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    Vorwort.
  




Das vorliegende Büchlein soll solchen eine möglichst exakte Einsicht
in die Relativitätstheorie vermitteln, die sich vom allgemein
wissenschaftlichen, philosophischen Standpunkt für die Theorie
interessieren, ohne den mathematischen Apparat⁠[1] der theoretischen
Physik zu beherrschen. Die Lektüre setzt etwa Maturitätsbildung und —
trotz der Kürze des Büchleins — ziemlich viel Geduld und Willenskraft
beim Leser voraus. Der Verfasser hat sich die größte Mühe gegeben,
die Hauptgedanken möglichst deutlich und einfach vorzubringen, im
ganzen in solcher Reihenfolge und in solchem Zusammenhange, wie sie
tatsächlich entstanden sind. Im Interesse der Deutlichkeit erschien
es mir unvermeidlich, mich oft zu wiederholen, ohne auf die Eleganz
der Darstellung die geringste Rücksicht zu nehmen; ich hielt mich
gewissenhaft an die Vorschrift des genialen Theoretikers L.
Boltzmann, man solle die Eleganz Sache der Schneider und Schuster
sein lassen. Schwierigkeiten, die in der Sache begründet liegen,
glaube ich dem Leser nicht vorenthalten zu haben. Dagegen habe ich
die empirischen physikalischen Unterlagen der Theorie absichtlich
stiefmütterlich behandelt, damit es dem der Physik ferner stehenden
Leser nicht ergehe wie dem Wanderer, der vor lauter Bäumen keinen Wald
sieht. Möge das Büchlein manchem einige frohe Stunden der Anregung
bringen!


Dezember 1916.


A. Einstein.





[1] Die mathematischen Grundlagen der speziellen
Relativitätstheorie findet man in den bei B. G. Teubner in
der Monographiensammlung „Fortschritte der mathematischen
Wissenschaften“ unter dem Titel „Das Relativitätsprinzip“ erschienenen
Originalabhandlungen von H. A. Lorentz, A. Einstein,
H. Minkowski, sowie in M. Laues ausführlichem Buche „Das
Relativitätsprinzip“ (Verlag von Friedr. Vieweg & Sohn, Braunschweig).
Die allgemeine Relativitätstheorie nebst den zugehörigen mathematischen
Hilfsmitteln der Invariantentheorie ist in der Broschüre des
Verfassers, „Die Grundlagen der allgemeinen Relativitätstheorie“ (Joh.
Ambr. Barth, 1916) behandelt; diese Broschüre setzt einige Vertrautheit
mit der speziellen Relativitätstheorie voraus.













  
    Erster Teil.
    

    Über die spezielle Relativitätstheorie.
  




§ 1. Physikalischer Inhalt
geometrischer Sätze.


Gewiß hast auch du, lieber Leser, als Knabe oder Mädchen mit dem
stolzen Gebäude der Geometrie Euklids Bekanntschaft gemacht und
erinnerst dich vielleicht mit mehr Achtung als Liebe an den stolzen
Bau, auf dessen hohen Treppen du von gewissenhaften Fachlehrern in
ungezählten Stunden umhergejagt wurdest. Gewiß würdest du kraft dieser
deiner Vergangenheit jeden mit Verachtung strafen, der auch nur das
abgelegenste Sätzchen dieser Wissenschaft für unwahr erklärte. Aber
dies Gefühl stolzer Sicherheit verließe dich vielleicht sogleich, wenn
dich einer fragte: „Was meinst du denn mit der Behauptung, daß diese
Sätze wahr seien?“ Bei dieser Frage wollen wir ein wenig verweilen.


Die Geometrie geht aus von gewissen Grundbegriffen, wie Ebene, Punkt,
Gerade, mit denen wir mehr oder minder deutliche Vorstellungen zu
verbinden imstande sind, und von gewissen einfachen Sätzen (Axiomen),
die wir auf Grund jener Vorstellungen als „wahr“ hinzunehmen geneigt
sind. Alle übrigen Sätze werden dann auf Grund einer logischen Methode,
deren Berechtigung wir uns anzuerkennen genötigt fühlen, auf jene
Axiome zurückgeführt, d. h. bewiesen. Ein Satz ist dann richtig bzw.
„wahr“, wenn er in der anerkannten Weise aus den Axiomen hergeleitet
ist. Die Frage nach der „Wahrheit“ der einzelnen geometrischen Sätze
führt also zurück auf die Frage nach der „Wahrheit“ der Axiome.
Längst aber ist es bekannt, daß die letztere Frage nicht nur durch die
Methoden der Geometrie nicht beantwortbar, sondern überhaupt an sich
ohne Sinn ist. Man kann nicht fragen, ob es wahr sei, daß durch zwei
Punkte nur eine Gerade hindurchgeht. Man kann nur sagen, daß die
Euklidische Geometrie von Gebilden handelt, die sie „Gerade“ nennt, und
denen sie die Eigenschaft beilegt, durch zwei ihrer Punkte eindeutig
bestimmt zu sein. Der Begriff „wahr“ paßt nicht auf die Aussagen der
reinen Geometrie, weil wir mit dem Worte „wahr“ in letzter Linie stets
die Übereinstimmung mit einem „realen“ Gegenstande zu bezeichnen
pflegen; die Geometrie aber befaßt sich nicht mit der Beziehung ihrer
Begriffe zu den Gegenständen der Erfahrung, sondern nur mit dem
logischen Zusammenhang dieser Begriffe untereinander.


Daß wir uns trotzdem dazu hingezogen fühlen, die Sätze der Geometrie
als „wahr“ zu bezeichnen, erklärt sich leicht. Den geometrischen
Begriffen entsprechen mehr oder weniger exakt Gegenstände in der
Natur, welch letztere ohne Zweifel die alleinige Ursache für die
Entstehung jener Begriffe sind. Mag die Geometrie, um ihrem Gebäude
die größtmögliche logische Geschlossenheit zu geben, hiervon Abstand
nehmen; die Gewohnheit, beispielsweise in einer Strecke zwei markierte
Stellen auf einem praktisch starren Körper zu sehen, steckt
tief in unseren Denkgewohnheiten. Wir sind ferner gewohnt, drei Orte
als auf einer Geraden befindlich anzunehmen, wenn wir ihre scheinbaren
Sehorte durch passende Wahl des Beobachtungsortes bei einäugigem Sehen
zusammenfallen lassen können.


Wenn wir nun, der Denkgewohnheit folgend, den Sätzen der Euklidischen
Geometrie den einzigen Satz zufügen, daß zwei Punkten eines praktisch
starren Körpers stets die nämliche Entfernung (Strecke) entspreche, was
für Lagenänderungen wir auch mit dem Körper vornehmen mögen, so werden
aus den Sätzen der euklidischen Geometrie Sätze über die mögliche
relative Lagerung praktisch starrer Körper⁠[2]. Die so ergänzte
Geometrie ist dann als ein Zweig der Physik zu behandeln. Jetzt kann
mit Recht nach der „Wahrheit“ so interpretierter geometrischer Sätze
gefragt werden, denn es kann gefragt werden, ob jene Sätze zutreffen
für diejenigen realen Dinge, welche wir den geometrischen Begriffen
zugeordnet haben. Etwas ungenau können wir also sagen, daß wir unter
der „Wahrheit“ eines geometrischen Satzes in diesem Sinne sein
Zutreffen bei einer Konstruktion mit Zirkel und Lineal verstehen.


Die Überzeugung von der „Wahrheit“ der geometrischen Sätze in diesem
Sinne beruht natürlich ausschließlich auf ziemlich unvollkommenen
Erfahrungen. Wir werden jene Wahrheit der geometrischen Sätze zunächst
voraussetzen, um dann im letzten Teile unserer Betrachtungen (bei der
allgemeinen Relativitätstheorie) zu sehen, daß und inwiefern jene
Wahrheit ihre Grenzen hat.





  § 2. Das Koordinatensystem.






Auf Grund der angedeuteten physikalischen Interpretation des Abstandes
sind wir auch in der Lage, den Abstand zweier Punkte eines starren
Körpers auf Grund von Messungen festzusetzen. Dazu brauchen wir eine
ein- für allemal zu benutzende Strecke (Stäbchen S), welche
als Einheitsmaßstab verwendet wird. Sind nun A und B
zwei Punkte eines starren Körpers, so ist deren Verbindungsgerade
konstruierbar nach den Gesetzen der Geometrie; hierauf kann man auf
dieser Verbindungsgeraden die Strecke S von A aus so oft
abtragen, bis man nach B gelangt. Die Zahl der Wiederholungen
des Abtragens ist die Maßzahl der Strecke AB. Hierauf beruht
alles Messen von Längen⁠[3].





Jede räumliche Beschreibung des Ortes eines Ereignisses oder
Gegenstandes beruht darauf, daß man den Punkt eines starren Körpers
(Bezugskörpers) angibt, mit dem jenes Ereignis koinzidiert. Dies gilt
nicht nur für die wissenschaftliche Beschreibung, sondern auch für
das tägliche Leben. Analysiere ich die Ortsangabe „in Berlin, auf dem
Potsdamer Platz“, so bedeutet sie folgendes. Die Erdoberfläche ist
der starre Körper, auf den sich die Ortsangabe bezieht; auf ihm ist
„Potsdamerplatz in Berlin“ ein markierter, mit Namen versehener Punkt,
mit dem das Ereignis räumlich koinzidiert⁠[4].


Diese primitive Art der Ortsangabe kennt nur Orte an der Oberfläche
starrer Körper und ist an das Vorhandensein unterscheidbarer Punkte
dieser Oberfläche gebunden. Sehen wir zu, wie sich der menschliche
Geist von diesen beiden Beschränkungen befreit, ohne daß das Wesen
der Ortsangabe eine Änderung erfährt! Schwebt beispielsweise über
dem Potsdamer Platz eine Wolke, so kann der Ort dieser, bezogen auf
die Erdoberfläche, dadurch festgelegt werden, daß man auf dem Platze
senkrecht eine Stange errichtet, die bis zur Wolke hinaufreicht. Die
mit dem Einheitsmaßstab gemessene Länge der Stange in Verbindung
mit der Angabe des Ortes des Fußpunktes der Stange ist dann eine
vollständige Ortsangabe. An diesem Beispiele sehen wir, auf welchem
Wege eine Verfeinerung des Ortsbegriffes vor sich gegangen ist.



a) Man setzt den starren Körper, auf den sich die Ortsangabe bezieht,
in solcher Weise fort, daß der zu lokalisierende Gegenstand von dem
vervollständigten starren Körper erreicht wird.


b) Man benutzt zur Charakterisierung des Ortes die Zahl statt
benannter Merkpunkte (hier die mit dem Maßstab gemessene Länge der
Stange).





c) Man spricht von der Höhe der Wolke auch dann, wenn eine
Stange, welche die Wolke erreicht, gar nicht errichtet ist. In
unserem Falle ermittelt man aus optischen Aufnahmen der Wolke von
verschiedenen Stellen des Bodens aus unter Berücksichtigung der
Ausbreitungseigenschaften des Lichtes, wie lang die Stange gemacht
werden müßte, um die Wolke zu erreichen.





