365¼ times. Counting
the rotations of the earth by the number of the sun’s
transits while we are revolving around him, causes the
apparent loss of a day due to the earth unwinding itself
once, so to speak, during the year. The accumulated
difference amounts to one sidereal day. Hence it will

be seen that a year contains 366¼ sidereal days of 23
hours, 56 minutes each, and 365¼ solar days of 24 hours
each.


Now for a recapitulation of the subject of time.


The rotation of the earth is the real standard of measuring
time intervals; the period required for this rotation
does not vary. It has been suggested that the tide waves
have a minute effect on the regularity of this movement,
but the construction of our clocks is such, that if any
variation exists we are unable to detect it. Whether we
use the passages of the stars, or the transits of the sun to
reckon our time, it falls back in either case upon the diurnal
rotation of the earth.


Apparent time is measured by the seeming progress
of the actual sun. The time of its transit of the meridian
is irregular, but is always shown by its “dip,” culmination,
with the sextant.


Mean time is reckoned by the revolutions of a fictitious
sun, called the mean sun, and the length of one of
these revolutions is the average of a year of apparent
days. This, owing to its uniformity, is the time used
for the everyday purposes of life. The difference between
apparent and mean time is called the equation of time,
and, by applying it according to signs given in the Nautical
Almanac, one can be converted to the other as desired.


Sidereal time is indicated by the position of the First
Point of Aries relative to the meridian; it is star time.
The stars make a complete revolution of the heavens in
4 minutes less time than is required by the mean sun.
Therefore the sidereal day is that amount shorter than
the solar day.



The point of the celestial vernal equinox or First
Point of Aries is a sort of celestial “bench mark;” besides
indicating sidereal time, it serves as a point from which
right ascension is measured eastward. This subject has
been discussed previously, but as it is intimately associated
with sidereal time, perhaps it may be made clearer
since the latter has been so fully explained.


Right ascension is measured on the celestial equator,
precisely the same as longitude on the earth, excepting
that it is always measured eastward through the full 24
sidereal hours, contrary to the diurnal movement of heavenly
bodies. Moreover, the meridian passing through the
vernal equinox is called the celestial prime meridian, and
sometimes the Greenwich of the heavens. There is another
point of distinction, however, between this prime
meridian of the sky and our meridian of Greenwich, which,
while it does not effect practical navigation, has to receive
consideration in the long run; our longitude values
on the earth remain at all times constant, but owing to
the precession of the equinoxes the celestial prime meridian
is slowly moving westward, thus causing the right
ascensions measured from it to become very slowly in
error (50´´ yearly).


The hour angle of a body is the angle formed at the
pole between the meridian and the hour circle passing
through the body measured westward.


With all these important facts well in mind we will
go ahead under a slow bell, through a few more statements
which may be found a little perplexing. However,
a careful study of the Time Diagram will, no doubt, drive
away the haziness so often surrounding the subject of time.



 [image: Figure 3]
 This diagram represents the plane of the equator looking down upon the
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reckoned therefrom. The arrows on the outer circumference indicate the directions
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The hour angle of the mean sun is the local mean
time, and the hour angle of the First Point of Aries is
the local sidereal time. The local mean time and longitude
in time accelerated by Table III Nautical Almanac
plus right ascension of the mean sun is equal to the local

sidereal time. The right ascension of the meridian is the
same thing, exactly, as the hour angle of the First Point
of Aries, and both of these are identical with the local
sidereal time. The sidereal time of Greenwich mean noon
is the same as the right ascension of the mean sun at
that time. The hour angle of a star plus the right ascension
of the same star is equal to the local sidereal time.


Difference of longitude can be represented by an interval
of sidereal time or by a difference of right ascension,
precisely the same as by a difference of solar time.
Thus with the local sidereal time calculated from an
observation of a star, and the corresponding Greenwich
sidereal time taken from the Nautical Almanac, the longitude
is at hand, by turning their difference into arc. The
fact that the actual time interval is longer in the case of
solar time than in an interval of the same number of
hours of sidereal time, has no influence on the resulting
difference of longitude. The number of degrees in any
arc can be the same, yet vary in linear measurement,
but the same number of hours of solar and sidereal time
represent the same proportionate part of a circle. It was
just stated that the hour angle of a star plus its right ascension
is the same as the local sidereal time; now this is also
true of the sun. The hour angle of the mean sun plus
the right ascension of the mean sun is equal to the local
sidereal time; by means of this equality we are able to
find the Greenwich sidereal time on any occasion. It is
necessary to have this element in order to compare it
with the local sidereal time, which we find by observation
of a star, to obtain difference of longitude (in time). In
page 2 of the Nautical Almanac will be found the Right

Ascension of the Mean Sun at Greenwich Mean Noon;
this must always be taken out for the preceding noon.
We now have a measure of sidereal time to be added to a
measure of mean time, but it will be remembered in early
arithmetic that an apple and a peach can not be added
together any more than ½ can be added to ⅓. The only
course to steer is to reduce the quantities to a common
denominator, or like quantities. So in handling these
two varieties of time, solar time must be accelerated
by adding a correction to it, or sidereal time retarded by
subtracting an amount necessary to make it equal to a
corresponding value of solar time. The tables for the
conversion of one of these varieties of time to the other
are found in the American Ephemeris Tables II and III,
Bowditch Tables 8 and 9, and at the foot of pages 2 and 3,
Nautical Almanac.


A practical illustration of this may make a clearer
impression. In the early evening of April 8th, secured a
sight of Regulus; the chronometer showed 8 days, 9 hours,
56 minutes, and 0 seconds (corrected), with other necessary
elements given, the sight is worked as usual to find
the star’s hour angle, which proves to be:



	
    	h.
    	m.
    	s.
    	

    
	H A Regulus
    	1
    	59
    	47
    	bearing west.
    	

    
	R A
    	10
    	3
    	02
    	RAMS
    	1 h.
    	6 m.
    	7 s.


	
    	—
    	—
    	— 
    	GMT
    	9 h.
    	56 m.
    	0 s.

    
	L. S. T.
    	12
    	02
    	49
    	Accel.  9 h.
    	1 m.
    	29 s.

    
	G. S. T.
    	11
    	03
    	45
    	Accel. 56 m.
    	9 s.

    
	
    	—
    	—
    	— 
    	
    	——
    	——
    	——

                 
	Long. in time
    	59
    	04
    	G. S. T.
    	11 h.
    	3 m.
    	45 s.





This being a star sight we obtain from it the sidereal
time at place of observation and as the chronometer carries
Greenwich mean time we seek the corresponding sidereal
time by adding this and its acceleration for a sidereal interval
to the right ascension of the mean sun taken from Nautical
Almanac. The result is the Greenwich Sidereal Time.


It is occasionally required to find the sidereal time
at the ship in which case it is only necessary to apply
the longitude in time to the Greenwich Sidereal Time.


As Greenwich mean time is the most used and is the best
understood it is a very convenient practice to carry G. M. T.
on the navigator’s watch. It is readily converted into any
other time with ease but serves more purposes as it is without
conversion. A stop watch is an excellent instrument
for taking time sights where great accuracy is essential. By
setting it at 0 minutes a man can observe alone starting the
watch as he makes contact with the horizon and when
subsequently comparing with the chronometer subtract the
reading of the watch to get the G. T. of observation.


The most expeditious way to convert time into arc
is to multiply the hours by 15 and add the number of
minutes divided by 4 to get the degrees; multiply the
remaining minutes by 15 and add the seconds divided by
4 to get the minutes; multiply the remaining seconds by
15 to get the seconds in arc:


Thus:



	Long. in time
    	 2 hrs.
    	42 m.
    	23 s.


	 
    	30 
    	30 
    	45

    
	 
    	10 
    	 5

    
	
    	


    
	Long. in arc 
    	40° 
    	35´ 
    	45´´





To change arc into time divide the degrees by 15 to get
the hours; multiply the remainder by 4 and divide the minutes
by 15 and add to get the number of minutes (m.);
multiply the remainder of minutes (´) by 4 and divide the
seconds (´´) by 15 carrying the division of tenths if desired,
adding the result to get the seconds (s.):


Thus:



	Long. in arc
    	40°
    	35´
    	45´´


	
    	 2 hrs.
    	40 m.
    	20 s.


	
    	 2
    	 3

    
	
    	


    
	Long. in time
    	 2 hrs.
    	42 m.
    	23 s.




This may appear complicated at first but is much the
quickest way of conversion. However, Table No. 7, Bowditch
is always available if desired.


In getting an understanding of any time problem, that
is such as changing mean time into sidereal time; obtaining
the hour angle of a star or planet; in seeking the local
time from the chronometer, or any time values that are
found perplexing, always draw a diagram. Make the circle
on the plane of the equator, with the pole as the center, and
meridians radiating from it towards the circumference of
the circle. Now imagine for the moment that you are at
the north pole, and the date is the 21st of September.
The sun is traveling in the horizon, and if the direction of
the Greenwich meridian is known, this body serves as a time
piece, for the angle between this meridian (direction)
and the sun is the Greenwich time. This angle corresponds
with twice the angle between XII hours on the watch
and the hour hand; or would (disregarding equation of

time) coincide with it if the watch’s face was divided into
24 hours. Likewise when the vernal equinox or First
Point of Aries lies in the direction of Greenwich it is Greenwich
sidereal noon, and the subsequent angle that appears
through the rotation of the earth, shows the Greenwich
sidereal time.




Equation of Time




It is necessary in considering this subject to reiterate
some of the statements made in the preceding talk on time,
but, as they are very important, no time is wasted by further
impressing them on the mind. Let it be understood that
the apparent orbit of the sun is actually due to the earth’s
revolution around him, yet for simpler explanation it is
considered to be the sun’s own revolution.


The apparent movement of the real sun is not of uniform
speed and, in consequence, it has become necessary to
devise a fictitious sun whose assumed revolutions around the
earth are at all times regular in their rate.


The equation of time is the difference between these two
suns and, as they are at times in conjunction and at other
times attain a distance from each other of 16 minutes 20
seconds, and, moreover, as the real sun is sometimes ahead
and again in the wake of the mean sun, it becomes evident
that the equation of time is an ever varying quantity.


The irregularity of the sun’s apparent movement as
compared with the uniformity of the mean sun, is subject
to two causes: First, the earth travels in an ellipse, and,
as the length of a degree varies in the different parts of the
circumference, the motion would appear to be irregular,

that is, if the sun actually traveled at a uniform rate, it
would, from the above fact, appear to us to be variable in
its motion; furthermore, the laws of forces only allow a body
traveling in a circle the privilege of a uniform speed so the
earth, owing to its varying distance from the sun, experiences
a corresponding change in the amount of attraction
exerted upon it by the sun and its velocity, actually becomes
variable. Thus, during the winter, December and January,
when they are nearest each other, the attraction is strongest
and the earth increases its speed in revolution; while in
June and July the earth is at its greatest distance from the
sun and the attraction is less, resulting in a slowing down
in the rate of the onward movement. As the sun appears
to us to take on movements corresponding to those of the
earth, these variable movements of the latter are seen in
the apparent motion of the sun. Second, the plane of the
earth’s orbit is inclined at an angle to that of the equator,
which makes the sun appear to be traveling at a variable
speed along the ecliptic.


With these two errors combined influencing the apparent
sun, he becomes unreliable for regulating timepieces. The
mean sun, which was originated to obviate these irregularities,
is assumed to travel in a circle with the earth located
in the centre, which disposes of the first reason for an apparent
variable motion; and again, the mean sun revolves
in the plane of the equator, thus eliminating the second
obstacle in the way of uniform time.


Now we will continue a little farther into the explanation
of the reasons for the irregular movement of the real sun.
A law discovered by Kepler, and named for him, provides
that a radius from the sun to the earth covers sectors

of equal areas in equal times; a sector equal in area to any
sector covered in the same time. That is, when the earth
is in that part of the orbit near the vernal equinox, the
radius of the orbit will in a given time, say a week, sweep
over a certain area; the earth proceeds toward aphelion
and when in the vicinity of that point, the radius becomes
greatly increased in length. Now in a week with this longer
radius, a far greater area would be covered if the earth
maintained the same rate of speed as at the equinox, but
Kepler’s law says, “equal areas in equal times,” so in order
to conform with the law, the earth’s speed of revolution
must be reduced. The earth does not slow down just for the
sake of obeying Kepler, but at this part of the orbit it is
at its greatest distance from the sun and hence the reduced
attraction causes the earth to lag a little.


At the time of the autumnal equinox, an area similar
to that of the vernal equinox is covered. As the earth approaches
perihelion, the radius is gradually shortened by
the eccentricity of the sun in this part of the orbit and
the increased attraction causes the earth to speed up
correspondingly. At the increased speed, the shorter
radius sweeps the same area in a week as at other parts
of the orbit and Kepler’s law still holds good.


As the apparent motion of the real sun corresponds
exactly with the real motion of the earth, it is evident from
the above that the real sun apparently moves at different
rates of speed along the ecliptic, faster in winter and slower
in summer than the mean sun.


The value of a mean solar day is the average of a year of
apparent days, or in other words, there is the same number
of mean solar days in a year as there are apparent days.



In considering the effect of the variable motion of the
earth in its orbit, we will recall the conditions used when
defining sidereal and solar days. The former comprises the
interval between two successive passages of a certain star
across the meridian, or perhaps better, between two successive
passages of the meridian over a star. This is the
true length of the earth’s rotation and is the standard to
which we may refer the length of the mean or apparent
solar days.


Now it requires about 3 minutes 56 seconds longer
for the meridian to sweep around from sun to sun than from
star to star, owing to the fact that the mean sun moves
uniformly eastward that amount daily, thereby requiring
the meridian, after reaching its position of yesterday noon,
to overhaul the mean sun this 3 minutes 56 seconds of eastward
movement. The mean sun maintains this uniform
difference between its days and the length of the sidereal
day. Without this daily easting of the sun, the sidereal and
solar day would be the same.


But, in considering the apparent sun, we find the length
of its days continually varies from both that of the sidereal
and mean day. This is explained by the fact that the eastward
movement of the apparent sun is due to the movement
of the earth in its orbit, and as this movement becomes
faster or slower the eastward movement of the sun becomes
correspondingly faster or slower. Thus, we readily see that
with the apparent sun moving eastward faster or slower at
times, the length of the apparent day must vary accordingly
and we cannot establish a uniform difference between it
and the sidereal day, as in the case of the latter and the
mean day. The apparent days exceed the mean days in

length, between September and March, while the earth is
traveling fastest in its orbit. Beginning at the autumnal
equinox with the apparent sun eight minutes behind the
mean sun, the former gains slowly at first but with increasing
rapidity. About the end of December, at perihelion,
it overhauls the mean sun and they are coincident
as regards this correction only. Leaving perihelion, the
apparent sun rapidly takes the lead but with a gradually
decreasing amount until at the equinox in March, reaches
its maximum lead of 8 minutes. Entering that portion
of the year March to September, we find the earth traveling
slower and the mean sun gaining on the apparent sun; between
the vernal equinox and aphelion, the mean sun gains
until both are together at the summer solstice and then
forging ahead the mean sun attains a lead of 8 minutes in
September.


It must be borne in mind that this error is caused only
by the eccentricity of the orbit and is but a component part
of the whole correction of the equation of time. The other
portion is due to the obliquity of the orbit, or its inclination
to the equator.


This error is introduced through the fact that the apparent
sun moves in the ecliptic and the mean sun is assumed
to proceed along the celestial equator. In considering
this phase of the question, we will ignore entirely, for
the time being, the error of eccentricity described above.


The error of equation of time due to the obliquity of
the orbit is a simple one to see, but like many simple
things it is easier to show it by a diagram than to explain in
words, so the reader is referred to the accompanying figure,
that a study of it may be made before proceeding.
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At the equinoxes, where the ecliptic and equator cross
and the solstices—the vertices of the ecliptic—that is, four
times a year, the true and mean sun are together, but
departing from these points they do not travel with the
same right ascension, remembering that right ascension is
measured on the equator. Taking, for example, the earth
in that quadrant of the orbit comprised between the vernal
equinox and summer solstice, the apparent sun in the
heavens would be by cause of obliquity alone, to the right
or to the westward of the mean sun, and thus it will be seen
that with the earth rotating from right to left the apparent
sun will cross the meridian first; consequently between
March 21st and June 21st that part of the equation of
time due to the obliquity of the orbit bears a minus sign
when mean time is desired from the apparent time. This
correction reaches its maximum half-way or 45° from the
equinox, amounting at that point to nearly 10 minutes.
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Now the reason for this difference between the mean
and apparent sun when each (so far as this problem is concerned)
moves along its respective path—the equator and
the ecliptic—at the same rate, is this: suppose the equator
between the equinox and the solstice is divided into an
equal number of parts and an hour circle drawn through
each point of division. Beginning from the equinox (the
common apex of the triangle) the arc of each hour circle
between the equator and the ecliptic, forms the altitude of a
right-angled triangle, while the equator and the ecliptic are
base and hypothenuse respectively. Thus it will be seen
that each portion of the equator (base) is shorter than the
corresponding part of the ecliptic as defined the hour
circle, to the extent of the ratio of the base to the hypothenuse.


This amount increases with the increasing size of the
triangle, but a new element enters to counteract its effect.
With the increasing divergence of the ecliptic and equator,
the divergence of the hour circles becomes a factor and as
the solstice is approached the divisions on the equator,
are represented on the ecliptic by gradually decreasing
spaces between the hour circles.


The combination of these effects produces the error
due to the obliquity of the orbit. The error has the opposite
effect in the next quadrant, that is, from June to
September; and in opposite quadrants it is the same.


So it will be seen that error due to the eccentricity
causes the apparent sun to lead the mean sun from December
31st to June 30th, reaching a maximum of 8 minutes
about April 2d. This sun then falls astern until December,
again attaining a maximum of -8 minutes about October

1st. The error due to the obliquity of the orbit accumulates
between the equinoxes and solstices for at these points the
two suns are together and there is no error, but about the
6th of May, August, November, and February, it reaches
a maximum of 10 minutes; in August and February, the
mean sun takes the lead.


These two errors of equation of time combined algebraically
will result in the plain line of the diagram.




Calendar




The ancients, in order to keep track of past events and
to anticipate the future, devised a calendar, which, while
not identical with the one now in use, was of itself a remarkable
production. They chose the revolutions of the
moon as their basis of measuring the passage of time, and,
as a lunar month contains only 27⅓ days, the 12 months
used in this early calendar comprised a year of about 354
days.