Aus dieser Überlegung sieht man, daß es für die Beschreibung von
Orten vorteilhaft sein wird, wenn es gelingt, sich durch Verwendung
von Meßzahlen von der Existenz mit Namen versehener Merkpunkte auf
dem starren Körper, auf den sich die Ortsangabe bezieht, unabhängig
zu machen. Dies erreicht die messende Physik durch Anwendung des
Kartesischen Koordinatensystems.


Dieses besteht in drei zueinander senkrechten, zu einem starren Körper
verbundenen starren, ebenen Wänden. Der Ort irgendeines Geschehnisses
in bezug auf das Koordinatensystem wird (im wesentlichen) beschrieben
durch die Angabe der Länge der drei Lote oder Koordinaten (x,
y, z), welche von dem Geschehnis aus auf jene drei
ebenen Wände gefällt werden können. Die Längen dieser drei Lote sind
durch eine Folge von Manipulationen mit starren Stäben ermittelbar,
welche Manipulationen durch die Gesetze und Methoden der Euklidischen
Geometrie vorgeschrieben werden.


Bei den Anwendungen sind jene das Koordinatensystem bildenden starren
Wände meist nicht realisiert; auch werden die Koordinaten nicht
wirklich durch Konstruktionen mit starren Stäben, sondern indirekt
ermittelt. Der physikalische Sinn der Ortsangaben muß jedoch stets den
vorstehenden Eröterungen gemäß gesucht werden, wenn die Ergebnisse der
Physik und Astronomie nicht ins Unklare zerfließen sollen⁠[5].


Es ergibt sich also folgendes: Jede räumliche Beschreibung von
Geschehnissen bedient sich eines starren Körpers, auf den die
Geschehnisse räumlich zu beziehen sind. Jene Beziehung setzt voraus,
daß für „Strecken“ die Gesetze der Euklidischen Geometrie gelten, wobei
die „Strecke“ physikalisch repräsentiert wird durch zwei Marken auf
einem starren Körper.





  § 3. Raum und Zeit in der klassischen Mechanik.






Wenn ich ohne schwere Bedenken und eingehende Erläuterungen die Aufgabe
der Mechanik so formuliere: „Die Mechanik hat zu beschreiben, wie die
Körper mit der Zeit ihren Ort im Raume ändern“, so nehme ich einige
Todsünden gegen den heiligen Geist der Klarheit auf mein Gewissen;
diese Sünden sollen zunächst aufgedeckt werden.


Es ist unklar, was hier unter „Ort“ und „Raum“ zu verstehen ist. Ich
stehe am Fenster eines gleichförmig fahrenden Eisenbahnwagens und lasse
einen Stein auf den Bahndamm fallen, ohne ihm einen Schwung zu geben.
Dann sehe ich (abgesehen vom Einfluß des Luftwiderstandes) den Stein
geradlinig herabfallen. Ein Fußgänger, der die Übeltat vom Fußwege
aus mit ansieht, bemerkt, daß der Stein in einem Parabelbogen zur
Erde herabfällt. Ich frage nun: Liegen die „Orte“, welche der Stein
durchläuft, „in Wirklichkeit“ auf einer Geraden oder auf einer Parabel?
Was bedeutet hier ferner Bewegung „im Raume“? Die Antwort ist nach
den Überlegungen des § 2 selbstverständlich. Zunächst lassen wir das
dunkle Wort „Raum“, unter dem wir uns bei ehrlichem Geständnis nicht
das geringste denken können, ganz beiseite; wir setzen statt dessen
„Bewegung in bezug auf einen praktisch starren Bezugskörper.“ Die
Orte in bezug auf den Bezugskörper (Bahnwagen oder Erdboden)
sind im vorigen Paragraphen bereits ausführlich definiert worden.
Indem wir statt „Bezugskörper“ den für die mathematische Beschreibung
nützlichen Begriff „Koordinatensystem“ einführen, können wir sagen:
Der Stein beschreibt in bezug auf ein mit dem Wagen starr verbundenes
Koordinatensystem eine Gerade, in bezug auf ein mit dem Erdboden
starr verbundenes Koordinatensystem eine Parabel. Man sieht an diesem
Beispiel deutlich, daß es eine Bahnkurve an sich nicht gibt, sondern
nur eine Bahnkurve in bezug auf einen bestimmten Bezugskörper.


Eine vollständige Beschreibung der Bewegung kommt aber erst
dadurch zustande, daß man angibt, wie der Körper seinen Ort mit
der Zeit ändert; d. h. es muß für jeden Punkt der Bahnkurve
angegeben werden, zu welcher Zeit der Körper sich dort befindet. Diese
Angaben müssen durch eine solche Definition der Zeit vervollständigt
werden, daß diese Zeitwerte kraft jener Definition als prinzipiell
beobachtbare Größen (Resultate von Messungen) angesehen werden können.
Dieser Forderung entsprechen wir — auf dem Boden der klassischen
Mechanik stehend — für unser Beispiel in folgender Weise. Wir
denken uns zwei genau gleich beschaffene Uhren; die eine hat der
Mann am Eisenbahnwagenfenster, die andere der Mann auf dem Fußwege
in der Hand. Jeder der beiden stellt fest, an welcher Stelle des
betreffenden Bezugskörpers der Stein sich gerade befindet, wenn die
Uhr tickt, die er in der Hand hat. Dabei verzichten wir auf ein
Eingehen auf die Ungenauigkeit, welche durch die Endlichkeit der
Fortpflanzungsgeschwindigkeit des Lichtes hereinkommt. Hiervon und von
einer zweiten hier obwaltenden Schwierigkeit wird später ausführlich
die Rede sein.





  § 4. Das Galileische Koordinatensystem.






Bekanntlich lautet das unter dem Namen Trägheitsgesetz bekannte
Grundgesetz der Galilei-Newtonschen Mechanik: Ein
von anderen Körpern hinreichend entfernter Körper verharrt im
Zustande der Ruhe oder der gleichförmig-geradlinigen Bewegung.
Dieser Satz sagt nicht nur etwas aus über die Bewegung der Körper,
sondern auch über die in der Mechanik zulässigen Bezugskörper
oder Koordinatensysteme, welche bei der mechanischen Beschreibung
verwendet werden dürfen. Körper, auf welche der Trägheitssatz
sicherlich mit großer Annäherung Anwendung finden kann, sind die
sichtbaren Fixsterne. Benutzen wir nun ein Koordinatensystem,
welches mit der Erde starr verbunden ist, so beschreibt relativ zu
ihm jeder Fixstern im Laufe eines (astronomischen) Tages einen
Kreis von ungeheurem Radius, im Widerspruch mit dem Wortlaut des
Trägheitsgesetzes. Hält man also an diesem Gesetze fest, so darf
man die Bewegungen nur auf Koordinatensysteme beziehen, relativ
zu welchen die Fixsterne keine Kreisbewegungen ausführen. Ein
Koordinatensystem, dessen Bewegungszustand ein solcher ist, daß relativ
zu ihm das Trägheitsgesetz gilt, nennen wir ein „Galileisches
Koordinatensystem.“ Nur für ein Galileisches Koordinatensystem
beanspruchen die Gesetze der Galilei-Newtonschen Mechanik
Gültigkeit.





  § 5. Das Relativitätsprinzip (im engeren Sinne).






Wir gehen wieder, um möglichste Anschaulichkeit zu erzielen, von
dem Beispiel des gleichmäßig fahrenden Eisenbahnwagens aus. Seine
Bewegung nennen wir eine gleichförmige Translation („gleichförmig“,
weil von konstanter Geschwindigkeit und Richtung, „Translation“,
weil der Wagen relativ zum Fahrdamm zwar seinen Ort ändert, aber
hierbei keine Drehungen ausführt). Es fliege ein Rabe geradlinig und
gleichförmig — vom Bahndamm aus beurteilt — durch die Luft. Dann ist
— vom fahrenden Wagen aus beurteilt — die Bewegung des Raben zwar
eine Bewegung von anderer Geschwindigkeit und anderer Richtung; aber
sie ist ebenfalls geradlinig und gleichförmig. Abstrakt ausgedrückt:
Bewegt sich eine Masse m geradlinig und gleichförmig in
bezug auf ein Koordinatensystem K, so bewegt sie sich auch
geradlinig und gleichförmig in bezug auf ein zweites Koordinatensystem
K′, falls letzteres in bezug auf K eine gleichförmige
Translationsbewegung ausführt. Hieraus folgt mit Rücksicht auf die
Darlegung des vorigen Paragraphen:


Ist K ein Galileisches Koordinatensystem, so ist auch
jedes andere Koordinatensystem K′ ein Galileisches,
wenn K′ gegenüber K im Zustande gleichförmiger
Translationsbewegung ist. In bezug auf K′ gelten die Gesetze
der Galilei-Newtonschen Mechanik ebenso wie in bezug auf
K.


Wir gehen in der Verallgemeinerung noch einen Schritt weiter, indem
wir den Satz aussprechen: Ist K′ ein in bezug auf K
gleichförmig und drehungsfrei bewegtes Koordinatensystem, so verläuft
das Naturgeschehen in bezug auf K′ nach genau denselben
allgemeinen Gesetzen wie in bezug auf K. Diese Aussage nennen
wir „Relativitätsprinzip“ (im engeren Sinne).


Solange man überzeugt war, daß sich alles Naturgeschehen mit Hilfe
der klassischen Mechanik darstellen lasse, konnte man an der
Gültigkeit dieses Relativitätsprinzips nicht zweifeln. Mit der
neueren Entwickelung der Elektrodynamik und Optik aber ward es immer
mehr offenkundig, daß die klassische Mechanik als Grundlage für alle
physikalische Naturbeschreibung nicht zureichend sei. Damit wurde auch
die Frage nach der Gültigkeit des Relativitätsprinzips zu einer wohl
diskutierbaren, und es erschien nicht ausgeschlossen, daß die Antwort
auf diese Frage verneinend sein könnte.


Immerhin gibt es zwei allgemeine Tatsachen, die von vornherein sehr
für die Gültigkeit des Relativitätsprinzips sprechen. Wenn nämlich
die klassische Mechanik auch nicht eine genügend breite Basis für die
theoretische Darstellung aller physikalischen Erscheinungen
liefert, so muß ihr doch ein sehr bedeutender Wahrheitsgehalt zukommen;
denn sie liefert mit bewunderungswürdiger Schärfe die tatsächlichen
Bewegungen der Himmelskörper. Es muß daher auch das Relativitätsprinzip
auf dem Gebiete der Mechanik jedenfalls mit großer Genauigkeit
gelten. Daß aber ein Prinzip von so großer Allgemeinheit, welches
auf einem Erscheinungsgebiete mit solcher Exaktheit gilt, einem
anderen Erscheinungsgebiete gegenüber versage, ist a priori wenig
wahrscheinlich.


Das zweite Argument, auf welches wir später noch zurückkommen
werden, ist folgendes. Wenn das Relativitätsprinzip (im engeren
Sinne) nicht gilt, so werden die relativ zueinander gleichförmig
bewegten Galileischen Koordinatensysteme K, K′,
K″ usw. nicht gleichwertig sein für die Beschreibung
des Naturgeschehens. Dann wäre es kaum anders denkbar, als daß die
Naturgesetze besonders einfach und natürlich sich nur dann formulieren
ließen, wenn unter allen Galileischen Koordinatensystemen
eines (K0) von bestimmtem Bewegungszustande als
Bezugskörper gewählt würde. Dieses würden wir dann mit Recht (wegen
seiner Vorzüge für die Naturbeschreibung) als das „absolut ruhende“
bezeichnen, die übrigen Galileischen Systeme K aber als
„bewegt“. Wäre z. B. unser Bahndamm das System K0, so wäre
unser Eisenbahnwagen ein System K, in bezug auf welches weniger
einfache Gesetze gelten würden als in bezug auf K0. Diese
geringere Einfachheit würde darauf zurückzuführen sein, daß der Wagen
K gegen K0 (d. h. „wirklich“) bewegt sei. In diesen in
bezug auf K formulierten allgemeinen Naturgesetzen müßten Größe
und Richtung der Fahrgeschwindigkeit des Wagens eine Rolle spielen. Es
wäre z. B. zu erwarten, daß der Ton einer Orgelpfeife ein anderer wäre,
wenn diese mit ihrer Achse parallel zur Fahrrichtung gestellt wird,
als wenn sie mit ihrer Achse senkrecht zu dieser Richtung gestellt
wird. Nun ist aber unsere Erde wegen ihrer Bahnbewegung um die Sonne
einem mit etwa 20 km Geschwindigkeit fahrenden Wagen vergleichbar.
Es wäre daher im Falle der Ungültigkeit des Relativitätsprinzips
zu erwarten, daß die momentane Bewegungsrichtung der Erde in die
Naturgesetze eingehe, daß also die physikalischen Systeme in ihrem
Verhalten von der räumlichen Orientierung gegen die Erde abhängen
sollten. Denn wegen der im Laufe des Jahres stattfindenden Änderung
der Richtung der Geschwindigkeit der Umlaufbewegung der Erde kann
diese nicht das ganze Jahr hindurch relativ zu dem hypothetischen
System K0 in Ruhe sein. Bei aller Sorgfalt hat man aber eine
derartige Anisotropie des irdischen physikalischen Raumes, d. h. eine
physikalische Ungleichwertigkeit der verschiedenen Richtungen, niemals
beobachten können. Dies ist ein schwer wiegendes Argument zugunsten des
Relativitätsprinzips.




§ 6.
Das Additionstheorem der Geschwindigkeiten gemäß der klassischen Mechanik.





Der schon oft betrachtete Eisenbahnwagen fahre mit der konstanten
Geschwindigkeit v auf dem Geleise. Im Eisenbahnwagen
durchschreite ein Mann den Wagen in dessen Längsrichtung, und zwar in
Richtung der Fahrt mit der Geschwindigkeit w. Wie rasch bzw. mit
welcher Geschwindigkeit W kommt der Mann relativ zum Bahndamm
während des Gehens vorwärts? Die einzig mögliche Antwort scheint aus
folgender Überlegung zu entspringen:


Würde der Mann eine Sekunde lang still stehen, so käme er relativ zum
Bahndamm um eine der Fahrgeschwindigkeit des Wagens gleiche Strecke
v vorwärts. In Wirklichkeit durchmißt er aber außerdem relativ
zum Wagen, also auch relativ zum Bahndamm in dieser Sekunde durch sein
Gehen die Strecke w, welche der Geschwindigkeit seines Ganges
gleich ist. Er legt also in der betrachteten Sekunde relativ zum
Bahndamm im ganzen die Strecke


W = v + w


zurück. Später werden wir sehen, daß diese Überlegung, welche das
Additionstheorem der Geschwindigkeiten gemäß der klassischen Mechanik
ausdrückt, nicht aufrecht erhalten werden kann, daß also das soeben
hingeschriebene Gesetz in Wahrheit nicht zutrifft. Einstweilen aber
werden wir auf dessen Richtigkeit bauen.




§ 7. Die
scheinbare Unvereinbarkeit des Ausbreitungsgesetzes des Lichtes mit dem
Relativitätsprinzip.





Es gibt kaum ein einfacheres Gesetz in der Physik als dasjenige, gemäß
welchem sich das Licht im leeren Raume fortpflanzt. Jedes Schulkind
weiß oder glaubt zu wissen, daß diese Fortpflanzung geradlinig mit
einer Geschwindigkeit c = 300000 km/Sek. geschieht. Wir wissen
jedenfalls mit großer Exaktheit, daß diese Geschwindigkeit für alle
Farben dieselbe ist; denn wäre dies nicht der Fall, so würde bei
der Bedeckung eines Fixsternes durch seinen dunklen Begleiter das
Emissionsminimum für die verschiedenen Farben nicht gleichzeitig
beobachtet werden. Durch eine ähnliche, an die Beobachtungen der
Doppelsterne sich knüpfende Überlegung konnte der holländische Astronom
De Sitter auch zeigen, daß die Fort­pflanzungs­ge­schwin­digkeit
des Lichtes von der Bewegungsgeschwindigkeit des das Licht
emittierenden Körpers nicht abhängen kann. Die Annahme, daß diese
Fortpflanzungsgeschwindigkeit von der Richtung „im Raume“ abhänge, ist
an sich unwahrscheinlich.


Kurz, nehmen wir einmal an, das einfache Gesetz von der konstanten
Lichtgeschwindigkeit c (im Vakuum) werde von dem Schulkinde
mit Recht geglaubt! Wer möchte denken, daß dieses simple Gesetz
den gewissenhaft überlegenden Physiker in die größten gedanklichen
Schwierigkeiten gestürzt hat? Diese Schwierigkeiten ergeben sich wie
folgt.


Natürlich müssen wir den Vorgang der Lichtausbreitung wie jeden
anderen auf einen starren Bezugskörper (Koordinatensystem) beziehen.
Als solchen wählen wir wieder unseren Bahndamm. Die Luft über
demselben wollen wir uns weggepumpt denken. Längs des Bahndammes
werde ein Lichtstrahl gesandt, dessen Scheitel sich nach dem
vorigen mit der Geschwindigkeit c relativ zum Bahndamme
fortpflanzt. Auf dem Geleise fahre wieder unser Eisenbahnwagen mit
der Geschwindigkeit v, und zwar in derselben Richtung, in der
sich der Lichtstrahl fortpflanzt, aber natürlich viel langsamer.
Wir fragen nach der Fortpflanzungsgeschwindigkeit des Lichtstrahles
relativ zum Wagen. Es ist leicht ersichtlich, daß hier die Betrachtung
des vorigen Paragraphen Anwendung finden kann; denn der relativ zum
Eisenbahnwagen laufende Mann spielt die Rolle des Lichtstrahles.
Statt dessen Geschwindigkeit W gegen den Bahndamm tritt hier
die Lichtgeschwindigkeit gegen diesen; w ist die gesuchte
Geschwindigkeit des Lichtes gegen den Wagen, für welche also gilt:


w = c − v.


Die Fortpflanzungsgeschwindigkeit des Lichtstrahles relativ zum Wagen
ergibt sich also als kleiner als c.


Dies Ergebnis verstößt aber gegen das im § 5 dargelegte
Relativitätsprinzip. Das Gesetz der Lichtausbreitung im Vakuum müßte
nämlich nach dem Relativitätsprinzip wie jedes andere allgemeine
Naturgesetz für den Eisenbahnwagen als Bezugskörper gleich lauten
wie für das Geleise als Bezugskörper. Das erscheint aber nach unserer
Betrachtung unmöglich. Wenn sich jeder Lichtstrahl in bezug auf den
Damm mit der Geschwindigkeit c fortpflanzt, so scheint eben
deshalb das Lichtausbreitungsgesetz in bezug auf den Wagen ein anderes
sein zu müssen — im Widerspruch mit dem Relativitätsprinzip.


Im Hinblick auf dies Dilemma erscheint es unerläßlich, entweder das
Relativitätsprinzip oder das einfache Gesetz der Fortpflanzung des
Lichtes im Vakuum aufzugeben. Gewiß wird der Leser, der den bisherigen
Ausführungen aufmerksam gefolgt ist, erwarten, daß das Prinzip der
Relativität, das sich durch seine Natürlichkeit und Einfachheit
dem Geiste als fast unabweislich empfiehlt, aufrecht zu erhalten
sei, daß aber das Gesetz der Lichtausbreitung im Vakuum durch ein
komplizierteres, mit dem Relativitätsprinzip vereinbares Gesetz zu
ersetzen sei. Die Entwickelung der theoretischen Physik zeigte aber,
daß dieser Weg nicht gangbar ist. Die bahnbrechenden theoretischen
Forschungen von H. A. Lorentz über die elektrodynamischen
und optischen Vorgänge in bewegten Körpern zeigten nämlich, daß die
Erfahrungen in diesen Gebieten mit zwingender Notwendigkeit zu einer
Theorie der elektromagnetischen Vorgänge führen, welche das Gesetz
der Konstanz der Lichtgeschwindigkeit im Vakuum zur unabweisbaren
Konsequenz hat. Deshalb waren die führenden Theoretiker eher geneigt,
das Relativitätsprinzip fallen zu lassen, trotzdem sich keine einzige
Erfahrungstatsache auffinden ließ, welche diesem Prinzip widersprochen
hätte.


Hier setzte die Relativitätstheorie ein. Durch eine Analyse der
physikalischen Begriffe von Zeit und Raum zeigte sich, daß in
Wahrheit eine Un­vereinbar­keit des Rela­tivitäts­prin­zips mit dem
Aus­breitungs­gesetz des Lichtes gar nicht vorhanden sei, daß man
vielmehr durch systematisches Festhalten an diesen beiden Gesetzen zu
einer logisch einwandfreien Theorie gelange. Diese Theorie, welche wir
zum Unterschiede von ihrer später zu besprechenden Erweiterung als
„spezielle Relativitätstheorie“ bezeichnen, soll im folgenden in ihren
Grundgedanken dargestellt werden.