It became apparent as the world progressed that use
of the moon was very unsatisfactory for this purpose, as
the calendar became complicated and confusion resulted,
owing to the difference between the lunar and solar years.
This condition remained until the reign of Caesar, when
that monarch determined to establish a more satisfactory
method of reckoning time. With the aid of an eminent
astronomer, he completely revised the calendar, using the
revolution of the earth around the sun as the standard for
the length of a year. The time required for this is 365¼
days, approximately, and as it was inconvenient to include

the ¼ day in the year, it was allowed to accumulate for
4 years, when as a whole day, it was added to the end of
February.


Caesar, evidently proud of this accomplishment, honored
himself by naming his astronomer’s invention the Julian
Calendar and in order to further immortalize himself he
changed the name of the seventh month to July. Augustus,
his successor, apparently envious of the honor his predecessor
derived from this source, and determined not
to be thus outdone in perpetuating his name, changed the
month Sextilis to August.


The commonly accepted 365¼ days as the length of year
is only an approximation, however, and the small difference
between this and the actual length of a year began to accumulate
until this weak point in the Julian Calendar became
a matter of moment. The exact length of a year
from vernal equinox to vernal equinox is 365 days 5 hours 48
minutes and 46 seconds, which lacks just 11 minutes 14
seconds of 365¼ days. This caused the dates of the equinoxes
and solstices to keep slipping back 11 minutes each
year and when considerable time had passed the difference
became large enough to cause inconvenience; the date of
the vernal equinox having dropped back to March 11th in
1582. In this year Pope Gregory, acting under the advice
of an astronomer by the name of Clavius, modified the Julian
Calendar. He first added 10 days to restore the date, and
then to forestall a further retrogressing of the calendar,
provided that only those century years divisible by 400
should be considered leap years. In this way the 11
minutes 14 seconds was prevented from causing further
mischief. This calendar known as the Gregorian Calendar

is now in almost universal use, though at first it was adopted
only by Catholic countries.


It is interesting to note that the time consumed by the
sun in making his apparent yearly revolution from a certain
star back to that star again is a sidereal year of 365 days
6 hours 9 minutes 9 seconds. The tropical year—the one
in common use—is shorter, being the time required for the
sun to leave and return to the vernal equinox, or First
Point of Aries. This point, it will be remembered, is moving
westward about 50´´ annually, and it will be seen that while
the sun starts its eastward revolution among the stars, the
equinox is very slowly moving westward to meet him, thus
making the tropical year about 20 minutes shorter than
the sidereal year.


While discussing the calendar it is an opportune time
to explain a matter concerning the dates of the equinoxes
and solstices. It has of course been noticed by everyone
that the vernal equinox occurs one year on March 20th and
another on March 21st, or the summer solstice on June 22d
and yet another year on June 21st and so on.


Aside from the slight change due to the dropping back
of the seasons in the orbit by the precession of the equinoxes,
the actual time of the equinoxes and solstices may
be considered as constant, yet the dates vary a few hours.


The year in common use—the tropical year—contains
approximately 365¼ days, yet we take account of only 365
days, the extra ¼ day being laid aside for future reckoning.
During the next year this 6 hours will be augmented by 6
more; the next by another 6, making 18 hours ahead of the
calendar. The fourth year this amount reaches 24 hours,
and a full day, the 29th of February, is added to the calendar

for that year, and we are square again. But the different
equinoxes and solstices occur at just 364¼ days;
taking for example the vernal equinox, it occurs on the following
(approximate) dates, which it will be noticed are
6 hours later each year:



	1908—March 20, 12 hours (leap year).

	1909—March 20, 18 hours.

	1910—March 20, 24 hours or March 21st noon.

	1911—March 21, 6 hours.

	1912—March 20, 12 hours (leap year).




It is evident by the above that the insertion of the extra
day just previous to the equinox in the leap years, sets the
date of the equinox back a day by the calendar. Juggling
the ¼ day as shown above causes the change in the calendar
dates of these phenomena.







CHAPTER V




Corrections for Observed Altitudes







The observed altitude of a heavenly body, as measured
with the sextant, requires treatment for numerous errors to
reduce it to the true altitude and make it ready for use
in working any of the navigational observations. The
amount of error varies in different bodies, the moon requiring
the maximum and the fixed star the minimum correction.
All the errors are not common to all bodies, that
is, with some, certain errors become so insignificant that
they are cast aside.


These errors comprise the index error of the sextant,
refraction, dip, semi-diameter, and parallax. In Table 46,
Bowditch, will be found the combined corrections (index
error excepted) to be applied to an observed altitude of a
star or planet and to that of the sun’s lower limb. A supplementary
table furnishes an additional correction to be
applied to the semi-diameter of the sun when accuracy is
desired. These corrections will now be discussed in the
order named:




Index Correction




The index and horizon glasses of a sextant are supposed
to be parallel when the zero of the vernier and the zero
of the limb are in one, and with this the case, the true and

reflected images seen in the horizon glass should exactly
coincide. Any difference between them is the index error.


It is seldom that a sextant is so well adjusted that no
index error exists, but it is not desirable to keep tampering
with the instrument with an attempt to eliminate this error,
for it will in time injure its accuracy.


By testing the sextant at each sight, the error can be
closely watched and allowance made for it in correcting altitude.
The easiest and most accurate method of ascertaining
this error is by using a star in the following manner:
Set the zero of the vernier a little to either side of the zero
of the limb, and observe a 2d or 3d magnitude star—move
the reflected image past the real and note if they pass
directly over one another. If not, the horizon glass is not
perpendicular and needs adjustment. Bring the reflected
star in exact conjunction with the real star, and read off
the index correction—if the zero of the vernier is to the left
of the zero of the limb—on the arc—the difference is minus
(-) and subtracted from the observed altitude; and if to
the right—off the arc—it is plus (+) and added. A well-known
rule of thumb expresses it thus: if it’s on it’s off, and
if it’s off it’s on. The sea horizon is also available for determining
this correction and serves the purpose with fairly
accurate results.




Semi-diameter




In measuring the altitude of certain bodies for navigational
purposes, it is necessary to determine the distance
of the center of the body above the horizon. To accomplish
this in an accurate manner the lower edge or limb is brought

down to the horizon and the semi-diameter applied to this
measured altitude. When the lower limb is used, as is the
usual practice, the correction for semi-diameter is obviously
plus (+). The upper limb can be resorted to, however,
should the lower side of the body become veiled by cloud,
and in this case the correction is minus (-).


Semi-diameter of the sun is obtained readily from the
Nautical Almanac for each ten-day period, for it must
be remembered that the sun is continually changing its
distance from the earth, and consequently the diameter of
the former is increased and lessened slightly at different
times of the year. For instance: On January 2d, when the
earth is near perihelion and we are at our nearest point
to the sun, the semi-diameter is 16´ 17´´.90, while on July
2d, when we are in the remote parts of the orbit, the semi-diameter
is only 15´ 45´´.69, making a difference of over
32´´.


The moon being such a near neighbor of ours gives more
trouble in determining her diameter. Besides being greatly
affected by her rapidly changing distance from the earth,
a further correction is occasioned by the fact that our position
on the surface is nearer the moon at times than is the
center of the earth. That is, when the moon is in the zenith
we are 4000 miles, the earth’s radius, nearer that body
than when she is in our horizon. It is evident that the
direction of the moon in our sensible horizon is at right
angles to a perpendicular erected at our place of observation
and passing through the earth’s center, and this again
makes it evident that the moon is about equally distant
from the earth’s center and our position on the surface;
but as she ascends the heavens she comes nearer our position

until in the zenith the distance has been reduced by
4000 miles and the diameter appears correspondingly
larger. Draw a diagram and see for yourself. This
Augmentation of the Semi-diameter, due to the altitude,
is found tabulated in Bowditch, Table 18.


The semi-diameter becomes too small to consider in ordinary
navigation when observing any of the planets, and
of course fixed stars are beyond its scope.




Refraction




Everyone knows that the blade of an oar when dipped
in the water appears to be bent in a remarkable manner at
the surface. This is a clear case of refraction. Should the
oar, however, be held under everywhere at an equal depth,
a square look downward at it would fail to show any refraction.
So it becomes evident that refraction is caused by
the rays of light passing obliquely from a rarer to a denser
medium or vice versa. A ray of light coming from a
heavenly body to the earth passes through a medium of
gradually increasing density, from the thin outer air to
the denser atmosphere at the surface of the earth. The
ray of light consequently becomes curved downward and
reaches the earth at a point nearer the heavenly body
than would be the case if the light ray traveled in a straight
line. The effect of this to the observer is that the body
appears higher than it really is. The difference between the
actual direction of the ray of light unaffected by the air,
and our line of vision as we see the body, is the refraction.


The amount of refraction ordinarily affecting an observed
altitude depends upon the distance of the body

above the horizon. At the zenith, the rays of light,
entering our atmosphere perpendicularly, are not deflected
and refraction is nil. But, on the other hand, when the
body is near the horizon, the rays of light pass through
the atmosphere at a sharp angle and are consequently
subject to the greatest bending, thus giving us our maximum
refraction. In fact, this element becomes so unreliable
in low altitudes that it is not advisable to observe
a body when less than 10° or 13° above the horizon. This
in no way concerns bearings taken of bodies in the horizon
for amplitude, as refraction affects the altitude and not the
azimuth of a body.




Dip




It is a well-known fact to every seaman that by going
aloft, he can pick up a light sooner than on deck; that is,
the higher his elevation the wider his horizon becomes. The
horizon of a man in a small boat is only about 3 miles away,
but, if he climbs to the bridge of a steamer some 60 feet
above the water, he finds that the horizon has receded until
he has a range of about 9 miles.


The fact that the horizon can be altered by changing
the altitude should appeal to every navigator as a possible
means of getting a horizon in foggy weather, by going aloft
or getting as low as possible, provided the fog bank is lying
above or close to the water.


The altitude of a body is measured to the visible horizon,
yet the measurement must be adjusted to the sensible
horizon before the true altitude can be obtained. This
correction is accomplished by applying to the observed altitude

the amount of the angle formed at the observers eye
by the planes of the sensible and visible horizons. The
angle is known as the dip of the horizon. It is readily
seen that this angle always makes the observed altitude too
large, for the eye if located at the exact surface of the sea,
theoretically sees the sensible and visible horizons in one,
while at every elevation above the surface it depresses the
visible horizon correspondingly. It is, therefore, always
necessary to apply the dip as found in Table 14, Bowditch,
with a minus (-) sign.


An inspection of the table of dip will show that the rate
of increase of this error becomes more rapid as the height
of the eye is diminished. To illustrate: The reader will
note that between an elevation of 4 feet and one of 9 feet
there is a difference of 1 minute in the dip, while higher up,
say between 26 feet and 38 feet, a difference of 1 minute
is likewise found, yet in the first instance there was a range
of 5 feet and in the second a range of 12 feet. This fact
in itself is an argument in favor of observing altitudes at
a good height above the water.


In calculating a meridian altitude, an error in the
dip directly affects the result by a corresponding amount,
so extra care should be exercised in this respect. In this
instance, we endeavor to locate the body relative to our
zenith and anything that affects its altitude directly affects
the latitude. In a time sight, a different principle is involved.
Here the position of the body as defined by the
latitude locates the apex of one angle of the astronomical
triangle and hence a small error in the altitude will very
likely cause a greater effect on the longitude.


An allusion was made under the caption of Refraction

to the displacement of the visible horizon by terrestrial
refraction to detect which requires watchfulness on the
navigator’s part. The familiar “loom” seen along the
coast is an example of the workings of variable refraction.
Now imagine this distortion less aggravated with no land to
show its existence and you have a good illustration of this
error.


Refraction of this nature is usually found during light
airs and calms when the different layers of air arrange themselves
according to their temperatures. The heated air over
land below the horizon in hot weather will displace the
intervening horizon; moreover, when the air is warmer than
the sea, the horizon is elevated above the normal and,
when the conditions are reversed, the horizon is unduly
depressed. Thus lights become visible a little sooner after
a hot day ashore. The Red Sea, Gulf Stream, mouth of the
Amazon, and other large rivers are places where the horizon
should be especially distrusted. Capt. Lecky, in his famous
Wrinkles in Practical Navigation, refers to an experience
he once had with this error. The latitude had been found
“by an excellent meridian altitude of the sun to be as
much as 14´ in error. The time was mid-winter—the day
a clear cloudless one—the sea smooth, and the horizon
clean-cut. Five observers at noon agreed within the usual
minute or half minute of arc, nevertheless, on making
Long Island (U. S. A.) in less than two hours afterwards,
the latitude was found wrong to the amount stated. Many
such cases have come under the writer’s notice, but this
one alone is cited on account of the magnitude of the
phenomenon.”


What Captain Lecky said in his work on navigation is

reliable and this should serve to make an impression as to
the dangers of such occurrences.


In clear weather this displacement of the horizon may
be lessened somewhat by observing from aloft. By
extending the horizon, such disturbing influences as the
motion of the vessel and an irregular horizon caused by
rough sea are minimized. In hazy weather, however, it is
recommended to observe low, bringing the horizon as
close as possible.




Parallax




In calculating the true altitude of a body the distance
of its center above the horizon is supposed to be measured
from the center of the earth, or what is the same thing, the
altitude above the rational horizon.


The application of semi-diameter adjusts the measured
angle with the center of the body, while parallax corrects
the error due to our observing from the surface of the earth
to the sensible horizon, instead of from the center to the
rational horizon.


Parallax, in other words, is the angle formed at the
body by the lines drawn from the observer’s position, and
from the center of the earth, respectively. This angle
is subtended by the radius of the earth, and it is obvious
that the farther away a body is, the smaller the angle, and
consequently the less the parallax. So when dealing with
planets or fixed stars, it becomes insignificant and no
parallax is considered.


The moon, on the contrary, is so close aboard that
the angle of parallax reaches a value of nearly 1´; as a

minute of altitude means a minute of latitude and in turn
a mile, so with this body the error due to parallax must be
carefully determined.


In the case of the sun, however, it is somewhat of a
waste of time to bother with parallax, for it never exceeds
8´´ or 9´´ and such fine calculation is uncalled for in ordinary
navigation where so many greater errors must be kept
in sight. However, we desire to eliminate every known
element of error without undue figures, so it is recommended
that Table 20B, Bowditch, be used, where without extra
trouble the parallax may be found conveniently combined
with the refraction.


When a body is in the sensible horizon, the parallax is
greatest. The angle of parallax subtended by the radius of
the earth is then an acute angle of a right-angled triangle
and is as large as it can possibly be with the body at the
same distance. As the body obtains altitude above the
horizon, the right angle of the triangle (at the observer)
becomes obtuse and our acute angle of parallax becomes
smaller and smaller until the body reaches an altitude of
90°—in our zenith, when the obtuse-angled triangle has
resolved itself into the perpendicular line that passes
through our position and the earth’s center. The angle of
parallax here disappears.


When a body is in the horizon, its parallax is known
as Horizontal Parallax in contra-distinction to Parallax of
Altitude. The latter has become generally known among
navigators merely as parallax.


Our position on the surface causes a body to appear
lower than if viewed from the center of the earth, so the
error of parallax is added to the observed altitude; when,

however, it is combined with refraction it is subtracted in
an observation of the sun, but added when the moon is
used.


The parallax of the moon is excessive because the radius
of the earth becomes a considerable amount when compared
with the close proximity of the body, and causes a
considerable angle at the body between the lines drawn
from the observer and that drawn from the center of the
earth. The change in parallax is so great that it becomes
necessary in order to preserve accuracy to correct the observed
altitude for index correction, dip and semi-diameter,
to secure an approximate corrected altitude before attempting
to correct for parallax. The horizontal parallax, which
is the angle subtended by the earth’s radius when the moon
is in the horizon, is taken from the Nautical Almanac,
and with this and the approximate altitude as arguments,
enter Table 18, Bowditch, and pick out, having regard for
correction tables at the right, the parallax and refraction
combined.


The usual corrections to the observed altitude of the
sun or stars can be picked out at once from Table 46,
Bowditch, where they are all combined for a quick correction.







CHAPTER VI




Latitude




Meridian Altitude






It is surprising to us, in these advanced days of nautical
science, to read of our adventurous ancestors of a century ago
navigating their ships to all parts of the known and unknown
world with nothing to guide them but their dead
reckoning and the latitude crudely obtained by the method
of meridian altitude. Many of our finest ships, as late
as the first decade of the nineteenth century, sailed to China
and back with no knowledge of their longitude save what
the master guessed it to be. Even in later days much
navigating has been done in the less lucrative trades by
mariners who had no knowledge of the method of finding
longitude. It required more time and distance to navigate
by latitude and dead reckoning only, as it was not
always safe to lay a course from an indefinite position
directly for the coast. It was the custom in the old days
to keep off soundings until on the latitude of the port of
destination, then steer due west, and whatever the longitude
might turn out to have been the master would sooner
or later make the land in the vicinity of his port.


The first step in obtaining the latitude by meridian
altitude is the measurement with the sextant of the sun’s
altitude. This is done when it reaches its highest point

in its course across the sky; this occurs when it bears due
N. or S. true and this moment is local apparent noon. A
few minutes before this time the image of the sun should
be brought to the horizon, and by swinging the lower part
of the instrument the image will be made to swing likewise
in an arc; the lowest point of its lower edge (limb) should
then be brought in contact with the horizon as closely
as the circumstances will permit. The image will keep
rising from the horizon, but by using the tangent screw
it can be continually brought back to contact. At noon
it will hang, and dip below; the reading of the sextant
at this moment is the meridian altitude.


In working the problem three quantities are used and
the navigator must be familiar with them:


The first is the zenith distance (z), which as its name
implies is the sun’s (or stars) distance from the zenith.
Zenith is 90° from the horizon, so the true altitude of the
body subtracted from 90° is z the quantity desired.


The second element is the declination (d), which is the
distance in degrees, minutes, seconds, of the body either
north or south of the equator. This is taken from the Nautical
Almanac.


The third and resulting quantity is the latitude, which
is the distance in degrees, minutes, seconds, of the ship
either north or south of the Equator.


The altitude observed taken with the sextant at noon
is corrected for semi-diameter, parallax, dip, refraction and
instrument error (if any exists). These corrections are
explained in detail in Corrections for Observed Altitudes.