  § 8. Über den Zeitbegriff in der Physik.






An zwei weit voneinander entfernten Stellen A und B
unseres Bahndammes hat der Blitz ins Geleise eingeschlagen. Ich füge
die Behauptung hinzu, diese beiden Schläge seien gleichzeitig
erfolgt. Wenn ich dich nun frage, lieber Leser, ob diese Aussage einen
Sinn habe, so wirst du mir mit einem überzeugten „Ja“ antworten. Wenn
ich aber jetzt in dich dringe mit der Bitte, mir den Sinn der Aussage
genauer zu erklären, merkst du nach einiger Überlegung, daß die Antwort
auf diese Frage nicht so einfach ist, wie es auf den ersten Blick
scheint.


Nach einiger Zeit wird dir vielleicht folgende Antwort in den Sinn
kommen: „Die Bedeutung der Aussage ist an und für sich klar und bedarf
keiner weiteren Erläuterung; einiges Nachdenken müßte ich allerdings
aufwenden, wenn ich den Auftrag erhielte, durch Beobachtungen zu
ermitteln, ob im konkreten Falle die beiden Ereignisse gleichzeitig
stattfanden oder nicht.“ Mit dieser Antwort kann ich mich aber aus
folgendem Grunde nicht zufrieden geben. Gesetzt, ein geschickter
Meteorologe hätte durch scharfsinnige Überlegungen herausgefunden, daß
es an den Orten A und B immer gleichzeitig einschlagen
müsse, dann entsteht die Aufgabe, nachzuprüfen, ob dieses theoretische
Resultat der Wirklichkeit entspricht oder nicht. Analog ist es bei
allen physikalischen Aussagen, bei denen der Begriff „gleichzeitig“
eine Rolle spielt. Der Begriff existiert für den Physiker erst dann,
wenn die Möglichkeit gegeben ist, im konkreten Falle herauszufinden,
ob der Begriff zutrifft oder nicht. Es bedarf also einer solchen
Definition der Gleichzeitigkeit, daß diese Definition die Methode an
die Hand gibt, nach welcher im vorliegenden Falle aus Experimenten
entschieden werden kann, ob beide Blitzschläge gleichzeitig erfolgt
sind oder nicht. Solange diese Forderung nicht erfüllt ist, gebe ich
mich als Physiker (allerdings auch als Nichtphysiker!) einer Täuschung
hin, wenn ich glaube, mit der Aussage der Gleichzeitigkeit einen Sinn
verbinden zu können. (Bevor du mir dies mit Überzeugung zugegeben hast,
lieber Leser, lies nicht weiter.)


Nach einiger Zeit des Nachdenkens machst du nun folgenden Vorschlag
für das Konstatieren der Gleichzeitigkeit. Die Verbindungsstrecke
AB werde dem Geleise nach ausgemessen und in die Mitte M
der Strecke ein Beobachter gestellt, der mit einer Einrichtung versehen
ist (etwa zwei um 90° gegeneinander geneigte Spiegel), die ihm eine
gleichzeitige optische Fixierung beider Orte A und B
erlaubt. Nimmt dieser die beiden Blitzschläge gleichzeitig wahr, so
sind sie gleichzeitig.


Ich bin mit diesem Vorschlag sehr zufrieden und halte die Sache dennoch
nicht für ganz geklärt, weil ich mich zu folgendem Einwand gedrängt
fühle: „Deine Definition wäre unbedingt richtig, wenn ich schon wüßte,
daß das Licht, welches dem Beobachter in M die Wahrnehmung der
Blitzschläge vermittelt, sich mit der gleichen Geschwindigkeit auf der
Strecke A­⟶­M wie auf der Strecke B­⟶­M
fortpflanze. Eine Prüfung dieser Voraussetzung wäre aber nur dann
möglich, wenn man über die Mittel der Zeitmessung bereits verfügte. Man
scheint sich also hier in einem logischen Zirkel zu bewegen.“


Nach einiger weiterer Überlegung wirfst du mir aber mit Recht einen
etwas verächtlichen Blick zu und erklärst mir: „Ich halte meine
Definition von vorhin trotzdem aufrecht, da sie in Wahrheit gar nichts
über das Licht voraussetzt. An die Definition der Gleichzeitigkeit ist
nur die eine Forderung zu stellen, daß sie in jedem realen Falle
eine empirische Entscheidung an die Hand gibt über das Zutreffen oder
Nichtzutreffen des zu definierenden Begriffs. Daß meine Definition dies
leistet, ist unbestreitbar. Daß das Licht zum Durchlaufen des Weges
A­⟶­M und zum Durchlaufen der Strecke B­⟶­M
dieselbe Zeit brauche, ist in Wahrheit keine Voraussetzung oder
Hypothese über die physikalische Natur des Lichtes, sondern eine
Festsetzung, die ich nach freiem Ermessen treffen kann, um zu
einer Definition der Gleichzeitigkeit zu gelangen.“





Es ist klar, daß diese Definition benutzt werden kann, um der
Aussage der Gleichzeitigkeit nicht nur zweier Ereignisse,
sondern beliebig vieler Ereignisse einen exakten Sinn zu geben,
wie die Ereignisorte relativ zum Bezugskörper (hier dem Bahndamm)
gelagert sein mögen⁠[6]. Damit gelangt man auch zu einer Definition
der „Zeit“ in der Physik. Man denke sich nämlich in den Punkten
A, B, C des Geleises (Koordinatensystems) Uhren
von gleicher Beschaffenheit aufgestellt und derart gerichtet, daß
deren Zeigerstellungen gleichzeitig (im obigen Sinne) dieselben sind.
Dann versteht man unter der „Zeit“ eines Ereignisses die Zeitangabe
(Zeigerstellung) derjenigen dieser Uhren, welche dem Ereignis
(räumlich) unmittelbar benachbart ist. Auf diese Weise wird jedem
Ereignis ein Zeitwert zugeordnet, der sich prinzipiell beobachten läßt.


Diese Festsetzung enthält noch eine physikalische Hypothese, an
deren Zutreffen man ohne empirische Gründe kaum zweifeln wird. Es
ist nämlich angenommen, daß alle diese Uhren „gleich rasch“ gehen,
wenn sie von gleicher Beschaffenheit sind. Exakt formuliert: Wenn
zwei an verschiedenen Stellen des Bezugskörpers ruhend angeordnete
Uhren so eingestellt werden, daß eine Zeigerstellung der einen
mit derselben Zeigerstellung der anderen gleichzeitig
(im obigen Sinne) ist, so sind gleiche Zeigerstellungen überhaupt
gleichzeitig (im Sinne obiger Definition).





  §9. Die Relativität der Gleichzeitigkeit.






Bisher haben wir alle Betrachtungen auf einen bestimmten Bezugskörper
bezogen, den wir als „Bahndamm“ bezeichnet haben. Es fahre nun auf
dem Geleise ein sehr langer Zug mit der konstanten Geschwindigkeit
v in der in Fig. 1 angegebenen Richtung. Menschen, die in diesem
Zuge fahren, werden mit Vorteil den Zug als starren Bezugskörper
(Koordinatensystem) verwenden; sie beziehen alle Ereignisse auf den
Zug. Jedes Ereignis, welches längs des Geleises stattfindet, findet
dann auch an einem bestimmten Punkte des Zuges statt. Auch die
Definition der Gleichzeitigkeit läßt sich in bezug auf den Zug in genau
derselben Weise geben, wie in bezug auf den Bahndamm. Es entsteht aber
nun naturgemäß folgende Frage:


Sind zwei Ereignisse (z. B. die beiden Blitzschläge A und
B), welche in bezug auf den Bahndamm gleichzeitig sind,
auch in bezug auf den Zug gleichzeitig? Wir werden sogleich
zeigen, daß die Antwort verneinend lauten muß.



  
      Fig. 1.
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Wenn wir sagen, daß die Blitzschläge A und B in
bezug auf den Bahndamm gleichzeitig sind, so bedeutet dies: die
von den Blitzorten A und B ausgehenden Lichtstrahlen
begegnen sich in dem Mittelpunkte M der Fahrdammstrecke
A–B. Den Ereignissen A und B entsprechen
aber auch Stellen A und B auf dem Zuge. Es sei M′
der Mittelpunkt der Strecke A–B des fahrenden Zuges.
Dieser Punkt M′ fällt zwar im Augenblick der Blitzschläge⁠[7] mit
dem Punkte M zusammen, bewegt sich aber in der Zeichnung mit der
Geschwindigkeit v des Zuges nach rechts. Würde ein bei M′
im Zuge sitzender Beobachter diese Geschwindigkeit nicht besitzen,
so würde er dauernd in M bleiben, und es würden ihn dann die
von den Blitzschlägen A und B ausgehenden Lichtstrahlen
gleichzeitig erreichen, d. h., diese beiden Strahlen würden sich
gerade bei ihm begegnen. In Wahrheit aber eilt er (vom Bahndamm aus
beurteilt) dem von B herkommenden Lichtstrahl entgegen, während
er dem von A herkommenden Lichtstrahl vorauseilt. Der Beobachter
wird also den von B ausgehenden Lichtstrahl früher sehen, als
den von A ausgehenden. Die Beobachter, welche den Eisenbahnzug
als Bezugskörper benutzen, müssen also zu dem Ergebnis kommen, der
Blitzschlag B habe früher stattgefunden als der Blitzschlag
A. Wir kommen also zu dem wichtigen Ergebnis:


Ereignisse, welche in bezug auf den Bahndamm gleichzeitig sind, sind
in bezug auf den Zug nicht gleichzeitig und umgekehrt (Relativität der
Gleichzeitigkeit). Jeder Bezugskörper (Koordinatensystem) hat seine
besondere Zeit; eine Zeitangabe hat nur dann einen Sinn, wenn der
Bezugskörper angegeben ist, auf den sich die Zeitangabe bezieht.


Die Physik hat nun vor der Relativitätstheorie stets stillschweigend
angenommen, daß die Bedeutung der Zeitangaben eine absolute, d. h.
vom Bewegungszustande des Bezugskörpers unabhängige, sei. Daß diese
Annahme aber mit der nächstliegenden Definition der Gleichzeitigkeit
unvereinbar ist, haben wir soeben gesehen; läßt man sie fallen,
so verschwindet der in § 7 entwickelte Konflikt des Gesetzes der
Vakuum-Lichtausbreitung mit dem Relativitätsprinzip.


Zu jenem Konflikt führt nämlich die Überlegung des § 6, die nun nicht
mehr aufrecht zu erhalten ist. Wir schlossen dort, daß der Mann
im Wagen, der relativ zu diesem die Strecke w in einer
Sekunde durchläuft, diese Strecke auch relativ zum Bahndamm
in einer Sekunde durchläuft. Da nun aber die Zeit, welche ein
bestimmter Vorgang mit Bezug auf den Wagen braucht, nach den soeben
angestellten Überlegungen nicht gleich gesetzt werden darf der vom
Bahndamm als Bezugskörper aus beurteilten Dauer desselben Vorganges, so
kann nicht behauptet werden, daß der Mann durch sein Gehen relativ zum
Geleise die Strecke w in einer Zeit zurücklegt, welche — vom
Bahndamm aus beurteilt — gleich einer Sekunde ist.


Die Überlegung des § 6 ruht übrigens noch auf einer zweiten
Voraussetzung, die im Lichte einer strengen Überlegung als willkürlich
erscheint, wenn sie auch vor der Aufstellung der Relativitätstheorie
stets (stillschweigend) gemacht wurde.





  § 10. Über die Relativität des Begriffes der räumlichen Entfernung.






Wir betrachten zwei bestimmte Stellen des mit der Geschwindigkeit
v längs des Bahndammes dahinfahrenden Zuges⁠[8] und fragen
nach deren Entfernung. Wir wissen bereits, daß man zur Messung einer
Entfernung eines Bezugskörpers bedarf, mit Bezug auf welchen die
Entfernung ausgemessen wird. Am einfachsten ist es, den Zug selbst als
Bezugskörper (Koordinatensystem) zu verwenden. Ein im Zuge fahrender
Beobachter mißt den Abstand, indem er in gerader Linie seinen Maßstab
etwa längs der Wagenböden so oft aufträgt, bis er von dem einen
markierten Punkte zum anderen gelangt. Die Zahl, welche angibt, wie oft
der Stab angelegt werden muß, ist dann die gesuchte Entfernung.


Anders ist es, wenn die Entfernung vom Geleise aus beurteilt werden
soll. Da bietet sich folgende Methode. Nennt man A′ und
B′ die beiden Punkte des Zuges, um deren Entfernung es sich
handelt, so sind diese beiden Punkte mit der Geschwindigkeit v
längs des Bahndammes bewegt. Wir fragen nun zuerst nach den Punkten
A bzw. B des Bahndammes, bei welchen die beiden Punkte
A′ und B′ zu einer bestimmten Zeit t — vom
Bahndamm aus beurteilt — gerade vorbeilaufen. Diese Punkte A
und B des Bahndammes sind vermöge der in § 8 gegebenen
Zeitdefinition ermittelbar. Hierauf wird der Abstand dieser Punkte
A und B durch wiederholtes Abtragen des Meterstabes längs
des Bahndammes gemessen.


Es ist a priori durchaus nicht ausgemacht, daß diese letztere Messung
dasselbe Ergebnis zeitigen müsse wie die erstere. Vom Bahndamm aus
gemessen kann also die Länge des Zuges eine andere sein als vom Zuge
selbst aus gemessen. Dieser Umstand ergibt einen zweiten gegen die
scheinbar so einleuchtende Betrachtung des § 6 zu erhebenden Einwand.
Legt nämlich der Mann im Wagen in einer Zeiteinheit — vom Zuge aus
gemessen — die Strecke w zurück, so braucht diese Strecke
— vom Bahndamm aus gemessen — nicht auch gleich w zu
sein.





  § 11. Die Lorentz-Transformation.






Die Überlegungen der letzten drei Paragraphen zeigen uns, daß die
scheinbare Unvereinbarkeit des Ausbreitungsgesetzes des Lichtes mit dem
Relativitätsprinzip in § 7 durch eine Betrachtung abgeleitet worden
ist, welche der klassischen Mechanik zwei durch nichts gerechtfertigte
Hypothesen entlehnte; diese Hypothesen lauten:



1. Der Zeitabstand zwischen zwei Ereignissen ist vom
Bewegungszustande des Bezugskörpers unabhängig.


2. Der räumliche Abstand zwischen zwei Punkten eines starren Körpers
ist vom Bewegungszustande des Bezugskörpers unabhängig.





Läßt man nun diese Hypothesen fallen, so verschwindet das Dilemma des §
7, weil das in § 6 abgeleitete Additionstheorem der Geschwindigkeiten
ungültig wird. Es taucht vor uns die Möglichkeit auf, daß das Gesetz
der Lichtausbreitung im Vakuum mit dem Relativitätsprinzip vereinbar
sein könnte. Wir kommen zu der Frage: Wie ist die Überlegung des §
6 zu modifizieren, um den scheinbaren Widerspruch zwischen diesen
beiden fundamentalen Ergebnissen der Erfahrung zu beseitigen? Diese
Frage führt auf eine allgemeine. In der Überlegung des § 6 kommen Orte
und Zeiten in bezug auf den Zug und in bezug auf den Bahndamm vor.
Wie findet man Ort und Zeit eines Ereignisses in bezug auf den Zug,
wenn Ort und Zeit des Ereignisses in bezug auf den Bahndamm bekannt
sind? Gibt es eine solche denkbare Antwort auf diese Frage, daß das
Gesetz der Lichtausbreitung im Vakuum dem Relativitätsprinzip nicht
widerspricht? Anders ausgedrückt: Ist eine Relation zwischen Ort und
Zeit der einzelnen Ereignisse in bezug auf beide Bezugskörper denkbar,
derart, daß jeder Lichtstrahl relativ zum Bahndamm und relativ
zum Zug die Ausbreitungsgeschwindigkeit c besitzt? Diese
Frage führt zu einer bejahenden, ganz bestimmten Antwort, zu einem
ganz bestimmten Verwandlungsgesetz für die Raum-Zeit-Größen eines
Ereignisses beim Übergang von einem Bezugskörper zu einem anderen.


Bevor wir hierauf eingehen, sei folgende Zwischenüberlegung
eingeschaltet. Wir haben bis jetzt stets nur Ereignisse betrachtet, die
sich längs des Bahndammes abspielten, der mathematisch die Funktion
einer geraden Linie zu übernehmen hatte. Man kann sich aber in der
in § 2 angegebenen Weise diesen Bezugskörper seitlich und nach oben
durch ein Stabgerüst derart fortgesetzt denken, daß ein irgendwo
stattfindendes Ereignis relativ zu diesem Stabgerüst lokalisiert
werden kann. Analog kann man sich den mit der Geschwindigkeit
v fahrenden Zug durch den ganzen Raum fortgesetzt denken,
so daß jedes noch so ferne Ereignis auch in bezug auf das zweite
Gerüst lokalisiert werden könnte. Davon, daß diese Gerüste einander
in Wahrheit wegen der Undurchdringlichkeit der festen Körper immer
wieder zerstören müßten, können wir absehen, ohne in prinzipielle
Fehler zu geraten. In jedem solchen Gerüst denken wir uns drei
aufeinander senkrechte Wände ausgezeichnet und als „Koordinatenebenen“
bezeichnet („Koordinatensystem“). Dem Bahndamm entspricht dann ein
Koordinatensystem K, dem Zug ein Koordinatensystem K′.
Ein irgendwo stattfindendes Ereignis wird bezüglich K räumlich
fixiert durch die drei Lote x, y, z auf die
Koordinatenebenen und zeitlich fixiert durch einen Zeitwert t.
Dasselbe Ereignis wird bezüglich K′ raum-zeitlich
fixiert durch entsprechende Werte x′, y′, z′,
t′, welche mit x, y, z, t natürlich
nicht übereinstimmen. Wie diese Größen als Ergebnisse physikalischer
Messungen aufzufassen sind, wurde früher ausführlich dargelegt.



  
      Fig. 2.
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Unser Problem lautet in exakter Formulierung offenbar folgendermaßen.
Wie groß sind die Werte x′, y′, z′, t′
eines Ereignisses in bezug auf K′, wenn die Größen x,
y, z, t desselben Ereignisses in bezug auf
K gegeben sind? Die Beziehungen müssen so gewählt werden, daß
dem Gesetz der Vakuumfortpflanzung des Lichtes für einen und denselben
Lichtstrahl (und zwar für jeden) in bezug auf K und
K′ Genüge geleistet wird. Dies Problem wird für die in der
Zeichnung (Fig. 2) angegebene relative räumliche Orientierung der
Koordinatensysteme gelöst durch die Gleichungen:


x′ =
x − v t
√1 −
v2c2


y′ = y


z′ = z


t′ =
t − vc2 x
√1 −
v2c2


welches Gleichungssystem mit dem Namen „Lorentz-Transformation“
bezeichnet wird.


Würden wir aber an Stelle des Lichtausbreitungsgesetzes die
stillschweigenden Voraussetzungen der alten Mechanik von dem absoluten
Charakter der Zeiten und Längen zugrunde gelegt haben, so würden wir
statt dieser Transformationsgleichungen zu den Gleichungen


x′ = x - v t


y′ = y


z′ = z


t′ = t





gelangt sein, welches System man oft als „Galilei-Transformation“
bezeichnet. Die Galilei-Transformation geht aus der
Lorentz-Transformation dadurch hervor, daß man in letzterer die
Lichtgeschwindigkeit c gleich einem unendlich großen Werte setzt.


Daß gemäß der Lorentz-Transformation das Gesetz der Lichtausbreitung im
Vakuum sowohl für den Bezugskörper K wie für den Bezugskörper
K′ erfüllt sein kann, sieht man bequem an folgendem Beispiel. Es
werde ein Lichtsignal längs der positiven x-Achse gesandt, und
es pflanze sich die Lichterregung gemäß der Gleichung


x = c t,


also mit der Geschwindigkeit c fort. Gemäß den Gleichungen
der Lorentz-Transformation bedingt diese einfache Beziehung zwischen
x und t eine Beziehung zwischen x′ und
t′. In der Tat liefert die erste und vierte Gleichung der
Lorentz-Transformation, wenn man in dieselben für x den Wert
ct einsetzt:


x′ =
(c − v) t
√1 −
v2c2


t′ =
(1 − vc ) t
√1 −
v2c2


aus welchen dann durch Division unmittelbar


x′ = c t′


folgt. Nach dieser Gleichung erfolgt die Lichterregung, wenn sie
auf das System K′ bezogen wird. Es zeigt sich also, daß die
Ausbreitungsgeschwindigkeit auch relativ zum Bezugskörper K′
gleich c ist. Analog ist es mit Lichtstrahlen, die sich in
beliebiger anderer Richtung fortpflanzen. Dies ist natürlich nicht zu
verwundern, denn die Gleichungen der Lorentz-Transformation sind ja
nach diesem Gesichtspunkte abgeleitet.








  § 12. Das Verhalten bewegter Stäbe und Uhren.