The declination of the sun is constantly changing
between 23½° N. and 23½° S. This is given in the Nautical

Almanac for each two hours of Greenwich mean time with
the difference for each hour given for each day. So it
becomes necessary to ascertain the declination at the
moment of observation, namely, at local noon. This
anywhere in the Atlantic will occur subsequent to Greenwich
noon, as the sun (apparently) passes around the world
from the eastward to the westward once a day—24 hours—which
corresponds to 360° of longitude. The rate of travel
is therefore equivalent to 15° in an hour. Hence if the
sun crosses Greenwich meridian and five hours later
crosses the meridian of the ship, say in 75° W., the interval
is 75 divided by 15, or 5 hours. During this interval the
sun has changed in declination northward or southward
and should be picked out of the Almanac for 5 hours
Greenwich mean time.


When the zenith distance and declination are at hand
the latitude is obtained by a mere algebraic addition, which
is, z + d = latitude; where, if the body bears south the z
is marked +, if north it is marked -; if the declination
is south it is marked - and if north it is +. The result
of the addition if - indicates south latitude, if + north
latitude. The meridian altitude of a star, planet or moon
is found in a similar manner. The formula of z + d = latitude,
having regard to signs named as above, is applicable
to each. The declination and the correction of the observed
altitude are picked out of the Almanac and Bowditch
tables in a somewhat different manner peculiar to
each body.


It is found by many navigators to be more convenient
to observe a body for meridian altitude by time than in
waiting for the “dip.” The altitude is taken at exactly

local apparent noon in case of the sun and the time of
meridian passage in the cases of other bodies. This
expedient is especially desirable in observing stars, as
the horizon is not as distinct and the “dip” not so
easily detected as with the sun.


In order to secure the local mean time (L. M. T.) of a
star’s transit, the G. M. T. of the star’s transit over the
Greenwich meridian is found in the Nautical Almanac
(p. 96) for the first day of the month and correct for the
day by table on next page (N. A.). The ship’s mean time
of transit will be the same, as both sun and star hold their
relative positions as the star moves from Greenwich to
the ship’s meridian except for the small retardation of the
sun’s movement over the star’s movement. This is best
found at the foot of page 2, Nautical Almanac, where the
longitude in time gives the correction to be subtracted from
(G. M. T.) of transit which will give the local mean time
of transit at ship—the time to observe the star. An
observation of a planet is similarly handled. The moon
is somewhat unreliable owing to its rapid changes in position
and the large corrections necessary to correct the altitude,
and is consequently rather an unpopular body to
observe. However, there are times when she might prove
valuable in giving position when much needed.


In the case of the sun the time of transit is local apparent
noon, by applying the longitude in time gives Greenwich
apparent time of local noon, and corrected for equation
of time gives Greenwich mean time of transit.


It is often necessary to report the latitude at noon
very quickly to the master. This can be accomplished by
calculating the problem to a point where the addition or

subtraction of the observed altitude is all that is necessary
to give the latitude. The corrections are applied in advance
by the estimated altitude, and declination corrected by the
estimated longitude. Art. 325, Bowditch, gives the constants
to be used in four different situations.




Circum- or Ex-meridian Altitude




It frequently happens, especially in the higher latitudes,
that an aggravating mass of cloud drives over the sun or
other objects that you are chasing, with the tangent screw,
and it is lost from view together with all hope of a meridian
altitude. But such an unfortunate occurrence as the loss of
the mid-day latitude may be averted by employing the Circum-meridian
sight or Ex-meridian, as our English cousins
call it.


The mariner accustomed to its use “shoots” the sun and
notes the time by chronometer or watch. Or on cloudy
days, he would be standing by, near apparent noon watching
for a chance to catch a glimpse of the object through
a rift of cloud, and thereby forestall the loss of his latitude.


The theory of this observation is extremely simple, being
merely to add to the observed altitude, taken before or after
apparent noon when the sun is being considered, the amount
of rise or fall between the time of sight and the time of culmination,
and proceed with this amended altitude as in an
ordinary meridian altitude sight.


The use of this method of obtaining the latitude is
restricted to certain limits. Those who use Bowditch Tables

will find themselves restricted to 26 minutes from the time
of transit and a declination of 63°, while Brent’s Ex-meridian
Tables allow a greater scope and their limit of
70° of declination includes many stars that would be otherwise
unavailable. A good guide is to never allow the number
of degrees in the zenith distance to be exceeded by the
number of minutes from noon. In very high altitudes
circum-meridians are not to be recommended, and the
higher the altitude, the more accurate must be the time
used. This is plain when it is realized that the lower the
sun’s altitude at noon, the more nearly its diurnal path
approaches the line of the horizon; with the lessening
curve of its course, comes a lessening rise near noon,
hence less accuracy is needed in the exact time of sight
from that of transit. In the tropics, however, where
high altitudes of the sun prevail, the clouds do not offer
such an element of bother as they do farther north or south,
and there this problem as applied to the sun loses its popularity.


In practice the use of the tables of Bowditch makes this
problem an exceedingly simple one, requiring but few figures.
Table 27 contains the value of rise of the body for one
minute, but as this rise varies as the square of the interval
from noon, it becomes necessary to resort to another
table (26) of constants for a multiplier, in lieu of the number
of minutes from noon. That is, if we should multiply
the amount of rise or fall for 1 minute by the number of
minutes from noon, we would not be taking into account
the decreasing rapidity of rise or the increasing rapidity
of fall as the body approaches or leaves the meridian.
But Table 26 provides a multiplier which reconciles this

inequality and gives the proper correction to apply to the
observed altitude.


This quantity is added in every case where the upper
transit is observed but subtracted when a sight is taken
below the pole where the conditions are reversed.


There are several pamphlets and books on the market
from which the correction to the observed altitude may be
obtained. All are simple in form and with their explanations
are readily understood. Notable among these Ex-meridian
Tables are those by Capt. Armisted Rust, U. S. N.


The circum-meridian is a reliable method of finding the
latitude, but the time used should be accurate to produce
satisfactory results. If, however, the conditions be favorable,
it is not necessary to discard this observation even
if the correctness of the time is somewhat in doubt, for in
Towson’s Ex-meridian Tables is found this note:


“If equal altitudes be taken before and after the meridian
passage, half the elapsed time may be employed as the
hour angle for determining the reduction. Or, when the
altitudes before and after noon differ by only a few minutes,
the mean of the two may be reduced by employing half the
elapsed time as the hour angle for reducing the mean
altitude.”


In practicing this suggestion it is necessary, in order to
preserve accuracy, to put the vessel on the nearest east or
west course during the run between these equal altitude
observations. This is imperative in a swift vessel.


The stars and planets offer themselves for use in this
problem as in all others, and here they possess special
advantages of which the mariner may well avail himself.
Indeed, it may be said in truth that when a horizon can

be obtained the latitude is always available through this
problem.


And right here should be impressed upon the navigator
the great advantage of becoming familiar with the stars,
not merely those of greatest brilliancy, but the “lesser
lights” that can be observed. Among the latter, especial
acquaintance should be sought with those whose right
ascensions place them in the gaps between the larger stars,
thus almost the entire heavens are included in the scope
of operations, making the latitude and longitude practically
always available, provided again there is a horizon.


Star charts, planispheres, and globes are for sale everywhere
and no study is more interesting than that of the
ways of these celestial travelers. They appear and pass
each day, year after year, until you consider them as old
friends, and, as you come on deck for the mid-watch,
you look for Orion, for instance, the same as you look for
the members of your watch at their proper stations.


But we are off our course. The increasing popularity of
the circum-meridian and its undoubted accuracy when used
with time obtained from a carefully rated chronometer,
is breaking the hold of the time-honored meridian altitude.
There is no waiting with cold fingers, perhaps, for
the body to dip for this sight, just shoot the star, note the
time and duck for the chart room to work it up.


The most favorable position of a body for a circum-meridian
altitude is one in which the rise and fall near the
meridian are slow. In the case of the sun, it was explained
that a low altitude proved the best, but, in the case of the
stars, we find another condition; those near the pole, or in
other words, of large declinations, describe such small

diurnal circles that here also the change in altitude is
correspondingly small, thus fulfilling a desired condition
for the successful working of this problem. To illustrate
this point the reader is referred to Polaris. Now this star
has an extremely small diurnal circle and it will be remembered
that the altitude is for all practical purposes the same
for a half hour either side of the meridian, showing the
extreme slowness of its movement of revolution.


The stars are used in the same way as the sun except,
of course, that the distance from the meridian becomes the
star’s hour angle instead of local apparent time. This is
readily obtained as follows: Adding to the Greenwich
mean time the sidereal time of the preceding Greenwich
mean noon (Nautical Almanac), together with the acceleration
of Greenwich mean time (Table 9 Bowditch), gives
the right ascension of the meridian. Taking the difference
between this latter quantity and the right ascension
of the star, we have the star’s hour angle, west, if the
right ascension of the meridian is greater than that of the
star, and east, if contrary conditions exist.


The circum-meridian, as well as the straight meridian
altitude, is available for use of stars near the meridian below
the pole, and, as one proceeds into higher latitudes, the
pole becomes more and more elevated, offering thereby
more opportunities for practicing this phase of the problem.
The only feature to be remembered in this case is that
the body is higher at the time of a circum-meridian than
when it transits, so the correction to be applied to the observed
altitude must be subtracted (-) in order to obtain
the meridian altitude.


The planets, too, are used by the ex-meridian altitude

method, but being wanderers in the heavens their right
ascensions and declinations must be determined for the
Greenwich date from the Nautical Almanac.


The amended altitude of any body is assumed to be
the meridian altitude and is used in the familiar formula
z + d = latitude (see Latitude by meridian altitude); but it
must be borne in mind that the result is not the latitude
at noon but at the time of sight. If the observation was
made say 9 minutes before noon and the latitude considered
to be the position at local apparent noon as in an ordinary
meridian altitude, there would be an error of 3 miles from
the correct position for a 20-knot steamer.


Another point to be guarded against is that when taking
several altitudes and their corresponding times their
mean cannot be obtained in the ordinary way, but each
altitude must be separately reduced and the mean taken
of the results.


It is again necessary to diverge from the subject to impress
on the mariner an urgent warning against anything
but the most untiring vigilance in the care of his chronometer,
and the keeping of accurate time. If this element cannot
be depended upon there will be many hours of anxiety
coming to him and probably sooner or later downright disaster.
The almost universal establishment of time signals
in all good-sized sea ports of the world together with radio
time signals sent broadcast allows but little excuse for not
obtaining a good rate by the time a vessel is ready for sea.
Every well-known work on navigation deals with the subject
of rating chronometers and so no space will here be given
to it. After reading this talk on one of the most important
and up-to-date observations where so much depends upon

the accuracy of the time, the reader cannot fail to appreciate
this earnest admonishment.




Polaris




The process of finding the latitude by means of Polaris is
valuable, comparatively short and the result, if the conditions
are favorable, is accurate. We will consider it
first in a general way.


The imaginary line representing the earth’s axis, if
extended indefinitely, is presumed to pierce the celestial
sphere at the celestial pole, therefore for an observer standing
at our north pole this imaginary point would be
exactly in the zenith and hence 90° from the horizon
just as the pole is 90° from the equator, these amounts
evidently bear a relation to one another. Should the person
at the pole leave his frigid surroundings and proceed
toward the equator, he would note that the pole had
dropped lower and lower in the heavens, precisely in proportion
to his progress southward, until at length, when the
equator (latitude 0°) was reached, the pole would be
observed to be exactly in the horizon (altitude 0°). From
this it is easy to deduce the statement that the altitude
of the celestial pole is equal to the latitude of the place of
observation.


The object of this problem then is to obtain the altitude
of the celestial pole. This point, unfortunately, is marked
by no star of which a direct altitude may be observed to
aid the navigator in reaching this desired result. There is,
however, a star of the 2d magnitude, called Polaris (because
of its proximity to the pole) with a polar distance of only

1¼°. As all fixed stars are apparently revolving in circles
around the celestial pole, this star joins the grand procession
with its little radius of 1¼°.


It is plain that at no time can this star be more than
the amount of this radius (1¼°) from the pole, and when
on the meridian either above or below the pole the full
amount of the radius is subtracted from or added to the
corrected altitude of the star to obtain the true altitude of
the pole. When the star is on a line passing through the
pole and parallel to the horizon at its elongations as it is
called, the altitude is then equal to the latitude, for its
elevation is the same as that of the pole.


It requires 24 hours for this star to complete the small
circle of revolution, the same time required by every star;
its movement is necessarily very slow. By computing its
hour angle, we can locate its position on this circle,
and hence by applying a correction to its altitude, subtracting
or adding according to the position of the star
above or below the pole, we will obtain the altitude of
the pole.


A rough estimate of the position of the pole may be
secured by noting the position of the Big Dipper, the second
star in the handle, called Mizar, is approximately in line
with Polaris and the pole.


We will now proceed to show the method by which the
hour angle is obtained:


In the talk on Time, it was stated that the local (astronomical)
mean time plus the right ascension of the mean
sun is equal to the local sidereal time; and again, that the
right ascension of a star plus its hour angle equals local
sidereal time. With these facts as a basis, the formula for

latitude by Polaris given in the Nautical Almanac will be
followed in explanation.
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The time of observation must be noted by chronometer
and converted into local (astronomical) mean time; this
must be corrected by Table III (Nautical Almanac) in
order to change this solar interval into a sidereal time

interval; to this converted time must be added the Greenwich
sidereal time of mean noon (page 2); that is, the hour
angle of the First Point of Aries, or what is the same
thing, the right ascension of the mean sun; to this sum
must be applied a correction for longitude, in time, taken
from the foot of page 2, N. A. The sum is the local sidereal
time.


The reason for the correction of longitude is this: The
difference between the right ascension of the mean sun at
noon on two successive days is 3 m. 56 s., the same as the
accumulated difference between solar and sidereal time in
1 day. Now we take from the Nautical Almanac this
element for Greenwich mean noon, yet the sun has since
covered the distance equal to the longitude, and during
the interval required to do this, the sidereal time has
accelerated over the solar an amount which bears the same
ratio to the 3 m. 56 s., that the longitude in time bears
to 24 hours. The Nautical Almanac handles the terms
of this proportion in tabular form at the foot of page 2.
It is stated that the sun has traveled from the meridian
of Greenwich to the local meridian, and it might be suggested
that at the time of observation the sun has covered
this amount plus the local hour angle or the local astronomical
mean time. This is true but the amount
of local hour angle has been previously accelerated to
sidereal time by the correction to local astronomical
mean time.


With the local sidereal time enter Table I (Nautical
Almanac) and pick out the correction to be applied according
to sign to the altitude. It is probably needless to
say that the observed altitude must be corrected for index

error, dip and refraction before applying this latter correction,
which converts it into latitude.


This is called the Nautical Almanac method and is sufficiently
accurate for navigational purposes, but should a
greater refinement be desired there are tables of further
corrections given in the American Ephemeris and Nautical
Almanac.


It is always advantageous to get an observation of a
star near twilight or dawn, in order that a well-defined
horizon may be available; but, in taking a sight of Polaris,
another important feature is to be considered. When the
star’s hour angle is at or near 6 or 18 hours, that is, near
that part of its orbit cut by a line passing through the pole
and parallel to the horizon, it is rising or falling most rapidly,
with the result that a small error in time will produce
a considerable error in the hour angle, an error of 3 minutes
introducing a difference of 1´ in the latitude.


It is quite worth while, therefore, to select a time for
the observation of Polaris when this star is near either of
its culminations, its highest or lowest positions, where the
time need not be especially accurate; but by carefully
noting the time it is possible to get good results at other
times when the horizon is defined. By using the position
of the star Mizar, as suggested above, however, the navigator
will be greatly aided in selecting the most propitious
time for observing Polaris.







CHAPTER VII




Azimuths and Amplitudes







Of all the navigational instruments now in practical use,
there are few, if any, that exceed the mariner’s compass in
usefulness to mankind. The part it has played in the development
of the world has been most important, and its
utility is no less to-day than in the past, for the intercourse
of nations is still guided by the compass needle.
With such a responsibility depending on this instrument,
it would naturally be supposed that its indications must
be very accurate, but, on the contrary, the needle is swayed
by the slightest magnetic influence and points North
only on rare occasions; and in steel vessels only by mere
chance.


The needle is drawn from true north first by the direction
of the earth’s magnetic force which is not coincident
with the meridian owing to the position of the magnetic
poles. The north magnetic pole being in the extreme
northern part of Canada, all the lines of force in the northern
hemisphere converge toward this locality. The needle
when otherwise undisturbed lies in the direction of these
lines of force and takes an angle with the meridian depending
on the locality.


The amount of divergence from the true north, or variation,
as it is called, differs in different localities but is readily

obtained by a glance at the chart where each compass rose
shows the amount of variation at that place. From a magnetic
course, or bearing, the true course, or bearing, is
readily found by the proper application of this variation,
which may be either easterly or westerly. The true course
is to the right of the magnetic course, when considered from
the center of the compass, in easterly variation; T. R. E.—True-Right-Easterly.
Remember these three words and
the whole lesson is learned, for if true is to the right
in easterly variation it must be to the left in westerly;
and if true is to the right in easterly, the magnetic course
must be to the left of true course in easterly and to the right
in westerly. In this way the true and magnetic courses
are converted one to the other at will.


If we were to sail always in an entirely wooden ship,
our compass troubles would be very few, for the above would
include every phase of the situation. As wood is non-magnetic
the compass would be uninfluenced by outside
disturbances. Wood, as a ship-building material, having
been so much displaced by iron and steel, the use of these
metals has brought many problems to solve in connection
with the deflection of the compass needle.


The effect on the compass needle of the magnetism in a
vessel and her cargo is known as deviation and is very
complicated, owing to many influences which are at work
at all times giving an ever-varying value to this element of
error.


The causes of deviation and its treatment in the way
of compensating the compass are subjects much too extensive
for this little book; furthermore, they are carefully
dealt with in a half dozen of the well-known works on navigation,

so we will touch only on the every-day side of
compass work.


The deviation changes with every alteration of the
vessel’s head, owing to the change in position of prominent
parts of the vessel’s hull relative to each other, to the compass,
and to the terrestrial lines of force (magnetism).


As a result of these influences on the compass needle, the
mariner has three courses to deal with. The first is the
true course, which is based on a compass whose needle points
true north. The second, the magnetic course, is taken from
a compass affected by variation alone and therefore pointing
to the magnetic pole. The third is the compass course,
or that course actually shown by an ordinary standard compass
in a steel ship, affected by the error of variation combined
with the error of deviation.