Ich lege einen Meterstab in die x′-Achse von K′ derart,
daß sein Anfang in den Punkt x′ = 0, sein Ende in den Punkt
x′ = 1 fällt. Welches ist die Länge des Meterstabes relativ zum
System K? Um das zu erfahren, brauchen wir nur zu fragen, wo
Stabanfang und Stabende relativ zu K liegen zu einer bestimmten
Zeit t des Systems K. Man findet für diese beiden Punkte
aus der ersten Gleichung der Lorentz-Transformation:


x(Stabanfang) = 0 ·
√1 − v2c2


x(Stabende) = 1 ·
√1 − v2c2


welche beiden Punkte den Abstand √1 −
v2c2 haben. Relativ zu
K ist aber der Meterstab mit der Geschwindigkeit v
bewegt. Es folgt also, daß die Länge eines mit der Geschwindigkeit
v in seiner Längsrichtung bewegten starren Meterstabes
√1 − v2c2 Meter beträgt. Der bewegte starre Stab ist also
kürzer als derselbe Stab, wenn er im Zustande der Ruhe ist, und zwar
um so kürzer, je rascher er bewegt ist. Für die Geschwindigkeit
v = c wäre √1 −
v2c2 = 0, für noch größere
Geschwindigkeiten wird die Wurzel imaginär. Wir schließen daraus, daß
in der Relativitätstheorie die Geschwindigkeit c die Rolle
einer Grenzgeschwindigkeit spielt, die durch keinen wirklichen Körper
erreicht oder gar überschritten werden könnte.


Diese Rolle der Geschwindigkeit c als einer Grenzgeschwindigkeit
folgt übrigens bereits aus den Gleichungen der Lorentz-Transformation
selbst. Denn diese werden sinnlos, wenn v größer als c
gewählt wird.


Hätten wir umgekehrt einen Meterstab betrachtet, der in der
x-Achse relativ zu K ruht, so hätten wir gefunden, daß
er, von K′ aus beurteilt, die Länge
√1 −
v2c2 hat;
dies liegt ganz im Sinne des Relativitätsprinzips, welches unseren
Betrachtungen zugrunde gelegt ist.


Daß wir aus den Transformationsgleichungen etwas über das physikalische
Verhalten von Maßstäben und Uhren erfahren müssen, liegt a priori
auf der Hand. Denn die Größen x, y, z, t
sind ja nichts anderes als mit Maßstäben und Uhren zu gewinnende
Meßresultate. Hätten wir die Galilei-Transformation zugrunde gelegt, so
hätten wir eine Stabverkürzung infolge der Bewegung nicht erhalten.


Wir betrachten nun eine Sekundenuhr, die dauernd im Anfangspunkte
(x′ = 0) von K′ ruht. t′ = 0 und t′ =
1 seien zwei aufeinander folgende Schläge dieser Uhr. Für diese
beiden Schläge ergeben die erste und vierte der Gleichungen der
Lorentz-Transformation:


t = 0


und


t =
1
√1 −
v2c2


Von K aus beurteilt ist die Uhr mit der Geschwindigkeit v
bewegt; von diesem Bezugskörper aus beurteilt vergeht zwischen
zweien ihrer Schläge nicht eine Sekunde, sondern 1
√1 −
v2c2
Sekunden, also eine etwas größere Zeit. Die Uhr geht infolge
ihrer Bewegung langsamer als im Zustande der Ruhe. Auch hier
spielt die Geschwindigkeit c die Rolle einer unerreichbaren
Grenzgeschwindigkeit.




§ 13. Additionstheorem der Geschwindigkeiten
Fizeauscher Versuch.





Da wir Uhren und Maßstäbe in praxi nur mit Geschwindigkeiten bewegen
können, die klein sind gegen die Lichtgeschwindigkeit c, so
werden die Ergebnisse des vorigen Paragraphen kaum direkt mit der
Wirklichkeit verglichen werden können. Da dieselben andererseits dem
Leser recht sonderbar vorkommen werden, so will ich nun aus der Theorie
eine andere Konsequenz ziehen, die aus dem bisher Dargelegten leicht
abzuleiten ist, und die durch das Experiment glänzend bestätigt wird.


In § 6 haben wir das Additionstheorem für gleich gerichtete
Geschwindigkeiten abgeleitet, so, wie es sich aus den Hypothesen
der klassischen Mechanik ergibt. Dasselbe läßt sich auch leicht
aus der Galilei-Transformation (§ 11) folgern. Statt des gehenden
Mannes im Wagen führen wir einen Punkt ein, der sich relativ zum
Koordinatensystem K′ nach der Gleichung


x′ = w t′


bewegt. Aus der ersten und vierten Gleichung der Galilei-Transformation
kann man x′ und t′ durch x und t ausdrücken
und erhält so:


x = (v + w) t.


Diese Gleichung drückt nichts anderes aus als das Bewegungsgesetz
des Punktes gegenüber dem System K (des Mannes gegenüber dem
Bahndamm), welche Geschwindigkeit wir mit W bezeichnen, so daß
man, wie in § 6, erhält:


W= v + w
(A)


Wir können aber diese Betrachtung ebenso gut unter Zugrundelegung der
Relativitätstheorie durchführen. Man hat dann in der Gleichung


x′ = w t′


x′ und t′ durch x und t auszudrücken
unter Verwendung der ersten und vierten Gleichung der
Lorentz-Transformation. Man erhält dann statt der Gleichung (A)
die Gleichung:


W =
v + w1 +
v wc2 ,
(B)





welche dem Additionstheorem gleichgerichteter Geschwindigkeiten nach
der Relativitätstheorie entspricht. Die Frage ist nun, welches von
diesen beiden Theoremen der Erfahrung gegenüber standhält. Hierüber
belehrt uns ein höchst wichtiges Experiment, welches der geniale
Physiker Fizeau vor mehr als einem halben Jahrhundert ausführte,
und das seitdem von einigen der besten Experimentalphysiker wiederholt
wurde, so daß das Resultat unbezweifelbar ist. Das Experiment behandelt
folgende Frage. In einer ruhenden Flüssigkeit pflanze sich das Licht
mit einer bestimmten Geschwindigkeit w fort. Wie rasch pflanzt
es sich in der Röhre R der Figur



  [image: Fortpflanzung des Lichts in einer Röhre]



in der Pfeilrichtung fort, wenn diese von der vorhin genannten
Flüssigkeit mit der Geschwindigkeit v durchströmt ist?


Wir werden im Sinne des Relativitätsprinzips jedenfalls vorauszusetzen
haben, daß relativ zur Flüssigkeit die Lichtausbreitung immer
mit derselben Geschwindigkeit w erfolgt, mag die Flüssigkeit
relativ zu anderen Körpern bewegt sein oder nicht. Es ist also
die Geschwindigkeit des Lichtes relativ zur Flüssigkeit und die
Geschwindigkeit der letzteren relativ zur Röhre bekannt, gesucht die
Geschwindigkeit des Lichtes relativ zur Röhre.


Es ist klar, daß hier wieder die Aufgabe des § 6 vorliegt. Die Röhre
spielt die Rolle des Bahndammes bzw. des Koordinatensystems K,
die Flüssigkeit die Rolle des Wagens bzw. des Koordinatensystems
K′, das Licht endlich die Rolle des im Wagen laufenden Mannes
bzw. des bewegten Punktes in diesem Paragraphen. Bezeichnet man also
mit W die Geschwindigkeit des Lichtes relativ zur Röhre, so
ist diese durch die Gleichung (A) bzw. (B) gegeben, je nachdem die
Galilei-Transformation oder die Lorentz-Transformation der Wirklichkeit
entspricht.





Das Experiment⁠[9] entscheidet für die aus der Relativitätstheorie
abgeleitete Gleichung (B), und zwar sehr exakt. Der Einfluß der
Strömungsgeschwindigkeit v auf die Lichtfortpflanzung wird nach
den letzten, ausgleichenden Messungen von Zeemann durch die
Formel (B) genauer als auf 1 Proz. genau dargestellt.


Es ist nun allerdings hervorzuheben, daß eine Theorie dieses
Phänomens lange vor der Aufstellung der Relativitätstheorie auf rein
elektrodynamischem Wege unter Benutzung bestimmter Hypothesen über
die elektromagnetische Struktur der Materie von H. A. Lorentz
gegeben worden ist. Dieser Umstand vermindert aber die Beweiskraft des
Versuches als experimentum crucis zugunsten der Relativitätstheorie
keineswegs. Denn die Maxwell-Lorentzsche Elektrodynamik, auf
welcher die ursprüngliche Theorie beruhte, steht in keinerlei Gegensatz
zur Relativitätstheorie. Letztere ist vielmehr aus der Elektrodynamik
herausgewachsen als verblüffend einfache Zusammenfassung und
Verallgemeinerung der früher voneinander unabhängigen Hypothesen, auf
welchen die Elektrodynamik aufgebaut war.





  § 14. Der heuristische Wert der Relativitätstheorie.






Der bisher dargelegte Gedankengang läßt sich wie folgt kurz
zusammenfassen. Die Erfahrung hat zu der Überzeugung geführt, daß
einerseits das Relativitätsprinzip (im engeren Sinne) gelte und daß
andererseits die Ausbreitungsgeschwindigkeit des Lichtes im Vakuum
gleich einer Konstanten c zu setzen sei. Durch Vereinigung
dieser beiden Postulate ergab sich das Transformationsgesetz für die
rechtwinkeligen Koordinaten x, y, z und die Zeit
t der Ereignisse, welche das Naturgeschehen zusammensetzen, und
zwar ergab sich nicht die Galilei-Transformation, sondern (abweichend
von der klassischen Mechanik) die Lorentz-Transformation.


In diesem Gedankengange spielte das Ausbreitungsgesetz des Lichtes
eine wichtige Rolle, dessen Annahme sich aus unserem tatsächlichen
Wissen rechtfertigt. Wir können aber, nachdem wir einmal im Besitz
der Lorentz-Transformation sind, diese mit dem Relativitätsprinzip
vereinigen und die Theorie in die Aussage zusammenfassen:


Jedes allgemeine Naturgesetz muß so beschaffen sein, daß es in ein
Gesetz von genau gleicher Fassung übergeht, wenn man statt der
Raum-Zeit-Variabeln x, y, z, t des
ursprünglichen Koordinatensystems K neue Raum-Zeit-Variable
x′, y′, z′, t′ eines Koordinatensystems
K′ einführt, wobei der mathematische Zusammenhang zwischen den
gestrichenen und ungestrichenen Größen durch die Lorentz-Transformation
gegeben ist. Kurz formuliert: Die allgemeinen Naturgesetze sind
kovariant bezüglich Lorentz-Transformationen.


Es ist dies eine bestimmte mathematische Bedingung, welche die
Relativitätstheorie einem Naturgesetze vorschreibt; dadurch wird
sie zu einem wertvollen heuristischen Hilfsmittel beim Aufsuchen
der allgemeinen Naturgesetze. Würde ein allgemeines Naturgesetz
aufgefunden, welches jener Bedingung nicht entspricht, so wäre
mindestens eine der beiden Grundvoraussetzungen der Theorie widerlegt.
Sehen wir nun zu, was letztere an allgemeinen Ergebnissen bisher
gezeitigt hat.