The combination of the deviation and the variation is
the compass error and is obtained by adding the deviation
and variation if both are of the same name, the compass
error taking that name; for instance suppose we have a
variation of 2° W. and deviation of 10° W., the combined
error is 12° W. If, however, the variation and deviation
are of different names, it becomes necessary to find the
difference between the two and name the result after the
greater quantity; thus, with a deviation of 4° E. and a
variation of 10° W., the error is 6° W.


The compass error is applied to compass course to obtain
true course and vice versa by the same rule as for variation.


The navigator in planning his course between two positions
lays the parallel rulers on these positions on the
chart and carries this direction to the nearest compass

rose. This may be a true rose, in which event he remembers
his T. R. E. rule, reversing it in this case, and with
the variation given on the chart secures the magnetic course.
In an iron or steel vessel, the deviation for that course
must be ascertained from the deviation card by trial or
from a Napier Diagram direct and applied to the magnetic
course in order to obtain the compass course. This is
accomplished precisely as in finding the magnetic from the
true course (to the left if deviation is easterly and to the
right if westerly). The course by standard compass is
now at hand by which we can steam from one selected point
to the other.


The deviation as has been said is an ever-varying error,
and consequently it is quite impracticable to depend wholly
on a fixed deviation card. We may take aboard some magnetic
cargo or change our latitude to a great extent, the
vessel may be pounded excessively by heavy seas, a stroke
of lightning or by stranding; all these are causes liable to
affect the deviation more or less.


In order to forestall the serious consequences that are
liable to attend such a derangement of the normal and
expected deviation, the careful navigator takes azimuths
or amplitudes on every course when practicable. Azimuths
and amplitudes are nothing more nor less than astronomical
bearings of heavenly bodies; they indicate
the true bearing of the body, and the difference between
this bearing and the bearing taken simultaneously by
standard compass is the compass error.


The azimuth of a body is the angle at the zenith between
the meridian and the vertical circle passing through
the body. It is customary, however, to consider the

azimuth as measured by the arc of the horizon rather than
by the angle at the zenith. It is measured from the north
or south point according to the latitude, toward either the
east or west point, through 180°.


An amplitude, unlike an azimuth, is restricted as to
time of observation, for the body must be on the horizon
either rising or setting; and should be observed when the
sun is about its own diameter above the horizon and with
a not excessive height of eye. The amplitude is measured
from the east or west point through 90° to the north or
south point. If the body observed has a south declination
and is rising, the amplitude will be East so much
South; if declination is north, East so much North, for a
body rises in the East point when its declination is 0°—on
the equator.


The principle of the amplitude lies in the solution of a
right-angled spherical triangle, whose sides are the body’s
polar distance, the co-latitude, and the zenith distance
which is 90°. We desire the complement of the angle at the
zenith. It is unnecessary to compute an amplitude, for in
Table 39, Bowditch, will be found the desired bearings for
different latitudes and declinations. The sun will be found
the most satisfactory of the heavenly bodies to utilize for
amplitudes.


There are two methods of calculating an azimuth, one
known as the time azimuth and the other as the altitude
azimuth. The former is the most popular owing to the
tables that have been compiled, an inspection of which
facilitates the navigator in quickly obtaining the true
azimuth of a body. Before entering the tables, it is
necessary to have as arguments the latitude and declination,

and, if using the sun, the local apparent time, or
for stellar work the hour angle. Should the star’s hour
angle exceed 12 hours, 12 hours should be subtracted from
it, and the remainder used as P.M. time. A planet may
be employed precisely in the same manner as a star.


One of the simplest and most expeditious methods of
securing the azimuth is by means of a diagram. Upon this
convenient invention the bearing of a body can very
quickly be taken off with a pair of rulers. Weir’s Azimuth
Diagram is sold by the Hydrographic Office for a very small
sum. The only argument that can be used against its
use is that it requires a small table to lay it upon. Simple
and complete directions are printed on the diagram.


The altitude azimuth is often computed at the same
time as the ordinary A.M. and P.M. time sights, utilizing the
altitude of the body for both operations. The principle
involved in computing both an altitude azimuth and a time
azimuth is the solution of the same astronomical triangle for
the same angle, but in the case of the altitude azimuth
three sides are given (the co-latitude, the zenith distance,
and polar distance) to find the angle at the zenith. In the
time azimuth, two sides and the included angle are given
(the polar distance, co-latitude and local apparent time
or hour angle) to find also, the angle at the zenith.


The azimuth found by computation should be named
North if in north latitude, or South if in south latitude.


It has been customary to add up the logs, divide by 2
and the cosine will be half the azimuth named from the
elevated pole, but a more expeditious way is after adding
the logs seek in the log haversines and find the azimuth
directly but named from the opposite pole to the latitude.



With the correct bearing of the sun, and its simultaneous
bearing by standard compass at hand, the compass error is
found by merely taking their difference. Now this error,
as said before, is composed of the sum or difference of the
deviation and the variation, so, if either is subtracted from
their sum, or added to their difference the remainder is
the other quantity. The variation being always known is
subtracted from or added to the compass error to obtain
the deviation, thus checking the deviation card for that
particular course the vessel was steering at the time of
observation.


With the compass error at hand, many students become
perplexed as to the proper manner of dealing with this
error, and finding from it the deviation. The compass
error is first named, by considering the two bearings (compass
and true) from the center of the compass; if the true
is to the right of the compass bearing, the error is easterly,
if to the left, westerly.


Now should the variation happen to be identical with
the compass error, both in amount and in name, there is no
deviation; if the variation is 0°, then the whole error is
deviation. If by chance the compass error is 0°, it indicates
that the variation and deviation are equal in amount
and opposed to each other in their influence on the needle.
The deviation, in such a case, naturally takes the opposite
name from the variation.


In separating the variation from the compass error,
it is necessary to exercise a little thought and to consider
what deviation applied to the given variation will produce
that compass error. This will be readily seen after a little
practice. There are, however, some rules which are here

given, by which the deviation can be obtained mechanically.


The deviation is the difference between the variation and
the compass error if they are of the same name or adding
them if of different names. It is given the same name as
the compass error unless the compass error is subtracted
from the variation, when the deviation takes the opposite
name.


Or a diagram in which the error is shown by its particular
number of degrees east or west of the true north
line may be drawn and the variation likewise properly
shown east or west of true north. If the error is to the
left of the variation the deviation is west and if to the
right the deviation is east.







CHAPTER VIII




Longitude







The longitude of any position on the earth is its distance
east or west from the meridian of Greenwich, which
has been chosen as the meridian of origin. Longitude is
measured on the equator eastward and westward through
180°, completing in this way the whole circumference of
the earth.


The circumference of every circle comprises 360°,
whether it is a great circle of the earth or any of the parallels
which range in size from a point at the poles to a great
circle at the equator. There are always 360° but the length
of each degree is determined by the size of the circle. Thus
a degree of longitude on the equator is 60 miles, while on
the 50th parallel of latitude it is only about 39 miles, owing
to the decreasing size of the parallels of latitude. A
minute of longitude on the equator, like a minute of latitude,
is equal to one mile, but the difference between
the meridians in actual distance decreases toward the poles
gradually lessening the linear value of a degree of longitude.
Thus it will be seen that when it is desired to represent a
difference of longitude in distance, it must be done in terms
of departure (miles) corresponding to the particular parallel
of latitude of the position.


The sun apparently moves around the earth in its
diurnal motion, covering 360° in 24 hours, whether the declination

is north or south, and a little simple division
shows that in one hour he passes over 15° of longitude,
whatever the latitude. This reduced shows that 1° is
passed over every 4 minutes. As the standard time, the
world over, is reckoned by the movements of the sun, it is
plainly seen that when considering longitude, a definite
relation exists between time and arc (°-´-´´). Owing to
this relation, time and arc become interchangeable by a
simple process of conversion.


So it follows that if we have the time at Greenwich by a
chronometer, and through a trigonometrical calculation we
determine the local mean time at the ship, the difference
in time between Greenwich and the ship’s meridian
represents the longitude in time, which is readily converted
into arc.


The calculation involved in determining the local mean
time is the solution of the astronomical triangle, or in other
words it is a problem in spherical trigonometry. This
triangle has its apex at the pole with one side as the polar
distance (90° - declination of the observed body), another
side the co-latitude (90° - dead reckoning latitude) and the
third side the zenith distance (90° - the corrected altitude
of the body).


It is one of the principles of trigonometry that with any
three elements given in a triangle any of the remaining
elements may be computed; that is, any angle or side is
obtainable. The solution of the astronomical triangle for
various elements includes the finding of the zenith distance
and from this the altitude, which forms the main feature of
the problem involved in the New Navigation. It also
provides us with the angle between co-latitude and the

zenith distance, which is the azimuth of the body, by which
the mariner is able to ascertain the error of his compass.


The most important feature of the astronomical triangle
is the angle at the pole, known as the hour angle, which
when found secures for the navigator his local time. The
problem presents itself in the form of three sides being
given to find one angle. It is found by the time sight
formula, which is too well-known to need any discussion
here.


The shape of the triangle is determined by the declination
of the body, its altitude and the latitude of the vessel,
and the polar or hour angle; and it stands to reason that a
formula will not produce the same accuracy in the hour
angle with every shape of the triangle. For instance,
in high latitudes or when the body has a declination approaching
90°, the accuracy of the time sight formula
becomes effected.


Another very important point to bear in mind when
observing a body with the view of computing its hour angle,
is its azimuth. When the bearing is nearly east or west, on
the prime vertical, the body is rising or falling faster than
at any other time, and an error in altitude or latitude will
produce the least error in the resulting longitude. The
necessity for close attention to this point is increased with
the latitude. Observations for time taken when the body
has an azimuth of less than 45° or over 135° are wholly
unreliable.


The sun does not always cross the prime vertical in his
daily track across the heavens, for under certain conditions,
say during the northern winter, he will rise southward of
east and set southward of west. Under these adverse conditions,

the calculation of longitude is not dependable, and
the best a navigator can do when using the sun is to observe
as soon as he has an altitude sufficient to clear the
excess refraction existing near the horizon.


It is under such circumstances that star sights are of
incalculable value, for a star can always be found in a suitable
position with but little waiting, or we may employ
the New Navigation method, where the azimuth of the
sun is as good one place as another.


In order that a body will cross the prime vertical, the
latitude must be of the same name and greater than the
declination. In conditions cited above the declination of
the sun is south and the latitude is north, hence the body
will never be on the prime vertical. If the latitude is less
than the declination, the sun’s diurnal track is tilted toward
the zenith, instead of away from it as when the latitude is
greater, and the result is that the sun, while never on the
prime vertical, approaches it for a time after rising, then
recedes again. It should be observed when at its nearest
point to the bearing of east of west.


The bearing of various bodies can be readily found
by an inspection of Hydrographic Office Azimuth Tables
Nos. 71 and 120, the declination and latitude being used
as arguments.


There is a method of finding the longitude known as the
equal altitude method, but it is not valuable. The conditions
are exacting where accurate results are required
and when these conditions exist the ordinary time sight is
available and at its best advantage, so longitude by equal
altitudes is not popular. To secure good results, the
body must have an altitude above 70° and near the prime

vertical; and, furthermore, the ship must be kept on an
east or west course or remain stationary. The theory
of the problem is simplicity itself, and for this reason is
very alluring, but the best use that equal altitudes can
be put to is the determination of chronometer error ashore,
and in these days of radio time signals even this use is
almost obsolete. The rule is as follows: Observe the
sun’s altitude, simultaneously noticing the time by chronometer
and clamp the sextant to prevent any chance of the
altitude becoming disturbed. When the sun has fallen to
the same altitude as of the forenoon sight, note the time
again by the chronometer. The mean of the two times,
corrected for chronometer error, equation of time, and the
equation of equal altitudes due to change in declination,
in case of the sun, is the Greenwich apparent time corresponding
to our local noon or our longitude in time, which
should then be converted into arc.


The stars and planets are available as well as the sun
for the finding of longitude and when there is a distinct
horizon, stellar sights have many advantages. The
problem depends upon the solution of the astronomical
triangle by the same formula as with the sun.


There are a few points of difference between a time sight
of the sun and one of a star or planet needing explanation.
In the case of the former body, we naturally compare the
solar time of Greenwich with the solar time of the local
meridian, but in stellar work we employ for this comparison
stellar time, or, as it is more popularly called, sidereal time.
So it becomes necessary to turn the Greenwich mean time
of the chronometer into Greenwich sidereal time and compare
it with local sidereal time. The difference, as in mean

time, is the longitude in time, which is converted into arc
in precisely the same way.


The Greenwich mean time is turned into sidereal time
by adding to it the right ascension of the mean sun, taken
from the Nautical Almanac and the acceleration for the
Greenwich mean time (Table 9, Bowditch). The local sidereal
time is the result of an addition of the star’s right
ascension and the star’s hour angle, the right ascension
is taken from the Nautical Almanac without correction
if a fixed star is being considered and the computation
of a time sight gives the star’s hour angle. The local
sidereal time being the right ascension of the meridian,
it follows that the angle from the vernal equinox to the
star plus the angle from the star to the meridian is what
we desire; hence the above rule for obtaining the local
sidereal time.


Should the star bear east of the meridian, the local
sidereal time may be found by subtracting the (easterly)
hour angle from the star’s right ascension or adding them
as above and subtracting 24 hours. Reference to the Time
Diagram, Fig. 3, will make these points clear also.


It is customary to add up the familiar logs of time
sight—sec. lat., cosec. p. d., cos ½ sum, sin, remainder—divide
by 2 and seek the H. A. (hour angle) in the A.M.
or P.M. column of Table 44, Bowditch, using the log as
a sin; but a more expeditious way is to use the sum of the
logs as the log haversine in Table 45 and pick out the hour
angle directly.







CHAPTER IX




Sumner Method







Every mariner who has reached a position in the profession
where he is intrusted with the responsibilities of
navigating a vessel is under obligation to the late Capt.
Thomas H. Sumner, of Boston. This shipmaster discovered
and developed the principle of the so-called Sumner or
Position Lines, a principle which has proved of inestimable
value and which, with its subsequent improvements, has
well-nigh revolutionized the methods of navigation.


The discovery was purely accidental and for that
reason is interesting. Here, in Capt. Sumner’s own words,
is how it occurred: “Having sailed from Charleston, S. C.,
25th November, 1837, bound for Greenock, a series of
heavy gales from the westward promised a quick passage.
After passing the Azores, the wind prevailed from the
southward, with thick weather, after passing longitude
21° W., no observation was had until near the land, but
soundings were had not far, as was supposed, from the edge
of the bank. The weather was now more boisterous, and
very thick, and the wind still southerly.


“Arriving about midnight, 17th December, within 40´
by dead reckoning, of Tuskar light, the wind hauled S.E.
(true), making the Irish coast a lee shore. The ship was
then kept close to the wind and several tacks made to

preserve her position as nearly as possible until daylight,
when, nothing being in sight, she was kept on E.N.E. under
short sail, with heavy gales. At about 10 A.M. an altitude
of the sun was observed, and chronometer time noted;
but having run so far without any observation, it was evident
that the latitude by dead reckoning was liable to
error and could not be entirely relied upon.


“However, the longitude by chronometer was determined,
using the uncertain D. R. latitude, and the ship’s
position fixed in accordance. A second latitude was then
assumed 10´ to the north of the last and working with this
latitude a second position of the ship was obtained and
again a third position by means of a third latitude still 10´
further north.


“On picking off these three positions on the chart it
was discovered that the three points were all disposed in
a straight line lying E.N.E. and W.S.W., and that when
this line was produced on the first-named direction it also
passed through the Smalls Light. The conclusion arrived
at was that the observed altitude must have happened at
all three points, at the Smalls Light, and at the ship at the
same instant of time. The deduction followed that, though
the absolute position of the ship was doubtful, yet the true
bearing of the Smalls Light was certain, provided the chronometer
was correct. The ship was therefore kept on her
course, E.N.E. and in less than an hour the Smalls Light
was made bearing E. by N. ½N. and close aboard. The
latitude by D. R. turned out to be 8´ in error.”


If the captain had worked more time sights using different
latitudes, he would have added new positions on the
line to which he refers, each placed upon it according to the

latitude used. Had he cared to pursue his experiments
farther, and used latitudes very wide of his dead reckoning
position, he would have discovered that the resulting positions
instead of lying in a straight line, were in a curve
and an arc of a circle.


The principle involved is very crudely illustrated in
the following experiment: Let the reader consider himself
aboard ship lying at anchor—say a full-rigged ship, so as to
insure a foremast of good height. Lower the dinghy and
take along a sextant.


We start with a series of measurements to determine
the angle, as read from the sextant in the dinghy, between
the truck and the waterline about the vessel. As a
result of these measurements, we discover that this
angle becomes smaller as the distance from the vessel
increases.


Carrying our tests farther, suppose when the sextant
shows the altitude of the fore truck above the waterline
to be 70°, that the distance to the vessel be determined.
With this distance as a radius and the foremast as the
center, we row in a circle around the vessel, the sextant will
continue to read 70° all around the circle.


It is thus demonstrated that a circle surrounds that
foremast upon which the altitude of its truck is everywhere
70°—a circle of equal altitudes.


Not being quite sure of this interesting fact, perhaps,
another angle is selected by moving a little farther from the
ship. The sextant shows the fore truck to have an altitude
of 50°; the distance to the vessel is established, whereupon
the dinghy is rowed around the vessel with this distance as
a radius. Again the sextant reveals no change from 50°

and it is clearly shown that we have moved about on a
circle of 50° elevation of the truck.


We can continue experimenting in this way until the
distance from the ship becomes so great that some physical
condition prevents our reading the angle of the truck’s
altitude.


These investigations show that there is a system of concentric
circles of equal altitude about every elevated object
like the little undulations we have seen so many times
produced by the splash of a stone thrown into a pool.


These circles of equal altitudes surround not only elevated
terrestrial objects but also celestial bodies, as will
now be shown. As the sun is the most convenient body for
this illustration, let us substitute it for the fore truck of the
foregoing experiments, while for the waterline of the vessel
we will use the point on the earth touched by a plumb-bob
suspended from the center of the sun.


This point will fall on the equator on the 21st of March
or thereabouts, as the sun coming up from his southern
declination crosses the equator into north declination at
this time. The instant of the transit is the vernal equinox.
Now this point will be found an excellent one from which
to study this problem, but, as this takes some time and the
sun is ever on the move, we will imagine ourselves endowed
with the power of Joshua to command the sun and moon,
which will enable us to study this phenomenon while free
from the restlessness of the Universe.


First of all, it must be understood that the sun shines
on one hemisphere of the earth at all times; it matters not
how the earth is tipped in relation to him, one half of the
world is always enjoying sunshine. The center of the

lighted area is the spot directly beneath the sun where the
plumb-bob touches and about this point lies the system
of concentric circles of equal altitudes of the sun.


Under the conditions shown above, the sun is in the
zenith of the terrestrial vernal equinox, shining on the earth
for a distance of 90° in every direction; but its altitude
diminishes in direct proportion with the distance of the
observer from the point of the equinox. On the great
circle everywhere 90° from the equinox the sun is in the
horizon with an altitude of 0° (provided we disregard dip
and refraction). Suppose the members of some intrepid
expedition have reached the northern or southern pole;
they would, at the time being considered, see the sun in the
horizon and in the direction of the meridian passing through
the vernal equinox.


Eastward along the equator 90° of longitude from the
vernal equinox, the inhabitants are just resting from the
toils of the day, for with them the sun is setting in their
western horizon, while away to the westward 90° the people
are showing signs of activity, for it is just sun-up in their
eastern horizon.


So all around the world just 90° from this selected position
and at this appointed time is a circle of equal altitudes,
namely 0°, for is not the sun seen in the horizon at
all points on this circle?


The altitude of the sun is 90° at the point of observation
and 0° on its outer circle of altitude; these are the two
extremes and between them lies an infinite number of concentric
circles of equal altitude for navigators to utilize.
The zenith distance, derived by subtracting the altitude
from 90°, indicates the distance of each circle from the

center or sun’s position. Thus if an observation was taken
by some bewildered mariner in which the altitude was found
to be 80°, the corresponding zenith distance of 10° multiplied
by 60 would indicate that the altitude was taken 600
miles from the sun’s position, or to put it in another way,
the circle of equal altitudes upon which the observer was
located in this case had a radius of 600 miles.


What is true of the sun on the equator regarding the
principle of the circles of equal altitudes holds good throughout
its range of declination, the whole system moving north
and south with the continuous change of declination and
from east to west with its apparent diurnal motion.


In the quoted article, Capt. Sumner shows a method
by which the position of a vessel may be established on
some particular circle of equal altitude; it matters not
where the observed body happens to be at the time, for
with the Nautical Almanac and chronometer it can be
located should we care to know. The navigator, however,
cares to deal ordinarily only with a very small arc of the
circle embraced within his immediate whereabouts. Should
he be somewhat uncertain of these he would simply require
the use of a longer line to extend beyond the limits of his
possible position.


Except when in a latitude that differs but little from
the declination of the observed body, the circle of equal
altitude will be sufficiently large to allow the mariner to
represent its arc in his vicinity by a straight line. Thus
the lines of position used to plot a vessel’s position on the
chart are in reality chords or tangents of the circle of
equal altitude. In geometry it will be remembered that we
used to study about circumscribed and inscribed polygons

and here we have a practical application of their use. If
we consider the line of position to be a tangent, it is one
side of a great polygon with a vast number of sides circumscribed
about the circle of equal altitude; and if we consider
it to be a chord, it is likewise a side of a great polygon
inscribed within the circle of equal altitude. It matters not,
however, if the line or curve of position is considered a
straight line, except in the ill-chosen condition of the body
near the zenith when the radius of the circle will be proportionately
small. If exactly in the zenith there will be
no circle of equal altitude at all and the sextant will measure
an altitude of 90°. It is comparatively rare, however, that
such a condition will embarrass the use of this method.


Another point to be remembered in connection with the
inscribed and circumscribed polygon propositions and one
which has a practical application in the use of position lines,
is that the tangent or chord of a circle is at right angles to
the radius passing through the point of tangency or center of
the chord. It follows that the sub-celestial or terrestrial
position of the observed body, being at the center of the
circle, is always at right angles to a line of position.


This important fact gives the navigator an opportunity
to check his compass error each time he establishes a position
line, by comparing a compass bearing of the body taken
simultaneously with the measurement of the altitude, with
the true bearing.


To establish a position line as Capt. Sumner did and as
it was done for years afterwards, by assuming two latitudes
usually 10´ each side of the dead reckoning latitude, and
drawing the line through the two resulting longitudes, is
known as the chord method. The two longitudes being

positions on the circle a line drawn between them is a chord
of the circle.


The work of computing a time sight is more or less
laborious to everyone and with some seafarers forms their
most arduous mental exercise. At any rate no one wants
to work any more than is necessary to insure accurate
results. So when establishing a position line it will often
be found convenient to use the short cut known as the
tangent method.


With the latitude by account work the observed altitude
as in the ordinary time sight, instead of assuming two
latitudes. Seek the true azimuth in the tables or on
diagram, using the latitude and declination employed in
the time sight and the local apparent time gained from it,
as the arguments. The true azimuth, it will be remembered,
always bears at right angles to the position line. Hence
if the azimuth is laid down through the position furnished
by the time sight, the position line may also be readily
plotted at right angles to the line of azimuth at the time
sight position.


The navigator now-a-days is expected to think in position
lines when he is clear of the land, as a pilot thinks in
shore bearings and marks. That is, he must see these
imaginary lines of the different visible bodies, and keep
track of their availibility for his particular use. It is
easy to get into the habit of this, for they are simply
astronomical bearings instead of bearings on distant terrestrial
objects, with the distinction that the celestial
bearing allows of a 90° correction to produce a position
line.


The morning sun on the prime vertical with a sufficient

altitude to avoid any dangerous refraction, will produce a
north and south line of position. During the forenoon as
the sun passes toward the meridian, the northern end of the
position line will move in direct proportion with the body’s
change in azimuth to the eastward and the southern end
to the westward, until at noon with the sun on the meridian
we have an east and west position line.


It will be seen that at one moment of the day it is
a very easy matter to establish a line of position; the mere
working of a meridian altitude does this. This simple expedient
of finding a position line was utilized a great deal
as a means of making a landfall in the days before chronometers
were perfected. In those good old days, before
the clipper ship era, time was not held at such a premium
as in the present hustling period, and a few days more or
less at sea mattered but little. The shrewd shipmasters
then would keep well offshore until in the latitude of Boston
or the Virginia capes, as the case might be, when they would
haul due west and let her go, making, no doubt, first rate
landfalls, if the old pig yoke was in good working order.


The value of a position line was demonstrated to the
writer some years ago when bound in from the eastward and
running into a heavy and very extensive fog bank somewhere
southeastward of Halifax. During a break in the
prevailing conditions the navigator succeeded in securing
an ex-meridian sight and fortunately got a fairly good
idea of the latitude. The vessel was under sail and
making but slow progress, and as a result of the protracted
period of overcast sky the longitude became considerably
a matter of guess work. The vessel, however,
was kept on a west course with a careful allowance made

for the set. “Sir William Thompson” was kept going at
regular intervals and it was surprising to see the soundings
check up with the chart as the vessel approached,
crossed, and left astern the Roseway Bank, southward of
Cape Sable. One felt as sure of the position as did the
old Nantucket sailor in crossing “Marm Hackett’s garden.”


In cases where the soundings do not check so precisely
as in this instance, it will sometimes be found a great help
to lay off to scale the depths obtained on the edge of a
piece of draftman’s transparent linen. Place it on the chart
in the line of the course, and, should the soundings fail to
agree, move the scale forward and back or to either side,
always preserving the direction of the course, until a position
is found where the soundings on the scale agree with
the depths given by the chart.


Progress has been made in the science of navigation as
in all other sciences, and the modern shipmaster is not
obliged to hold aloof from Nantucket Shoals and Georges
Bank under ordinary conditions as our ancestors were compelled
to do, for with a correct chronometer and a knowledge
of the position line such outlying dangers have been
robbed of many of their anxiety-producing elements.
Before showing the method of working around such places
another point of value of the position line is called to the
reader’s attention.


A line of position extended until it reaches the land or
some danger will indicate to the mariner the bearing of that
particular point of the coast or danger. If it so happens
that this point is not the place of destination, the navigator,
not being able to lay a course direct for his objective port
through inability to determine the vessel’s distance offshore,

overcomes the difficulty by sailing a sufficient distance at
right angles, then hauling on to a new position line parallel
to the original one. This is similar to what our ancestors
did in the simple way cited above. If the line lies in the
direction of an off-lying or isolated shoal that is dangerously
near the course, an offset like that shown above will
allow a course parallel to the position line to be sailed
in safety. Here is an example to show its useful application:


A steamer sailing from St. John, N. B., for New York
proceeded but about 10 hours on her voyage, when she
ran into a terrific gale. The master was soon forced to
heave his vessel to and ride it out as best he could. The
driving snow and mountainous seas occupied the attention
of the officers in their efforts to save the steamer and in
this way the dead reckoning position became a matter of
mere guesswork. The wind after some 20 hours in the
northeast quadrant hauled to the northward, at length
blowing out in the northwest with clearing weather.


It was the master’s intention to pass through the South
Channel, between Georges Bank and Nantucket Shoals, but
as he had lost his reckoning to such an extent he hesitated
about laying a course through such a danger-strewn locality.


In the late twilight immediately following the clearing
sky, the master succeeded in catching the altitude of a star
bearing 300° and established a line, the direction of which
led close westward of Cultivator Shoal (a 6-foot spot on
Georges Bank). So to be on the side of prudence and
give this shoal a good berth, the master steamed 8 miles at
right angles to this position line. The course or direction
of the new position parallel to the first was found to lead

directly into the range of visibility of Nantucket Lightship.
So the master’s mind was put at rest as he laid his course
along the second position line, knowing he would at length
make the lightship.


It often happens that a distant mountain peak is
visible and the sun is in a suitable position to establish a set
of cross bearings, using the mountain for one object and
the sun for the other. Now with what has previously been
stated, it is hardly necessary to remind the reader that
a “line of position” obtained from observations of the sun
will be at right angles to the sun’s true bearing; therefore,
in order to judge whether these objects are properly placed
to give a good intersection, due consideration must be given
to the relative bearings of the objects. It is evident that
the sun must bear by compass nearly in the direction of
the mountain or in the opposite direction to have the position
line and the line of bearing of the mountain cut at
nearly right angles. Of course, as with any set of cross
bearings the angle of intersection may still be effectual if
the lines cut at 50° to 60°, but the nearer a 90° cut the more
accurate the resulting position.


A position line is liable to displacement through a
variety of causes among which is an inaccurate altitude and
through incorrect Greenwich mean time. In the former
instance, an error of 1´ will displace the position one mile;
if the altitude is 1´ too large, the correct position of the
line will be 1 mile directly away from the bearing of the
body and vice versa. The effect of an error in time upon
a position line is to displace it bodily eastward or westward
the amount of arc corresponding to the error in the chronometer;
the direction of the line is, however, unaltered.

The sun carries his system of circles of equal altitude with
him from east to west as he travels along a certain parallel
of latitude corresponding to his declination (neglecting
the slight change in declination). It is quite evident that
any arc of a selected circle, will, if its position is plotted
on a small scale chart—say every 20 minutes—be found
continuously parallel with itself. And the intervals between
each two plotted positions of the arc will be 5° (of
arc) the corresponding value of 20 minutes. Thus the
displacement of the position line due to an error of time is
explained. If the time was slow, the line was too far to
the eastward, if fast, it was too far to the westward.


The value of a position line has been demonstrated, yet
with all it does not positively establish the position of a
vessel. The mariner in locating his vessel in a harbor does
not usually stop after he has taken one bearing, but proceeds
to find another object whose bearing will make a
favorable “cut” with the first, and thus at their intersection
determines his position. As a further check
against possible error a third object may be chosen and,
if the three bearings plot without forming a triangle at
their intersection, a very reliable fix will be obtained.


What applies to terrestrial objects thus employed may
be used as an illustration to be followed in taking celestial
bearings. If the mariner establishes a position line and
knows his vessel is located at a point somewhere along it,
let him look about for another body so placed that the
position line derived from it will make a good intersection
with the first line; if all data are correct this point will
indicate the position of the vessel.


When the sun is used this is seldom possible but in lieu

of another body the sun can again be employed to establish
the second position line after it has moved sufficiently in
azimuth to make a good cut. The thought no doubt
immediately arises as to the effect of the vessel’s change
in position during the interval. This is easily taken care
of by means of the course and distance run during the
interval between the sights.


The first position line must be considered carried bodily
by the vessel without change of bearing from its first position
to the position of the second observation. That is,
if at 9 A.M. a position line was established bearing in a
15°-195° direction, and the vessel then steamed and
made good a 40°-course for 6 hours and 10 knots an hour,
when another position line was established, the 15°-195°
line of 9 A.M. would be moved bodily in a 40° direction 60
miles; where its intersection with the second line would
indicate the position of the vessel at 3 P.M. The determination
of position at sea by employing two position lines
of a body with the run between sights is called Sumner’s
double altitude problem.


It has already been shown that one body, notably the
sun, can be used to get an intersection of two of its lines
of position by waiting a sufficient time between observations
for the body to change its bearing at least 30°, the nearer
90° the better. The relationship between the interval of
time and the amount of change of bearing varies greatly,
depending upon the latitude of the observer and declination
of the body. For example, let us consider the two extreme
cases: Suppose a mariner to be observing the sun
on the equator on March 21st, he will note practically
no change in azimuth during the whole forenoon. Yet

another mariner in the Polar sea, whose latitude differs
about 90° from that of the former, will have the sun encircling
his horizon making the whole amount of the sun’s
movement a corresponding change in azimuth.


Therefore it will be seen that with a low-riding sun
(or other body) the change of azimuth is greater in a given
time, and for this reason the position lines derived from the
sun are more advantageously practiced in higher latitudes,
especially in winter. This is a point of great value in view
of the fact that the sun’s diurnal course is such that it is
never on the prime vertical in northern latitudes during
the winter months, making longitudes derived from chronometer
sights very unreliable.


But to go back to the mariner on the equator whose
latitude and sun’s declination so nearly agree. He is in
a predicament should he persist in the plan to determine
his whereabouts by position lines of the sun. In such an
unusual case, it would be well to resort to some other method
or wait until evening and determine the ship’s position by
establishing the position line of some star or stars. It
will be but a few days before the ship’s progress will cause
the sun to leave his right course across the sky and take
the hour circles at an angle. Take a case when the sun at
noon has a zenith distance of 10°, the change of azimuth
during the forenoon is still small, but suppose the bearing
was noted 1 hour, or even less, before noon and again in
similar amount after noon, a change will be found of perhaps
90°, the difference of moving from the southeast
quadrant (if declination is south of latitude) to the southwest
quadrant. In this way, a remarkably good cut may
be had within a comparatively short time.



The foregoing will convince the reader that he must be
governed by the change of bearing and not by time elapsed,
in predicting the value of the cut of his position lines.


In the use of position lines, it is necessary to bear in
mind, that, when the body’s altitude begins to approach
the zenith, or, what is the same thing, when the ship
is getting close to the body’s sub-celestial position, the
circle is getting proportionately smaller. Under such conditions
the arcs of the circle of equal altitudes can no longer
be shown as a straight line. The double altitude as it is
ordinarily practiced is here impracticable. And even
outside this impracticable area, discretion must be shown.
The dead reckoning position must be proportionately
accurate, and the assumed latitudes must be brought
correspondingly close together, in order to have a shorter
line of position, because the curvature of the circle is getting
sharper as the sub-celestial point is approached. To put
it in another way, a smaller arc must be used in order to
avoid the error due to excessive curvature.


Very good results can be obtained by noting the time
of observation by chronometer (G. M. T.) and correcting
it for equation of time in order to get Greenwich apparent
time. This, if converted into arc, is the longitude of the
sub-solar position. By using the Greenwich mean time to
correct the declination taken from the Nautical Almanac
for that day, the latitude of the sub-solar position may be
obtained. Plot this position on the chart and use it as
the center of a circle; then with the zenith distance (90° - altitude)
as a radius, draw an arc in the probable position
of the vessel. Somewhere along this arc is the ship’s
position. The bearing of the sun (rather hard to get so

nearly overhead) corrected for compass error, reversed,
and laid off from the sub-solar position will give a fair idea
of the position of the vessel. Now by waiting a sufficient
time for the sun to change its azimuth enough to make a
good cut and using its new sub-solar position as a center
with the zenith distance of a second observation as a
radius, an arc may be drawn which will intersect the first
arc at the position of the vessel. The run between the
sights will, of course, require the first arc to be carried
forward as the first position line in the ordinary double
altitude problem.




Johnson’s Method




It is not always found convenient to plot the position
lines of a set of observations on a chart; perhaps for lack
of a chart of proper scale or possibly for want of the chart
itself. Again many navigators do not take kindly to the
graphic method, but prefer to solve their latitudes or longitudes
by computation. In any event Johnson’s Method
comes as a relief to such persons, saving them from the
arduous duty of establishing a set of position lines by the
chord method of assuming two latitudes to get two longitudes.


Johnson’s Method can be practiced in both the double
altitude problem of the sun, where the first sight, or position
line, is brought forward to the second sight by correcting
it for the intervening run, or where stars are used
simultaneously.


Chief among its merits is the saving of figures. It is
only necessary to compute two (instead of four) chronometer

sights in order to find the ship’s position, thus
obtaining a mathematically accurate result by a short
cut. But also a great advantage in the Johnson Method
is that the resulting longitude is obtained by calculation
and it is not necessary to plot the lines upon the chart to
secure the position.


In using Johnson’s method it is not absolutely necessary
to observe two stars simultaneously as the quick work of
a good man is sufficiently close for the practical purposes of
navigation.


It becomes evident to anyone reading the foregoing
pages that every ordinary time sight places the vessel on
a circle of equal altitude, the longitude resulting from the
computation, depending on the latitude, by dead reckoning,
used. Now rather than work two sights employing
two assumed latitudes on either side of the supposed position,
make the calculation only once, using the latitude
by account.


Suppose by way of explanation that the altitude of a
star bearing S. 55° E. is observed simultaneously with that
of another star bearing S. 25° E. The longitudes derived
by working the time sight of each should be identical,
provided the altitudes are the true altitudes, the Greenwich
time is without error, and the latitude used is correct.
A combination of accuracy, indeed, and one not likely to
be experienced often in actual practice. However, a
skillful navigator should find no great difficulty these days
in always having the correct Greenwich time at hand.
There is always, of course, an opportunity for the display
of skill in measuring altitudes, refraction particularly
being an illusive element and not always easy to detect.