  § 15. Allgemeine Ergebnisse der Theorie.






Aus den bisherigen Darlegungen ist ersichtlich, daß die (spezielle)
Relativitätstheorie aus der Elektrodynamik und Optik herausgewachsen
ist. Auf diesen Gebieten hat sie an den Aussagen der Theorie nicht
viel geändert, aber sie hat das theoretische Gebäude, d. h. die
Ableitung der Gesetze bedeutend vereinfacht und — was noch ungleich
wichtiger ist — die Zahl der voneinander unabhängigen Hypothesen,
auf welchen die Theorie beruht, erheblich vermindert. Sie hat
der Maxwell-Lorentzschen Theorie einen solchen Grad von
Evidenz verliehen, daß diese auch dann bei den Physikern allgemein
durchgedrungen wäre, wenn das Experiment weniger überzeugend zu ihren
Gunsten gesprochen hätte.


Die klassische Mechanik bedurfte erst einer Modifikation, um mit der
Forderung der speziellen Relativitätstheorie in Einklang zu kommen.
Diese Modifikation betrifft jedoch im wesentlichen nur die Gesetze
für rasche Bewegungen, bei welchen die Geschwindigkeiten v der
Materie gegenüber der Lichtgeschwindigkeit nicht gar zu klein sind.
So rasche Bewegungen zeigt uns die Erfahrung nur an Elektronen und
Ionen; bei anderen Bewegungen sind die Abweichungen von den Gesetzen
der klassischen Mechanik zu gering, um sich praktisch bemerkbar zu
machen. Von der Bewegung der Gestirne wird erst bei der allgemeinen
Relativitätstheorie zu sprechen sein. Nach der Relativitätstheorie wird
die kinetische Energie eines materiellen Punktes von der Masse m
nicht mehr durch den bekannten Ausdruck


m v22


gegeben, sondern durch den Ausdruck:


m c2
√1 −
v2c2


Dieser Ausdruck wird unendlich, wenn sich die Geschwindigkeit
v der Lichtgeschwindigkeit c nähert. Es muß also die
Geschwindigkeit stets kleiner als c bleiben, wie große Energien
man auch auf die Beschleunigung verwenden mag. Entwickelt man den
Ausdruck für die kinetische Theorie in eine Reihe, so erhält man:


m c2 + m 
v22 + 
38 
v4 c2 + …


Das dritte dieser Glieder ist gegenüber dem zweiten, in der klassischen
Mechanik allein berücksichtigten, stets klein, wenn 
v2c2 klein
gegen 1 ist. Das erste Glied mc2 enthält die Geschwindigkeit
nicht, kommt also nicht in Betracht, wenn es sich nur um die Frage
handelt, wie die Energie eines Massenpunktes von der Geschwindigkeit
abhängt. Über seine prinzipielle Bedeutung wird nachher gesprochen
werden.


Das wichtigste Ergebnis allgemeiner Art, zu dem die spezielle
Relativitätstheorie geführt hat, betrifft den Begriff der Masse. Die
vorrelativistische Physik kennt zwei Erhaltungssätze von grundlegender
Bedeutung, nämlich den Satz von der Erhaltung der Energie und den Satz
von der Erhaltung der Masse; diese beiden Fundamentalsätze erscheinen
als ganz unabhängig voneinander. Durch die Relativitätstheorie
werden sie zu einem Satze verschmolzen. Wie dies kam, und wie diese
Verschmelzung aufzufassen ist, soll nun kurz dargelegt werden.


Das Relativitätsprinzip fordert, daß der Satz von der Erhaltung der
Energie nicht nur bezüglich eines Koordinatensystems K gelte,
sondern bezüglich eines jeden Koordinatensystems K′, das relativ
zu K sich in gleichförmiger Translationsbewegung befindet
(kurz gesagt, bezüglich jedes „Galileischen“ Koordinatensystems).
Für den Übergang zwischen zwei solchen Systemen ist im Gegensatz zur
klassischen Mechanik die Lorentz-Transformation maßgebend.


Aus diesen Prämissen in Verbindung mit den Grundgleichungen
der Maxwellschen Elektrodynamik kann man mit zwingender
Notwendigkeit durch verhältnismäßig einfache Betrachtungen folgenden
Schluß ziehen: Ein mit der Geschwindigkeit v fliegender Körper,
der in Form von Strahlung die Energie E0 aufnimmt⁠[10], ohne
hierbei seine Geschwindigkeit zu ändern, erfährt dabei eine Zunahme
seiner Energie um den Betrag:


E0
√1 −
v2c2





Die gesuchte Energie des Körpers ist also dann mit Rücksicht auf den
vorher angegebenen Ausdruck für die kinetische Energie gegeben durch:



(m + E0c2 ) c2
√1 −
v2c2


Der Körper hat also dann dieselbe Energie wie ein mit der
Geschwindigkeit v bewegter Körper von der Masse m + E0c2. Man kann also sagen: Nimmt ein Körper die Energie
E0 auf, so wächst seine träge Masse um E0c2;
die träge Masse eines Körpers ist keine Konstante, sondern nach
Maßgabe seiner Energieänderung veränderlich. Die träge Masse eines
Körpersystems kann geradezu als Maß für seine Energie angesehen werden.
Der Satz von der Erhaltung der Masse eines Systems fällt mit dem Satze
von der Erhaltung der Energie zusammen und gilt nur insoweit, als das
System keine Energie aufnimmt und abgibt. Schreibt man den Ausdruck für
eine kinetische Energie in der Form



m c2 +E0
√1 −
v2c2


so sieht man, daß die Form mc2, die uns schon vorhin auffiel,
nichts anderes ist als die Energie, welche der Körper schon besaß⁠[11],
bevor er die Energie E0 aufgenommen hatte.


Der direkte Vergleich dieses Satzes mit der Erfahrung scheitert
vorläufig daran, daß die Energieänderungen E0, welche
wir einem System erteilen können, nicht groß genug sind, um sich
als Änderung der trägen Masse des Systems bemerkbar zu machen.
E0c2 ist zu klein im Vergleich zu der Masse m, die
vor der Energieänderung vorhanden war. Auf diesem Umstande beruht es,
daß ein Satz von der Erhaltung der Masse von selbständiger Geltung mit
Erfolg aufgestellt werden konnte.


Noch eine letzte Bemerkung prinzipieller Natur. Der Erfolg der
Faraday-Maxwellschen Deutung der elektromagnetischen Fernwirkung
durch intermediäre Vorgänge mit endlicher Ausbreitungsgeschwindigkeit
brachte es mit sich, daß bei den Physikern sich die Überzeugung
Bahn brach, daß es unvermittelte, momentane Fernwirkungen vom Typus
des Newtonschen Gravitationsgesetzes nicht gebe. Nach der
Relativitätstheorie tritt an die Stelle der Momentanwirkung in die
Ferne bzw. der Fernwirkung mit unendlicher Ausbreitungsgeschwindigkeit
stets die Fernwirkung mit Lichtgeschwindigkeit. Es hängt dies zusammen
mit der prinzipiellen Rolle, welche die Geschwindigkeit c in
dieser Theorie spielt. Im zweiten Teile wird sich zeigen, in welcher
Weise dies Ergebnis in der allgemeinen Relativitätstheorie modifiziert
wird.





  § 16. Spezielle Relativitätstheorie und Erfahrung.






Die Beantwortung der Frage, inwieweit die spezielle Relativitätstheorie
durch die Erfahrung gestützt wird, ist nicht einfach zu beantworten
aus einem Grunde, der schon bei Gelegenheit des Fundamentalversuches
von Fizeau erwähnt ist. Die spezielle Relativitätstheorie ist
aus der Maxwell-Lorentzschen Theorie der elektromagnetischen
Erscheinungen auskristallisiert. Somit stützen alle Erfahrungstatsachen
die Relativitätstheorie, welche jene elektromagnetische Theorie
stützen. Ich erwähne hier als besonders wichtig, daß die
Relativitätstheorie in überaus einfacher Weise in Übereinstimmung
mit der Erfahrung die Einflüsse abzuleiten gestattet, welche das
von den Fixsternen zu uns gesandte Licht durch die Relativbewegung
der Erde gegen jene Fixsterne erfährt. Es ist dies die jährliche
Wanderung des scheinbaren Ortes der Fixsterne infolge der Erdbewegung
um die Sonne (Aberration) und der Einfluß der Radialkomponente
der Relativbewegungen der Fixsterne gegen die Erde auf die Farbe
des zu uns gelangenden Lichtes; der letztere Einfluß äußert sich
in einer kleinen Verschiebung der Spektrallinien des von einem
Fixstern zu uns gelangenden Lichtes gegenüber der spektralen Lage der
gleichen, mit einer irdischen Lichtquelle erzeugten Spektrallinie
(Dopplersches Prinzip). Die experimentellen Argumente zugunsten
der Maxwell-Lorentzschen Theorie, welche alle zugleich
Argumente zugunsten der Relativitätstheorie sind, sind zu zahlreich,
um hier dargelegt zu werden. Sie engen tatsächlich die theoretischen
Möglichkeiten derart ein, daß sich keine andere Theorie als die
Maxwell-Lorentzsche der Erfahrung gegenüber hat behaupten können.


Zwei Klassen von bisher ermittelten experimentellen Tatsachen aber
gibt es, welche die Maxwell-Lorentzsche Theorie nur durch
Hinzuziehung einer Hilfshypothese darstellen kann, die an sich — d. h.
ohne Benutzung der Relativitätstheorie — befremdlich erscheint.


Es ist bekannt, daß die Kathodenstrahlen und die von radioaktiven
Substanzen ausgesandten sogenannten β-Strahlen aus negativ elektrischen
Körperchen (Elektronen) von sehr geringer Trägheit und großer
Geschwindigkeit bestehen. Dadurch, daß man die Ablenkung dieser
Strahlungen unter dem Einfluß elektrischer und magnetischer Felder
untersucht, kann man das Bewegungsgesetz dieser Körperchen sehr genau
studieren.