But if care has been taken to eliminate the errors as much
as possible from the time and the altitude, it is safe to
consider any discrepancy between the resulting longitudes
as accountable to an error in the dead reckoning latitude.


The method of obtaining the ship’s position from the
difference in the longitudes, derived from double or simultaneous
observations, was originated by A. C. Johnson,
R. N., and its many advantages have for years made it the
most popular form among progressive shipmasters. The
working of this problem involves the application of a correction
to each calculated longitude in such a way as to
bring them into agreement. The tables (Bowditch Tables
47 and 48) furnish this correction, which is known as the
longitude factor and is symbolized by the letter F. It
constitutes the change in longitude due to a change of 1´
in latitude. This quantity changes directly with the
change of azimuth of the body; for example, the change
in longitude is nil if the change in latitude is made
on a due north or south line, and change in longitude
increases as the change in latitude is made on lines bearing
more and more eastward or westward. So it is necessary
in order to obtain these corrections to have the true azimuths
of the bodies at the moment of observation to
use as an argument in the table of longitude factors. These
are readily taken from the Azimuth Tables or diagram
using the data furnished by the time sight.


The two longitudes obtained from time sights in which
the same dead reckoning latitude is used, lie on the parallel
of this latitude, but (unless the two longitudes happen to be
coincident) the ship’s position is either north or south of
this parallel according to the error existing in the dead

reckoning latitude. If the observed azimuth of the body
(or bodies) fall within the same quadrant or in opposite
quadrants, the correct longitude will be found to the
eastward or the westward of both calculated longitudes.
This is clearly shown in Fig. 7; both azimuths are between
south and east. If the observed azimuth of the body (or
bodies) fall in adjacent quadrants say, one between south
and east and the other between south and west, the ship’s
position will be found between the two calculated or
erroneous longitudes. The position of this true longitude
is determined by means of the before-mentioned factors.
The factor of a longitude is the distance of the true longitude
east or west of the meridian passing through the
calculated or erroneous longitude, assuming the latitude
to be in error 1´. The moment of this factor, it will be
seen, depends on the azimuth of the body, which in turn
determines the direction of the position line.



 [image: Figure 7]
 Fig. 7.


The combination of the two factors, by adding if the
bodies are in the same or opposite quadrants or vice
versa, is the combined error in difference of longitude
due to 1´ of error in latitude. It now becomes a matter

of proportion by which to obtain the error in the dead-reckoning
latitude. As the combined error in difference
of longitude for 1´ of latitude, is to 1´ of latitude, so is the
difference between the two calculated longitudes, to the
error in latitude.


The longitude factors are based upon an error of 1´,
so if the error is more than 1´ it becomes necessary to
multiply the factor by the error in order to obtain the
correction to the calculated or erroneous longitude.



 [image: Figure 8]
 Fig. 8.


An altitude may be taken of any body and after a
suitable change in bearing has taken place (not less than
30°) a second altitude may be taken and the first longitude
advanced for the run during the interval to the parallel of
the latitude by dead reckoning at the time of second sight.


In the usual event of a disagreement in the calculated
longitudes the rule of procedure is as follows: With the
body’s true azimuth at each observation, the difference
between the longitudes and the latitude by dead reckoning,
used at second sight, enter Table 47, Bowditch, and take
out the corresponding numbers. If the azimuths are in
adjacent quadrants, these quantities should be added, but

if in the same or opposite quadrants, they must be subtracted.
The result in each case gives the combined
error in difference of longitude for an error of 1´ in latitude.


It is now only necessary to divide the difference between
the two longitudes by this combined error and we have
the error between the correct latitude and the latitude by
dead reckoning. Now multiply the error in latitude by
the number taken from Table 47 corresponding to the first
longitude, to obtain the correction to that longitude, and
by multiplying the same error in latitude by the number
corresponding to the second longitude we have the correction
for that longitude. The application of these corrections
should bring the two calculated longitudes into
agreement at the position of the true longitude.


Some difficulty may be experienced in learning how to
apply these corrections to the calculated longitudes, but it
is always easy to make a rough diagram if at all in doubt.
A horizontal line representing the parallel of latitude by
dead reckoning at second sight may be drawn with the
two longitudes plotted upon it; establish the position
lines through these longitudes by drawing them at right
angles to the sun’s (or star’s) azimuth. The intersection
of the two position lines indicates the true longitude and a
glance shows how to apply the corrections to each calculated
longitude to get the true. In Fig. 8 the westerly
longitude requires the correction to be applied to the
east and the easterly longitude correction to the west in
order to arrive at the true longitude.


Without the use of a diagram a rule easy to remember
in deciding whether to apply the correction in longitude to

the eastward or westward is here given: If the error in
latitude is of the same name as the first letter of the bearing,
the change in longitude is contrary in name to that of
the second letter and vice versa. For example take the
case just cited.


When a body’s azimuth is less than 45°, it is wiser, and
insures more accurate results to work by New Navigation,
or, if sufficiently close to the meridian, as an ex-meridian.
In the case of the latter the corrections in such a case are
taken from the table of latitude factors (Bowditch, Table
48), the problem being the same in principle and in solution
as that described above. Good results are even obtained
by using two ex-meridians, one on each side of the meridian.
The corrections in the latitude may be applied according
to the following rule, if it is preferred to the rough diagram
method: if the error of longitude is of the same name as
the second letter of the bearing, the change in latitude is of
the contrary name to the first letter, and vice versa.




The New Navigation




In every branch of science and industry since time immemorial
a continuous process of simplification and increased
accuracy has been taking place, and amid this general evolution
of working systems the science of navigation will
not be found an exception. Even now there is a tendency
to displace the time-honored chronometer sight, together
with a long list of more or less bewildering ways of obtaining
latitude and longitude.


The advance method is popularly known as the New
Navigation, yet its principles were originally brought forward

by Marcq St. Hilaire, a French admiral, nearly
40 years ago. It is not a new method of finding position,
but rather an improved way of establishing a Sumner line.
Like many innovations it has taken all these years for
navigators to become reconciled to the change and break
away from the more familiar forms.


In order to facilitate a simple explanation of New
Navigation it will be brought to mind that every heavenly
body has a corresponding point on the earth directly beneath
it, which bears the same relation in latitude and
longitude to the earth, that the body does in declination
and right ascension to the celestial sphere. To an observer
at such a sub-celestial point the body is in the zenith with
an altitude of 90°; and about him lies a system of concentric
circles of equal altitude, which extends over a hemisphere
of the earth 90° in every direction from the point
of origin. This point, through the apparent diurnal
revolution of the body, carries this whole system of circles
around the earth each day and northward and southward
with the body’s change in declination. On the
outer limit of this system of circles, the altitude of the body
is 0°. Thus it is seen that the altitude of the body decreases
and its zenith distance (90° - altitude) correspondingly
increases in direct proportion as the observer departs
from the sub-celestial point, and vice versa. If, for instance,
an observer is 100 miles (nautical) from this point,
the zenith distance is 100´ or 1° 40´ and the altitude of
the body is 88° 20´; at 2700 miles 2700´/60 = 45° of zenith
distance, and 90° - 45° of altitude.


A feature is now introduced that has a close bearing upon

the principle under discussion, to serve as an opening view
of the subject: A navigator fortunate enough to have a
body reasonably near his zenith, say 5°, has at hand an
extremely simple way of graphically finding his ship’s
position. This situation has previously been described,
but is repeated to make clear the principle of New Navigation.
The sub-celestial position of the body at the moment
of observation is readily ascertained by noting the time by
chronometer and recourse to the Nautical Almanac for its
declination. With the point thus established as a center,
and the zenith distance derived from the observed altitude
as a radius, swing a circle upon the chart. The ship’s
position is somewhere on the circumference of this circle of
equal altitudes. This circle is now carried forward the
amount and direction of the run of the vessel between this
observation and a subsequent one similarly taken. During
this interval the bearing of the body should have changed
sufficiently to make a good intersection of the circles.
The ship being on both circles must be at one of the two
intersections, between which the mariner can readily
decide. The conditions cited are comparatively unusual
but show the practical use of a circle of equal altitude in
its simplest form.


The zenith distance is ordinarily too large to become a
radius for such use on the chart. The circles of equal altitude
are in practice so large that 10 to 40 mile arcs in the
vicinity of the vessel are treated by her navigator as straight
lines, known as Sumner or position lines. These lines are,
theoretically, chords or tangents according to the method
employed in establishing the line, but in practice the
divergence from the circle is negligible, excepting always

when the body is too close to the zenith. The establishment
of the position line has been done in several ways for
many years until the advent of this new and more expeditious
method.


The altitude of a body at any selected time for an assumed
position can be readily calculated. If this altitude does not
agree (and it seldom does) with the altitude measured simultaneously
with the sextant, corrected for the usual errors,
the assumed position is not coincident with the actual position
of the vessel. The navigator now proceeds to lay
off from the assumed position, the line of azimuth of the
body taken from the azimuth tables, Weir’s Azimuth
Diagram, or determined by observation. On this line
the distance between the observed and computed altitude,
expressed in minutes of arc, is measured, towards the body
if the observed altitude is greater, and away from it if
less, than the computed altitude. The point thus indicated
is a position on a circle of equal altitudes, the arc
in the immediate vicinity of the computed point being,
approximately, the position line. This line is at right
angles to the azimuth for the reason that a tangent is at
right angles to the radius of a circle at a given point.


It is now known that the ship is somewhere on this
line of position, and it is necessary to cut it with another
such line to determine definitely her position. If the sun
is the body being observed, it becomes necessary, in order to
provide a good angle of intersection, to wait until the
azimuth changes at least 30°, when the observation is
repeated, a second line established, and the first line brought
forward in exact accordance with the ship’s run. The
interval required naturally depends upon the latitude

of the ship and the declination of the sun. The intersection
of the lines will be the position of the ship at the
time of the second sight.


The use of stars has a decided advantage in that there
are always some of these bodies available for observation
lying in various azimuths; it is practicable, with a well-defined
horizon, to observe simultaneously two or more of
these bodies whose bearings show that they would produce
desirable position lines. From the resulting intersections
the position of the ship is secured. This obviates waiting
for the second line, a feature that is always inconvenient
and sometimes, perhaps, dangerous.


The calculation of the altitude is accomplished by the
solution of the spherical triangle in which we have given
the co-latitude (90° - assumed latitude), the polar distance
and the hour angle of the meridian of the assumed position.
Thus with two sides and the included angle, the third side
or the zenith distance (90° - altitude) is easily determined
by either of several formulas.


With the use of this method all the formulas that
formerly, and still, often puzzle the navigator to remember
can be reduced to this one sight. One of the most important
features it possesses is that it can be utilized
regardless of the altitude of the body (except when very
high), its azimuth, or its hour angle, all of which are
elements that have to be used under certain favorable
circumstances in order to get accurate results from the
older forms. The navigator is now given a greater freedom
in choosing bodies to observe than is found in any other
method.


The mariner to-day has been almost entirely relieved

from the labor of computing position at sea, should he
care to avail himself of a set of altitude tables, several
excellent ones have made their appearance on the market,
among them Hydrographic Office Publication No. 200.
From them the altitude can be selected corresponding to
the conditions of any particular observation. With a set
of these tables a navigator is no longer required to be a
mathematician or to remember the forms of a half dozen
sights. Thus in this wonderful age the mariner’s utopian
dream of obtaining position at sea by inspection, is, in a
way, realized.





In order to illustrate the practical working of a problem
by this method, the following example is taken up point
by point:


Early on the morning of May 21, 1899, while in the
assumed position of latitude 55° 00´ N., longitude 112° 08´
E. observed the true altitude of the star Arcturus to be
37° 14´ 50´´, bearing west of the meridian. The chronometer
carrying Greenwich mean time read 20 d. 6 h.
20 m. 03 s. The observer desired his position.


The problem by the St. Hilaire method resolves itself
into the solution of the spherical triangle shown in Fig. 10,
where two sides and an included angle are given:


Polar distance = 90° - declination (Nautical Almanac).


Co-latitude = 90° - latitude (by dead reckoning).


Hour angle of star. See figure and solution below.


The hour angle of the sun is more readily found than
that of a star. It is accomplished by applying the longitude
(in time) of the assumed position to the Greenwich
time shown by the chronometer at the time of sight. This

hour angle of the mean sun must be corrected by the
equation of time to obtain the hour angle of the actual
sun.
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 Fig. 9.
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 Fig. 10.



The cosine-haversine formula serves the purposes of this
problem very satisfactorily:



Hav z = hav (L~d) + cos L cos d hav h




which is derived from the well-known expression:



Cos z = sin L sin d + cos L cos d cos h




where z = zenith distance; L = the latitude; and h = the
hour angle.



Solution





	Dec. Arcturus 19° 42´ 29´´.
    	


	Lat. 55° 00 N. (Assumed).
    	G. M. T.
    	20 d.
    	 6 h.
    	20 m.
    	03 s.


	
    	R. A. M. ⊙︎
    	
    	 3
    	51
    	42

    
	
    	Acceleration
    	 1
    	02


	
    	

   

	Lat. 55° 00´ 00´´.
    	G. S. T. 
    	10
    	12
    	47

   
	Dec. 19  42  29
    	Long.
    	 7
    	28
    	32

	——————
    	
    	



	L~d  35  17  31
    	L. S. T.
    	17
    	41
    	19

    
	
    	R. A. ⁜
    	14
    	11
    	03

	
    	



	
    	H. A. ⁜
    	 3
    	30
    	16 W.

    
	
    	(Observer)
    	52
    	34
    	00








	Lat.
    	55°
    	00´
    	00´´
    	= cos.
    	9.75859
    	

	Dec.
    	19
    	42
    	29
    	= cos.
    	9.97378
    	

	H. A. ⁜
    	52
    	34
    	00
    	= hav.
    	9.29244
    	


	
    	9.02481 = nat. hav.
    	.10588

    
	
    	nat. hav. 35° 17´ 31´´
    	.09189


	
    	z = 52° 48´ 35´´
    	 = nat. hav.
    	.19777


	
    	90 00 00	
    	

	Computed altitude
    	37 11 25	
    	

	Observed altitude
    	37 14 50	
    	

	Altitude difference  =
    	  3´ 25´´.	
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 Fig. 11.


A ship’s position is usually obtained by plotting the
lines of azimuth and the position lines much in the manner
shown in the chartlet. The azimuth of the body at the
moment of observation is readily taken by inspection from
the azimuth tables or better still from Weir’s Azimuth

Diagram, both published by the U. S. Hydrographic
Office.


In order to get an intersection of two lines of position
and thereby ascertain the latitude and longitude at once
it is assumed that the observer took an observation of
another star bearing S. 45° E., simultaneously with Arcturus.


When ordinary A.M. time sights are taken the resulting
longitude establishes a north and south Sumner line but
the latitude is by D. R.; at noon the latitude by meridian
altitude establishes an east and west line but the longitude
is by D. R. So it is with a Sumner line a position is
established upon it but the position along it is by D. R.
The latitude and longitude, however, can be obtained by
a slight calculation without drawing the lines on the chart;
that is, the most probable position. The altitude difference
having been determined enter Table 2, Bowditch,
using the azimuth, or its reciprocal as the case may be, as
the course, and with the altitude difference as the distance,
pick out the difference of latitude and the departure and
apply them to the dead reckoning latitude and longitude
as is the usual practice. The result is the most probable
position (according to the D. R.) on the Sumner line.







CHAPTER X




The Moon






The moon is the most interesting of the heavenly
bodies not only from a romantic viewpoint, but from the
astronomical as well. Looking at the practical side, it is
due mostly to the moon’s influence of attraction on the
waters of the earth that we have the highly important
phenomena of the tides. The moon is our nearest neighbor
in the heavens; in fact, she is a satellite, that is, revolves
around the earth. This movement is from west to east
at an average rate of 51 minutes each day. The moon’s
orbit is elliptical with the earth lying a little out of center,
not unlike the situation of the sun in the earth’s orbital
ellipse but more pronounced. When the moon is at the
nearest point to the earth she is said to be at “perigee” and
the point where she is most remote is called the “apogee.”


The moon is a non-luminous body and gives off nothing
but reflected sunlight. The lunar hemisphere facing the
sun is therefore the only illuminated portion of the body,
and as she turns on her axis precisely as the earth does,
the same side is always towards us. The astronomers have
seen but one side of our satellite. This solar illumination
accounts for the various interesting phases of the moon
which we see each month. When this body in her monthly
revolution around the earth passes between us and the
sun, the illuminated side is towards the sun and the dark

side towards us. We see no moon at this time and call
it New Moon. Two weeks later, she has completed one-half
of her revolution and is now on the other side of the
earth and we are between the moon and the sun. The
illuminated face of the moon is now directly towards us
and we call it Full Moon. At the time of new moon, the
eastward movement quickly brings her out of range with
the sun and in a couple of days we are able to see a fine
crescent in the western sky. This is the very edge of the
illuminated face—we can see around the corner just that
much. Day after day the moon’s lighted surface becomes
larger and larger until in about a week she is near our
meridian at sunset and therefore at, roughly (depending
on the time of the year), 90° from the bearing of the sun.
The moon now presents to us a face one-half dark and one-half
light. This is called the quadrature. This term also
applies to the similar condition occurring a week after full
moon when she is again bearing at right angles to the sun.
These occasions are also called the first and last quarter,
respectively.


The movements of the moon are very rapid. She
makes her revolution around the earth in 27⅓ days, making
a change in right ascension of 360° or 24 hours in this interval,
a change of over two minutes each hour. The declination
passes through its whole cycle of change from north
to south and return also in 27⅓ days; the sun requires a
year to pass through its extremes of declination and return.
The change of the moon’s declination averages about 9´
per hour. These facts demand careful attention when
employing the moon in navigation.


It is a very curious and happy circumstance that in the

higher latitudes when the short days of the winter sun
occur, the moon at full rides its highest declinations, and
consequently gives extra long nights of moonlight; and
that in the summer, when the sun is in higher declination
and the days are long, the moon at full is in low declination
and there is less moonlight when it is least needed.
The reason of these conditions is that the full moon occurs
when on the opposite side of the earth from the sun and at
the winter solstice when the earth’s north pole is inclined
away from the sun she must be inclined towards the moon
passing that body in high declination. The reverse
conditions exist at the summer solstice.


Another fortunate provision for lovers of moonlight
nights is the fact that the plane of the moon’s orbit is not
in the same plane as that of the earth’s orbit, for if such
were the case each time the three bodies, the earth, sun
and moon, came in range there would be an eclipse. The
new moon coming in between the earth and the sun would
cause an eclipse of the sun, and at full moon when the earth
is between the sun and moon, there would be an eclipse of
the moon. Therefore, there would be an eclipse twice a
month. This fortunately is avoided by the angle of 5°
that the plane of the moon’s orbit takes with that of the
earth. As a result they only come in exact range occasionally
when the moon at new and full happens to be on the
ecliptic—the earth’s orbit. If, to repeat, this occurs at
Full there is an eclipse of the moon, if it occurs at New,
there is an eclipse of the sun. The moon moves eastward
through the heavens on her monthly course of revolution;
it then becomes apparent that she must return to the
meridian later and later each day the amount of “retardation,”

as it is called. This retardation is a variable quantity
dependent upon the moon’s irregular change in right
ascension. It is caused by the moon’s motion in her
elliptical orbit and at the inclination which her orbit
takes with the celestial equator. These causes are precisely
the same in character as those producing the equation
of time in the conditions relative to the sun and the
earth’s orbit, but those of the moon are much greater.
The errors causing a variation in the right ascension of
the sun requiring a year where the similar conditions in the
moon are brought about in a month, which accounts for
the marked changes in the moon’s rate of eastward motion.
The average daily retardation, or average later time in arriving
at the meridian, is very close to 51 minutes. Yet the
extremes of retardation range from 38 to 66 minutes.
The average of 51 minutes daily retardation is also noticed
in the later rising and setting of the moon. The extreme
times between successive risings or settings during the
year, while they average 51 minutes like the crossing of
the meridian, they do not maintain the same extremes,
changing on account of the latitude of the observer as
well as upon her own motions. At 41° north the retardation
on successive risings and settings ranges between 23
minutes and 1 hour and 17 minutes. As the vessel proceeds
farther north the range is greater until near 66° north when
the moon is in her average greatest declination north she
does not set at all becoming circumpolar for a certain time
each month. In the duration of a month the moon
changes her right ascension 24 hours, where the sun takes
a year to accomplish this amount as it (apparently for
navigational purposes) moves eastward around the earth.

This shows the much more rapidly increasing change in
right ascension in the case of our satellite. Thus again
the moon’s rapid motions are accounted for.


The moon’s orbit around the earth is not coincident—does
not lie in the same plane as the earth’s orbit (the
ecliptic) but takes an angle of about 5° 8´ with it. The
point of intersection between the moon’s orbit and the ecliptic
are called nodes (corresponding with the equinoxes).
The point crossed by the moon as it passes from southern
to the northern side of the ecliptic is called the ascending
and the other the descending node. The moon’s axis is
very slowly describing a circle in the heavens similar to
that of the earth; and in consequence the nodes are slowly
moving westward along the ecliptic year by year. Just as
is the equinox by the movement of precession, but at a
much greater rate (see remarks on precession elsewhere).
The moon’s axis completes its revolution in about 19
years, while the earth requires 26,000 years. This is called
the lunar cycle. At the time in the lunar cycle when the
ascending node of the moon’s orbit is in range with the
vernal equinox the moon has her greatest range of declination—about
57° from extreme north to extreme south.
She is then 23° north, the amount that the ecliptic is from
the equator and 5° more, the amount that the moon’s
orbit is above the ecliptic. About 9½ years later when the
moon’s axis has listed in the opposite direction and the
descending node coincides with the vernal equinox, the
moon’s maximum declination equals 23° minus 5° or 18°
north or south, a range of only about 26°.
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 This figure is viewed from the sun looking towards the earth on March 21st—the vernal equinox.

 Fig. 12.
 


In the autumn, there occurs an interesting phenomenon
regarding the moon called the Harvest Moon. This is

the time of unusually fine moonlight nights in which the
moon rises for three or four evenings at about the same
time instead of the usual rapid retardation. The time the
sun or moon is above our horizon depends upon its declination
and our latitude. As the sun moves northward in
declination from March to June, our days lengthen by the
sun rising earlier and farther in the northeast, and setting
later and farther to the northwest. Similarly the moon
in September is moving northward in declination very
rapidly and would be rising earlier each evening were it
not for its own eastward movement of revolution which
causes her to slip eastward an average of 51 minutes daily
and causes her later rising at night. The result is that
these two influences at work almost counteract each other
and cause the moon to rise at about the same time for
several days giving us three or four glorious moonlight
nights called the Harvest Moon.


It will be seen by the foregoing that great care must be
exercised in having the time of observation accurately
determined owing to those rapid movements of the moon.
It is also a matter of great difficulty to correct the observed
altitude of this body on account of numerous errors that
become considerable in amounts due to her proximity to
the earth. And for these reasons this body is not popular
for observations with the general run of navigators. In
the case of the semi-diameter, considerable error is apparent
and is fully described, with parallax, which is excessive,
under “Corrections for Observed Altitudes.”








CHAPTER XI




Charts






A difficulty was encountered when the early cartographers
attempted to represent the earth’s spherical
surface on a flat sheet. It can not be done, of course,
without distortion being introduced in some manner.
There are various methods of taking care of this error and
one is adopted for one certain purpose while another scheme
is used in some other work. These methods of caring
for the error or distortion are known as projections, the
principal being the Mercator, the gnomonic and polyconic.
The Mercator projection is almost universally used for
navigational purposes; the gnomonic projection facilitates
the use of great circle sailing, and the polyconic is used for
surveying sheets.


The Mercator chart represents the earth as though it
were a cylinder instead of a sphere.


If we take the skin of one-half an orange, and assume
it to represent the northern hemisphere of the earth, an
attempt to forcibly bring it flat upon a table will result in
the tearing or stretching of the skin. It can, however,
be brought flat to the table in a regular uniform way by
cutting it in a saw tooth fashion from the stem (pole)
to the edge (equator), as shown in the diagram.



 [image: sawtooth diagram]
 Fig. 13.


The shaded portions represent actual earth’s surface
and the blank parts show the error introduced by using

this method. In this form it is useless as a chart, so the
real parts are stretched or extended each way to the dotted
lines making a complete chart. It is now, however, without
a vestige of accuracy in representing the bodies of land
and water as they really exist. The result would be that
if a round island should be in the latitude of the top of the
chart it would be stretched into an elongated island lying
east and west giving a very erroneous inaccurate idea of it,
as shown by the east and west shading. If, however, the
island had been on the equator where no east and west
stretching would have occurred the island would appear
in its natural shape, but the farther north or south it lies
just in proportion to the latitude will it be stretched in an
east and west direction. Such a condition will not serve

the purposes of navigation and it becomes necessary to
extend the degrees of latitude, making them appear longer
and longer as the equator is departed from. This stretches
the elongated east and west island in a north and south
direction and brings it back approximately to its actual
shape of a round island. If there was a round island in
10° N. and a similar-sized similar-shaped island in 50° N.
the Mercator chart would show the northern one to be
almost twice as large owing to this artificial distortion.
But its relative shape would remain practically correct.
It will be seen that the latitude scale on the sides of the
chart carries an increasing value towards the north—on a
chart where a degree is about ¼´´ long at the equator it
would be about ½´´ long in 60° N. or S.


A minute of latitude is equal to a mile on this scale, but
it becomes necessary to use it in the latitude in which the
measurement is taken. If a course runs N. 60° E. from
latitude 30° N. to 40° N. and the distance is desired, take
at the middle latitude at the side of the chart a convenient
multiple of distance, say 30´, on the dividers and step off the
distance. Or the whole course can be taken off at once and
with the points of the dividers at equal distances north and
south of the middle latitude read off the number of minutes
of latitude lying between them.


In very high latitudes the Mercator chart is not reliable.
The distortion becomes excessive and bearings taken will
not plot correctly.


All the meridians on a Mercator chart are parallel and
cut the equator at right angles. They all lie in a true
north and south direction. The parallels of latitude all
lie east and west and are parallel to each other and at right

angles to the meridians. The degrees of longitude on the
globe grow smaller and smaller as the pole is approached
due to the actual convergence of the meridians, but as all
meridians are parallel on the Mercator chart the length of a
degree must be shown the same length at the top as well as
at the bottom of the chart. In just the proportion that the
degrees of longitude have been lengthened artificially beyond
their true length must the degrees of latitude be lengthened
in each latitude. This amount is shown in Table 3, Bowditch,
reckoned as the distance in miles each parallel
is from the equator by the Mercator projection. Thus in
latitude 40° N. the distance is 2400´ or miles, the table
shows that in the construction of a Mercator chart this
parallel should be increased artificially to 2607.6. These
are called the meridional parts.


On a Mercator chart the ship’s course is represented by
a straight line and cuts each meridian at the same angle
and is called a rhumb line. For all practical purposes on
short runs this rhumb line is the best to use, but it is not
the shortest distance between two points. Should you be
able in a course a thousand miles long, to see your port of
destination your rhumb line course at the outset would
not head your ship for it, but (in northern latitude) to the
southward of it. However, as you proceeded the ship’s
head would gradually draw towards the port and you would
eventually arrive. What appears to be a straight line on
this chart is really a curve on the sphere of the earth. Your
line of actual vision is a great circle, and in order to follow
such a bee line you must constantly change your compass
course (on a long run) and describe a curve on the Mercator
chart unless the ship is headed north or south or east or

west along the equator, in which cases she is sailing on a
great circle. The well-known Hydrographic Office Pilot
Charts are on the Mercator projection and show all steamship
tracks as curves, for they are great circles.


The gnomonic chart is based on a projection of the
earth’s surface upon a plane tangent to any chosen
point which is to be the center of the chart. The eye
is assumed to be at the center of the earth looking outward
to the point of tangency. It will be seen that the
surface of the earth adjacent to the point of tangency
will be very accurately shown on the chart, but becomes
distorted gradually from the center, the sides of which
show the land in such an unnatural shape that it is
hardly recognizable.


With a chart on this projection great circle sailing
is much simplified. The straight line between two points
indicates the great circle to follow, and the course and
distance is obtained by following the directions and
illustrated example given on each chart. They are constructed
for the different oceans and are for sale by the
Hydrographic Office.


The course can be transferred to a Mercator chart by
taking successive positions from the gnomonic chart and
plotting them according to latitude and longitude, and
joining by straight or curved lines.


In setting out on a voyage the port of destination
could it be seen ahead would indicate the great circle
course, and in order to continue to head directly for it,
the course must be continually changed. While in the
North Atlantic bound for Europe the course must be
changed constantly to the east (right) in order to remain

on the great circle—the straight and shortest
distance.


The course and distance can be computed by the
form given in Bowditch, in which two sides and an included
angle are given to find the other side and the
(course) angle at the point of departure. The co-latitudes
of the points of departure and destination and the angle
between them at the pole, are respectively the sides and
the included angle. However, the gnomonic chart gives
the course and distance graphically.





When a chart is purchased or received from the Government
offices the date of issue stamped upon it should be
carefully noted. It can safely be taken for granted that
the chart has been corrected up to that date and it is
incumbent upon the navigator or master to seek in all
Notices to Mariners subsequent to this date for any that
affect the chart. If a Notice contains information requiring
a correction the number of the chart appears in boldface
type. The alterations should be made neatly with
India waterproof ink, and if by the nature of the information
it is impracticable to make the changes a note should
be made in a conspicuous place.


Charts are printed from copper, zinc or aluminum plates
and small changes easily made by hand are not changed
on the plate until an accumulation of errata make it
necessary, or sweeping changes of a more extensive nature
takes place such as a new survey, dredged channels, etc.
A chart under extensive correction is brought up to date
in every particular, including the latest geographic spelling,

new docks and public works. The date is noted on the
right of the center margin and the dates of smaller hand
corrections are indicated at the lower left corner; the figures
denote the number of the weekly Notice to Mariners, in
which the information is found, and the year.


The different scales of charts range from those of the
world to a harbor plan. There are charts of oceans;
general coasts, such as from the St. Lawrence to below New
York; intermediate coasts, as from Eastport, Maine to
Cape Ann; and approaches to ports, say from Cape Ann to
Cape Cod for the port of Boston; and lastly there are
harbor plans. Those covering large areas are known as
small-scale charts while harbor charts are called large-scale
charts.


A chart depends on the surveys that furnished its data,
and its accuracy and reliability rests upon that survey.
Even with the most careful surveys, where the lead is used
to ascertain depths, there are many instances where pinnacle
rocks have escaped detection by coming between
the casts of the lead taken by the surveying party. These
isolated rocks become points of great danger to vessels of
deep draft, and it becomes a measure of safety to avoid
rocky coasts and offshore patches by giving them a wide
berth. Spaces devoid of soundings may well be viewed
with suspicion if in reasonably shallow water, for it would
appear to indicate a lack of thoroughness in the survey,
at least a lack of soundings. The wire drag, a device used
to sweep important areas to a certain depth, is the only
sure way of discovering all the dangers of the bottom.


The aids to navigation shown on the charts are described
by symbols and abbreviations as fully as possible

with the limited space. All symbols are placed in the location
of the aid, but in some cases the actual position may
be in doubt by the nature of the symbol, for instance a
buoy’s location is denoted by the ring that accompanies
the symbol and not the triangle; a light vessel by the position
of the dot of the light, or between them if there are
two dots (lights). Buoys and light vessels often drag
their moorings or go adrift entirely, especially in the winter
season. It is therefore the part of wisdom to check a
ship’s position by shore marks when possible and be prepared
to find buoys out of position. The mechanism of
a light buoy is often disarranged through various causes.


The characteristics of all lights are briefly given with
the visibility and height above the sea. The charted
visibility is the distance they should be seen from a vessel’s
deck on which the height of the eye is fifteen feet above the
sea, so, from the deck of an ordinary power boat a light
will not be seen until well within the range of visibility as
published, while from the deck of a large steamer the light
will be seen outside its charted visibility. This refers to
high-powered lights where the curvature of the earth has
to be given consideration. A flashing light is one in which
the flash is of less duration than the eclipse, while an occulting
light has an eclipse equal to or less than the period of
light. Flashes and eclipses are often grouped and receive
the name of group flashing or group occulting. An alternating
light is one in which two colors are shown each for
an equal interval with no intervening eclipse, but if an
eclipse separates the color flash from a white flash, for
instance, it becomes a flashing white light varied by a red
flash. It is a very common practice to insert sectors of

different colors into the arc of visibility of a light in order
to cover a dangerous shoal or to indicate a channel. Bearings
defining these sectors are taken from seaward and not
from the light. The term luminous range will be met with,
and indicates the distance the power of the light can carry
the visibility irrespective of an intervening horizon. A
light may have a luminous range much in excess of its visibility
which is limited by the horizon but in a haze or fog
its penetrating power will greatly exceed that of a light of
similar visibility but less luminous range. The power of a
light is more commonly shown by units of a thousand
candle power, thus, 5.6 indicates a power of fifty-six hundred
candles. The catoptric (C.) light employs the
reflecting, and the dioptric (D.) the refracting principle.


There is a large amount of useful information given on
every chart that the average mariner allows to escape his
notice. This failure on his part is mostly due to familiarity,
or reliance on pilots with local knowledge.


The first important feature of a chart to be considered
is the shoreline, which is shown as a continuous line representing
the high-water mark. This, it must be borne in
mind, is much changed at low water, and where the range
of tide is large the shoreline is proportionately in error.
Again, where the water is shallow the change is more
marked than where the shores are steep-to. If account is
not taken of the stage of the tide it is easy to be very much
deceived.


In approaching a strange harbor the chart should be
scrutinized for prominent marks, and these identified as
soon as possible, then the lesser objects can be picked up
by their relative positions with the already identified landmarks.

Among the lesser marks may be found cliffs,
boulders, sandy beaches, vegetation, buildings (particularly
church spires and houses with cupolas). Prominent
elevations of land always serve to identify a locality. The
chart shows these elevations clearly by contour lines.


A twenty-foot contour line, for instance, shows the line
of the cut, should the hill be sawed off twenty feet above
the sea. When contour lines are wide apart the land has a
gradual slope, and as the grade becomes steeper the contour
lines come closer proportionately.


The chart, wherever possible, represents the earth as
seen from overhead, but in the case of vertical objects,
they are of necessity shown horizontally. One of the notable
cases of this is in the representation of cliffs, which in
order to show their height are drawn with the side view as
seen from the water.


Numbers seen on the land show the height above the
high water.


From the topographical features of a chart we turn to
those of hydrography. All the depths indicated on a
chart are those existing at mean low water, on the
Atlantic Coast, and mean lower low water on the Pacific
Coast.


All the British Admiralty and most of the Hydrographic
Office charts are reduced to the level of low water at
ordinary spring tides. While there is usually more water
to be expected than shown, it must be remembered that
when the plane of mean low water is used, the low waters
that, roughly speaking, come between the moon’s first
and last quarters, will fall below the soundings on the
charts.
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The effect of an abnormal barometer and high winds
must at times be borne in mind, for a continuous northwest
wind will make a vital difference in the depths along
the Atlantic seaboard, especially in the Delaware and Chesapeake
Bays.


Very often there is information that can not be symbolized
on the chart and is placed in italics in the form of
a note. These are always important and should be read
carefully.


Sailing directions are written to supplement the charts
and preserve for the mariner a mass of information which
otherwise would not reach him.


It is always well to pay attention to the current arrows,
as they are a means by which the strength and direction of
the tidal stream may be ascertained. The symbol of a
tide rip should not be ignored by one in a small boat, as
the conditions might be right to make them dangerous.


On the water areas of the chart we find contours of
depths as on the land are contours of height. It is a good
scheme, if one wanted to take the trouble to run a contour
line indicating a depth a few feet greater than the draft of
his boat, and tint the shallow water with a brush.


Large vessels of deep draft upon approaching the coast
are guided by the ten-fathom curve unless the shore is
very steep-to and the water very deep. The masters of
such vessels would remain outside that curve until their
position was well established. Lighter draft vessels are
guided by the five-fathom curve in a similar manner.


When approaching the land and the landmarks are not
available, the character of the bottom further assists the
mariner as he sounds slowly towards the land. The kind

of bottom is indicated by abbreviations which are obvious
on almost every portion of the charts.


The three-fathom curve is the most important to the
greatest number of navigators and for this reason is made
the most pronounced. In the majority of charts it is
shown by a “sanded” area within it, but in many new
charts it is heavily tinted.


In changing from one chart to another while working in
an unfamiliar locality, take especial note whether the soundings
are in feet or fathoms.


It is an excellent practice when a vessel is brought
to anchor and cross bearings taken, to estimate
the radius of her swinging circle by adding the amount
of chain out to the length of the vessel and with this
describe a circle on the chart and note if there is any
danger of tailing into shoal water at any quarter.





This has been a long voyage and I am glad to tie up and
let the printers take charge. If any of my readers see
places where I have stood into the shallow water of inaccuracy,
I will be grateful for a passing hail that I may shift
helm and get out with as little damage as possible.








INDEX







	A


	Acceleration for longitude, 91


	Amplitude, 12, 97


	Aphelion, 8


	Apogee, 139


	Astronomical triangle, 102


	Azimuth, 12, 96

	altitude, 98

	Weir’s diagram of, 98


	Azimuths and amplitudes, 93



	C


	Calendar, 64


	Celestial latitude, 14

	longitude, 14


	Chart, contours, 155

	corrections, 151

	scales, 152


	Charts, 146

	datum, 155

	diagrams of symbols, 156

	fathom curves, 158

	information on, 154

	symbols, 152


	Chronometer time, necessity of accuracy in, 87


	Circles of equal altitudes, 110


	Circum-meridian altitude, 82


	Compass, 93

	deviation of, 94

	error of, 94

	naming of, 99


	Coordinates, 9


	Corrections for observed altitudes, 68



	D


	Day lost and day gained, 37


	Dead reckoning, 1


	Declination, 15

	daily change of, 24


	Deviation, naming of, 100


	Dip, 72


	Double altitude problem, 120



	E


	Earth’s orbit, 8

	revolution around the sun, 20


	Eclipses, 141


	Ecliptic, 14


	Equal altitude circle, 109


	Equal altitude method, 104


	Equation of Time, 56

	diagram of, 62

	error due to obliquity, 60


	Equinoctial colure, 26


	Ex-meridian altitude, 82

	bodies below the pole, 86

	planets, 86

	stars, 86



	F


	First point of Aries, 14, 26



	G


	Gnomonic chart, 150


	Great circles, 10, 17


	Great-circle sailing, 150


	Greenwich mean time on navigator’s watch, 54



	H


	Horizon, rational, 11, 75

	sensible, 12, 73

	visible, 11, 73


	Hour circles, 13



	I


	Index correction, 68



	J


	Johnson’s method, 123

	diagrams, 126



	K


	Kepler’s Law, 56



	L


	Latitude, 78

	by Polaris, 88

	factor, 129

	formula for finding, 80


	Laying a course, 96


	Lights, characteristics, etc., 153


	Longitude, 101

	and time, 102

	by equal altitudes, 104

	factor, 125

	prime vertical, 103

	stars and planets, 105


	Lunar cycle, 143



	M


	Mean time into sidereal, 106


	Mercator Projection, 146

	diagram, 147


	Meridian altitude, 78

	time to observe a star, 81

	to report at noon, 81


	Meridional parts, 149


	Middle latitude sailing, 4


	Mizar, 89


	Moon, 139

	full, 140

	harvest, 143

	new, 140


	Moon’s declination, 143

	diagram, 144

	nodes, 143

	retardation, 142

	revolution, 140

	right ascension, 142



	N


	Nadir, 11


	Napier’s diagram, 96


	Nautical astronomy, 5


	New navigation, 102, 129

	advantages of, 133

	diagrams of, 135, 137

	finding position without plotting on chart, 138

	illustrated examples, 134


	Notices to mariners, 151


	Nutation, 32



	P


	Parallax, 75

	horizontal, 76

	moon, 77


	Parallel sailing, 3


	Perigee, 139


	Perihelion, 8


	Plane sailing, 2


	Planets, 6-7


	Polaris, 88

	diagram, 90

	time to take sight, 92


	Precession of the equinoxes, 27

	causes of, 31


	Prime vertical, 12

	observations on, 103



	Q


	Quadrature, 140



	R


	Refraction, 71


	Rhumb line, 149


	Right ascension, 26, 50



	S


	Sailings, 3


	Seasons, the, 20


	Semi-diameter, 69


	Ship’s time, 40


	Sidereal time, 43

	(local) how to obtain, 52

	longitude from, 53

	year, 66


	Solar system, 5


	Summer, length of northern and southern, 25

	lines, as chords and tangents, 112

	when under the sun, 121


	Sumner, Capt., his experience, 107

	line, displacement of, 118

	tangent method, 114

	value of, 115

	method, 107


	Sun’s change in azimuth, 120

	eastward movement, 16



	T


	Time diagram, 51


	Tropical year, 66



	V


	Vega as a pole star, 31


	Vernal equinox, 20

	dates of, 67


	Vertical circles, 12



	W


	Weir’s azimuth diagram, 98



	Z


	Zenith, 10






Advertisements



THE LITERATURE of NAVAL

AND MARINE SCIENCE






On our shelves is the most complete
stock of technical, industrial, engineering
and scientific books in the United States.
The technical literature of every branch of
naval architecture, construction, ordnance,
marine engineering, seamanship and navigation
is well represented, as well as are
the various other related subjects.


A large number of these we publish and
for an ever increasing number we are the
sole agents.



 [image: colophon]




All Our Inquiries are Cheerfully and Carefully
Answered and Complete Catalogs as well as
Special Lists are Sent Free on Request   ::   ::




D. VAN NOSTRAND COMPANY

Publishers and Booksellers

25 PARK PLACE NEW YORK





VAN NOSTRAND’S NAUTICAL MANUALS






350 Pages 5 × 7½ Postpaid, $3.00






The Men on Deck



MASTER, MATES AND CREW

Their Duties and Responsibilities

A Manual for the American Merchant Service



By FELIX RIESENBERG

Commanding Schoolship Newport

New York State Nautical School







	MASTER
    	⎫
    	Concise statement of their duties and responsibilities and the laws under which they work and live

	Chief MATE 
    	⎪

	Second MATE
    	⎪

	Third MATE
    	⎪

	WATCH OFFICER
    	⎪

	Junior Officer
    	⎬

	Cadet
    	⎪

	Quartermaster
    	⎪

	Carpenter
    	⎪

	Boatswain
    	⎪

	Foremast Hands
    	⎭

	DISCIPLINE—on board ship

	The Books of the Sea





Points out the things the various members of the deck
department of an ocean or Great Lakes steam vessel may
reasonably be expected to know, and the things they may
be required to do. The book does not pretend to tell
HOW, but shows WHAT a modern American seaman
ought to know, and to do.





VAN NOSTRAND’S NAVAL BOOKS






730 Pages 6¼ × 9¼ Postpaid $6.50

159 Full Page Plates   10 Color Plates






Modern Seamanship



By



Admiral Austin M. Knight, U.S.N.



SEVENTH EDITION

REVISED AND ENLARGED





CONTENTS—The Hull and Fittings of a Ship. Rope.
Knotting and Splicing. Mechanical Appliances on
Shipboard. Blocks and Tackles. Handling Heavy
Weights. Compass. Log and Lead. Submarine
Signals. Boats. Handling Boats in a Surf. Ground
Tackle. Carrying Out Anchors. The Steering of Steamers.
The Rules of the Road. Manoeuvering to Avoid
Collision. Piloting. Handling a Steamer Alongside
a Dock. Placing a Ship in a Dry Dock. Weather and
the Laws of Storms. Handling Steamers in Heavy
Weather. The Handling of Torpedo Vessels. Keeping
Stations and Manoeuvering in Squadron. Towing.
Rescuing the Crew of a Wreck. Man Overboard.
Stranding. Hints for Junior Officers Doing Line Duty.
Appendix.



The official text book at the U. S. Naval Academy
and in use throughout the service. Describes the handling
of all vessels, men-of-war, merchantmen, naval
auxiliaries and small boats.





Transcriber’s Note:




Words may have multiple spelling
variations or inconsistent hyphenation in the text. These have been
left unchanged unless indicated below. Obsolete and alternative
spellings were left unchanged.


Obvious printing errors, such as duplicate words,
backwards, upside down, or partially printed letters and punctuation, were corrected.
Final stops missing at the end of sentences and abbreviations were
added.


The following items were changed:


“access” to “excess”

“Manoeuvring” to “manoeuvering”

“effect” to “affect”





*** END OF THE PROJECT GUTENBERG EBOOK THE WHYS AND WHEREFORES OF NAVIGATION ***



    

Updated editions will replace the previous one—the old editions will
be renamed.


Creating the works from print editions not protected by U.S. copyright
law means that no one owns a United States copyright in these works,
so the Foundation (and you!) can copy and distribute it in the United
States without permission and without paying copyright
royalties. Special rules, set forth in the General Terms of Use part
of this license, apply to copying and distributing Project
Gutenberg™ electronic works to protect the PROJECT GUTENBERG™
concept and trademark. Project Gutenberg is a registered trademark,
and may not be used if you charge for an eBook, except by following
the terms of the trademark license, including paying royalties for use
of the Project Gutenberg trademark. If you do not charge anything for
copies of this eBook, complying with the trademark license is very
easy. You may use this eBook for nearly any purpose such as creation
of derivative works, reports, performances and research. Project
Gutenberg eBooks may be modified and printed and given away—you may
do practically ANYTHING in the United States with eBooks not protected
by U.S. copyright law. Redistribution is subject to the trademark
license, especially commercial redistribution.



START: FULL LICENSE


THE FULL PROJECT GUTENBERG LICENSE


PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK


To protect the Project Gutenberg™ mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase “Project
Gutenberg”), you agree to comply with all the terms of the Full
Project Gutenberg™ License available with this file or online at
www.gutenberg.org/license.


Section 1. General Terms of Use and Redistributing Project Gutenberg™
electronic works


1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or
destroy all copies of Project Gutenberg™ electronic works in your
possession. If you paid a fee for obtaining a copy of or access to a
Project Gutenberg™ electronic work and you do not agree to be bound
by the terms of this agreement, you may obtain a refund from the person
or entity to whom you paid the fee as set forth in paragraph 1.E.8.


1.B. “Project Gutenberg” is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg™ electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project Gutenberg™
electronic works. See paragraph 1.E below.


1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the collection
of Project Gutenberg™ electronic works. Nearly all the individual
works in the collection are in the public domain in the United
States. If an individual work is unprotected by copyright law in the
United States and you are located in the United States, we do not
claim a right to prevent you from copying, distributing, performing,
displaying or creating derivative works based on the work as long as
all references to Project Gutenberg are removed. Of course, we hope
that you will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project Gutenberg™
works in compliance with the terms of this agreement for keeping the
Project Gutenberg™ name associated with the work. You can easily
comply with the terms of this agreement by keeping this work in the
same format with its attached full Project Gutenberg™ License when
you share it without charge with others.


1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are
in a constant state of change. If you are outside the United States,
check the laws of your country in addition to the terms of this
agreement before downloading, copying, displaying, performing,
distributing or creating derivative works based on this work or any
other Project Gutenberg™ work. The Foundation makes no
representations concerning the copyright status of any work in any
country other than the United States.


1.E. Unless you have removed all references to Project Gutenberg:


1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License must appear
prominently whenever any copy of a Project Gutenberg™ work (any work
on which the phrase “Project Gutenberg” appears, or with which the
phrase “Project Gutenberg” is associated) is accessed, displayed,
performed, viewed, copied or distributed:


    This eBook is for the use of anyone anywhere in the United States and most
    other parts of the world at no cost and with almost no restrictions
    whatsoever. You may copy it, give it away or re-use it under the terms
    of the Project Gutenberg License included with this eBook or online
    at www.gutenberg.org. If you
    are not located in the United States, you will have to check the laws
    of the country where you are located before using this eBook.
  


1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does not
contain a notice indicating that it is posted with permission of the
copyright holder), the work can be copied and distributed to anyone in
the United States without paying any fees or charges. If you are
redistributing or providing access to a work with the phrase “Project
Gutenberg” associated with or appearing on the work, you must comply
either with the requirements of paragraphs 1.E.1 through 1.E.7 or
obtain permission for the use of the work and the Project Gutenberg™
trademark as set forth in paragraphs 1.E.8 or 1.E.9.


1.E.3. If an individual Project Gutenberg™ electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any
additional terms imposed by the copyright holder. Additional terms
will be linked to the Project Gutenberg™ License for all works
posted with the permission of the copyright holder found at the
beginning of this work.


1.E.4. Do not unlink or detach or remove the full Project Gutenberg™
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg™.


1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg™ License.


1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including
any word processing or hypertext form. However, if you provide access
to or distribute copies of a Project Gutenberg™ work in a format
other than “Plain Vanilla ASCII” or other format used in the official
version posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or expense
to the user, provide a copy, a means of exporting a copy, or a means
of obtaining a copy upon request, of the work in its original “Plain
Vanilla ASCII” or other form. Any alternate format must include the
full Project Gutenberg™ License as specified in paragraph 1.E.1.


1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™ works
unless you comply with paragraph 1.E.8 or 1.E.9.


1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg™ electronic works
provided that:


    	• You pay a royalty fee of 20% of the gross profits you derive from
        the use of Project Gutenberg™ works calculated using the method
        you already use to calculate your applicable taxes. The fee is owed
        to the owner of the Project Gutenberg™ trademark, but he has
        agreed to donate royalties under this paragraph to the Project
        Gutenberg Literary Archive Foundation. Royalty payments must be paid
        within 60 days following each date on which you prepare (or are
        legally required to prepare) your periodic tax returns. Royalty
        payments should be clearly marked as such and sent to the Project
        Gutenberg Literary Archive Foundation at the address specified in
        Section 4, “Information about donations to the Project Gutenberg
        Literary Archive Foundation.”
    

    	• You provide a full refund of any money paid by a user who notifies
        you in writing (or by e-mail) within 30 days of receipt that s/he
        does not agree to the terms of the full Project Gutenberg™
        License. You must require such a user to return or destroy all
        copies of the works possessed in a physical medium and discontinue
        all use of and all access to other copies of Project Gutenberg™
        works.
    

    	• You provide, in accordance with paragraph 1.F.3, a full refund of
        any money paid for a work or a replacement copy, if a defect in the
        electronic work is discovered and reported to you within 90 days of
        receipt of the work.
    

    	• You comply with all other terms of this agreement for free
        distribution of Project Gutenberg™ works.
    



1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different terms than
are set forth in this agreement, you must obtain permission in writing
from the Project Gutenberg Literary Archive Foundation, the manager of
the Project Gutenberg™ trademark. Contact the Foundation as set
forth in Section 3 below.


1.F.


1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
works not protected by U.S. copyright law in creating the Project
Gutenberg™ collection. Despite these efforts, Project Gutenberg™
electronic works, and the medium on which they may be stored, may
contain “Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk or
other medium, a computer virus, or computer codes that damage or
cannot be read by your equipment.


1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the “Right
of Replacement or Refund” described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a Project
Gutenberg™ electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.


1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium
with your written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement copy in
lieu of a refund. If you received the work electronically, the person
or entity providing it to you may choose to give you a second
opportunity to receive the work electronically in lieu of a refund. If
the second copy is also defective, you may demand a refund in writing
without further opportunities to fix the problem.


1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ‘AS-IS’, WITH NO
OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.


1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this agreement
violates the law of the state applicable to this agreement, the
agreement shall be interpreted to make the maximum disclaimer or
limitation permitted by the applicable state law. The invalidity or
unenforceability of any provision of this agreement shall not void the
remaining provisions.


1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg™ electronic works in
accordance with this agreement, and any volunteers associated with the
production, promotion and distribution of Project Gutenberg™
electronic works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any of
the following which you do or cause to occur: (a) distribution of this
or any Project Gutenberg™ work, (b) alteration, modification, or
additions or deletions to any Project Gutenberg™ work, and (c) any
Defect you cause.


Section 2. Information about the Mission of Project Gutenberg™


Project Gutenberg™ is synonymous with the free distribution of
electronic works in formats readable by the widest variety of
computers including obsolete, old, middle-aged and new computers. It
exists because of the efforts of hundreds of volunteers and donations
from people in all walks of life.


Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg™’s
goals and ensuring that the Project Gutenberg™ collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg Literary
Archive Foundation and how your efforts and donations can help, see
Sections 3 and 4 and the Foundation information page at www.gutenberg.org.


Section 3. Information about the Project Gutenberg Literary Archive Foundation


The Project Gutenberg Literary Archive Foundation is a non-profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Contributions to the Project Gutenberg Literary
Archive Foundation are tax deductible to the full extent permitted by
U.S. federal laws and your state’s laws.


The Foundation’s business office is located at 809 North 1500 West,
Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up
to date contact information can be found at the Foundation’s website
and official page at www.gutenberg.org/contact


Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation


Project Gutenberg™ depends upon and cannot survive without widespread
public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine-readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.


The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To SEND
DONATIONS or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.


While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.


International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.


Please check the Project Gutenberg web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including checks, online payments and credit card donations. To
donate, please visit: www.gutenberg.org/donate.


Section 5. General Information About Project Gutenberg™ electronic works


Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that could be
freely shared with anyone. For forty years, he produced and
distributed Project Gutenberg™ eBooks with only a loose network of
volunteer support.


Project Gutenberg™ eBooks are often created from several printed
editions, all of which are confirmed as not protected by copyright in
the U.S. unless a copyright notice is included. Thus, we do not
necessarily keep eBooks in compliance with any particular paper
edition.


Most people start at our website which has the main PG search
facility: www.gutenberg.org.


This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.




OEBPS/1632799409883655784_i_061.jpg


OEBPS/1632799409883655784_i_156.jpg


OEBPS/1632799409883655784_cover.jpg


OEBPS/1632799409883655784_i_147.jpg


OEBPS/1632799409883655784_i_046.jpg


OEBPS/1632799409883655784_i_090.jpg


OEBPS/1632799409883655784_i_135a.jpg


OEBPS/1632799409883655784_i_126.jpg


OEBPS/1632799409883655784_i_127.jpg


OEBPS/1632799409883655784_i_157.jpg


OEBPS/1632799409883655784_i_029.jpg


OEBPS/1632799409883655784_i_051.jpg


OEBPS/1632799409883655784_i_144.jpg


OEBPS/1632799409883655784_logo.jpg


OEBPS/1632799409883655784_i_135b.jpg


OEBPS/1632799409883655784_i_137.jpg


OEBPS/1632799409883655784_colophon.jpg


OEBPS/1632799409883655784_i_062.jpg