Bei der theoretischen Behandlung dieser Elektronen hat man mit der
Schwierigkeit zu kämpfen, daß die Elektrodynamik allein von ihrer
Natur keine Rechenschaft zu geben vermag. Denn da elektrische
Massen eines Vorzeichens sich abstoßen, müßten die das Elektron
konstituierenden negativen elektrischen Massen unter dem Einfluß
ihrer Wechselwirkung auseinander getrieben werden, wenn nicht noch
Kräfte anderer Art zwischen ihnen wirksam wären, deren Natur uns
bisher dunkel ist. Nimmt man nun an, daß die relativen Abstände der
das Elektron konstituierenden elektrischen Massen bei den Bewegungen
des Elektrons ungeändert bleiben (starre Verbindung im Sinne der
klassischen Mechanik), so gelangt man zu einem Bewegungsgesetz des
Elektrons, welches mit der Erfahrung nicht übereinstimmt. H. A.
Lorentz hat als Erster, geführt durch rein formale Gesichtspunkte,
die Hypothese eingeführt, daß der Körper des Elektrons durch
die Bewegung eine Kontraktion in der Bewegungsrichtung erfahre,
proportional dem Ausdruck √1 −
v2c2. Diese Hypothese, welche
sich elektrodynamisch durch nichts rechtfertigen läßt, liefert dann
dasjenige Bewegungsgesetz, welches die Erfahrung mit großer Präzision
in den letzten Jahren bestätigt hat.


Die Relativitätstheorie liefert dasselbe Bewegungsgesetz, ohne daß
sie irgendeiner speziellen Hypothese über den Bau und das Verhalten
des Elektrons bedürfte. Analog liegen die Dinge, wie wir in § 13
gesehen haben, bei dem Versuch von Fizeau, dessen Ergebnis
die Relativitätstheorie lieferte, ohne daß Hypothesen über die
physikalische Natur der Flüssigkeit gemacht werden mußten.


Die zweite Klasse von Tatsachen, auf die hier hingewiesen ist, bezieht
sich auf die Frage, ob bei Versuchen auf der Erde deren Bewegung im
Weltenraume sich bemerkbar mache. Es wurde schon in § 5 bemerkt, daß
alle derartigen Bemühungen ein negatives Resultat lieferten. Vor der
Aufstellung der Relativitätstheorie hatte es die Wissenschaft schwer,
sich mit diesem negativen Befunde auseinanderzusetzen; die Sachlage war
nämlich folgende. Die überkommenen Vorurteile über Zeit und Raum ließen
keinen Zweifel darüber aufkommen, daß die Galilei-Transformation für
den Übergang von einem Bezugskörper zu einem anderen maßgebend sei.
Angenommen nun, die Maxwell-Lorentzschen Gleichungen gelten für
einen Bezugskörper K, so findet man, daß sie nicht gelten für
einen relativ zu K gleichförmig bewegten Bezugskörper K′,
wenn man annimmt, daß zwischen den Koordinaten von K und
K′ die Beziehungen der Galilei-Transformation bestehen. Dadurch
scheint es, daß von allen Galileischen Koordinatensystemen eines
(K) von bestimmtem Bewegungszustande physikalisch ausgezeichnet
sei. Physikalisch interpretierte man dies Ergebnis dahin, daß man
K als relativ zu einem hypothetischen Lichtäther ruhend ansah.
Dagegen sollten alle gegen K bewegten Koordinatensysteme
K′ gegen den Äther bewegt sein. Dieser Bewegung von K′
gegen den Äther („Ätherwind“ relativ zu K′) schrieb man die
komplizierteren Gesetze zu, welche relativ zu K′ gelten sollten.
Auch relativ zur Erde mußte folgerichtig ein solcher Ätherwind
angenommen werden, und das Bestreben der Physiker war lange darauf
gerichtet, diesen nachzuweisen.


Hierfür hatte Michelson einen Weg gefunden, der nicht
fehlschlagen zu können schien. Man denke sich an einem starren Körper
zwei Spiegel angeordnet, welche einander die reflektierende Seite
zukehren. Ein Lichtstrahl braucht eine ganz bestimmte Zeit T,
um von einem Spiegel zum anderen und wieder zurück zu gelangen, falls
dies ganze System gegen den Lichtäther ruht. Man findet für diesen
Vorgang aber eine etwas andere Zeit T′, wenn der Körper nebst
Spiegeln relativ zum Äther bewegt ist. Ja noch mehr! Die Rechnung
ergibt, daß diese Zeit T′ bei gegebener Geschwindigkeit v
gegen den Äther eine andere sei, wenn der Körper senkrecht zu den
Spiegelebenen bewegt ist, als wenn er parallel zu den Spiegelebenen
bewegt ist. So winzig die so berechnete Differenz zwischen diesen
beiden Zeitdauern auch sich ergab, Michelson und Morley
führten ein Interferenzexperiment aus, bei welchem die Differenz
deutlich hätte in Erscheinung treten müssen. Das Experiment fiel aber
negativ aus, zur großen Verlegenheit der Physiker. Lorentz und
FitzGerald zogen die Theorie aus dieser Verlegenheit, indem sie
annahmen, daß die Bewegung des Körpers gegen den Äther eine Kontraktion
in der Bewegungsrichtung bewirke, welche das Verschwinden der
genannten Zeitdifferenz gerade bewirken sollte. Ein Vergleich mit den
Darlegungen des § 12 zeigt, daß dieser Ausweg auch vom Standpunkt der
Relativitätstheorie der richtige war. Die Auffassung der Sachlage ist
aber nach der Relativitätstheorie eine unvergleichlich befriedigendere.
Nach ihr gibt es kein bevorzugtes Koordinatensystem, welches zur
Einführung der Ätheridee Anlaß gibt, mithin auch keinen Ätherwind und
kein Experiment, um einen solchen in Evidenz zu setzen. Die Kontraktion
bewegter Körper folgt hier ohne besondere Hypothesen aus den beiden
Grundprinzipien der Theorie; und zwar ergibt sich als maßgebend für
diese Kontraktion nicht die Bewegung an sich, welcher wir keinen Sinn
beizulegen vermögen, sondern die Bewegung gegen den jeweilen gewählten
Bezugskörper. So ist also für ein mit der Erde bewegtes Bezugssystem
der Spiegelkörper von Michelson und Morley nicht
verkürzt, wohl aber für ein relativ zur Sonne ruhendes Bezugssystem.





  § 17. Minkowskis vierdimensionaler Raum.






Ein mystischer Schauer ergreift den Nichtmathematiker, wenn er von
„vierdimensional“ hört, ein Gefühl, das dem vom Theatergespenst
erzeugten nicht unähnlich ist. Und doch ist keine Aussage banaler als
die, daß unsere gewohnte Welt ein vierdimensionales zeiträumliches
Kontinuum ist.


Der Raum ist ein dreidimensionales Kontinuum. Dies will sagen,
daß es möglich ist, die Lage eines (ruhenden) Punktes durch drei Zahlen
(Koordinaten), x, y, z, zu beschreiben, und daß es
zu jedem Punkte beliebig „benachbarte“ Punkte gibt, deren Lage durch
solche Koordinatenwerte (Koordinaten) x1, y1,
z1 beschrieben werden kann, die den Koordinaten x,
y, z des erstgenannten beliebig nahe kommen. Wegen der
letzteren Eigenschaft sprechen wir von „Kontinuum“, wegen der Dreizahl
der Koordinaten von „dreidimensional“.


Analog ist die Welt des physikalischen Geschehens, von Minkowski
kurz „Welt“ genannt, natürlich vierdimensional in zeiträumlichem
Sinne. Denn sie setzt sich aus Einzelereignissen zusammen, deren
jedes durch vier Zahlen, nämlich drei räumliche Koordinaten x,
y, z und eine zeitliche Koordinate, den Zeitwert
t beschrieben ist. Die „Welt“ ist in diesem Sinne auch ein
Kontinuum; denn es gibt zu jedem Ereignis beliebig „benachbarte“
(realisierte oder doch denkbare) Ereignisse, deren Koordinaten
x1, y1, z1, t1 sich von
denen des ursprünglich betrachteten Ereignisses x, y,
z, t beliebig wenig unterscheiden. Daß wir nicht daran
gewöhnt sind, die Welt in diesem Sinne als vierdimensionales Kontinuum
aufzufassen, liegt darin, daß die Zeit in der vorrelativistischen
Physik gegenüber den räumlichen Koordinaten eine verschiedene, mehr
selbständige Rolle spielt. Darum haben wir uns daran gewöhnt, die
Zeit als ein selbständiges Kontinuum zu behandeln. In der Tat ist die
Zeit gemäß der klassischen Physik absolut, d. h. von der Lage und dem
Bewegungszustande des Bezugssystems unabhängig. Dies kommt in
der letzten Gleichung der Galilei-Transformation (t′ = t) zum
Ausdruck.


Durch die Relativitätstheorie ist die vierdimensionale
Betrachtungsweise der „Welt“ geboten, da ja gemäß dieser Theorie die
Zeit ihrer Selbständigkeit beraubt wird, wie die vierte der Gleichungen
der Lorentz-Transformation


t′ =
t − vc2 x
√1 −
v2c2


lehrt. Denn nach dieser Gleichung verschwindet die Zeitdifferenz
Δt′ zweier Ereignisse in bezug auf K′ auch dann im
allgemeinen nicht, wenn die Zeitdifferenz Δt derselben in bezug
auf K verschwindet. Rein räumliche Distanz zweier Ereignisse
in bezug auf K hat zeitliche Distanz derselben in bezug auf
K′ zur Folge. Auch hierin liegt nicht Minkowskis für
die formale Entwicklung der Relativitätstheorie wichtige Entdeckung.
Diese liegt vielmehr in der Erkenntnis, daß das vierdimensionale
zeiträumliche Kontinuum der Relativitätstheorie in seinen maßgebenden
formalen Eigenschaften die weitgehendste Verwandtschaft zeigt zu dem
dreidimensionalen Kontinuum des Euklidischen geometrischen Raumes. Um
diese Verwandtschaft ganz hervortreten zu lassen, muß man allerdings
statt der üblichen Zeitkoordinate t die ihr proportionale
imaginäre Größe √−1 c t einführen. Dann aber nehmen die
den Forderungen der (speziellen) Relativitätstheorie genügenden
Naturgesetze mathematische Formen an, in denen die Zeitkoordinate genau
dieselbe Rolle spielt wie die drei räumlichen Koordinaten. Diese vier
Koordinaten entsprechen formal genau den drei räumlichen Koordinaten
der Euklidischen Geometrie. Es muß auch dem Nichtmathematiker
einleuchten, daß durch diese rein formale Erkenntnis die Theorie
außerordentlich an Übersichtlichkeit gewinnen mußte.


Diese dürftigen Andeutungen geben dem Leser nur eine vage Idee von
dem wichtigen Gedanken Minkowskis, ohne den die im folgenden
in ihren Grundgedanken entwickelte allgemeine Relativitätstheorie
vielleicht in den Windeln stecken geblieben wäre. Da aber ein exakteres
Erfassen dieses für den mathematisch nichtgeübten Leser zweifellos
schwer zugänglichen Gegenstandes für das Verständnis der Grundgedanken
weder der speziellen noch der allgemeinen Relativitätstheorie nötig
ist, so will ich denselben hier verlassen, um erst in den letzten
Darlegungen dieses Büchleins wieder darauf zurückzukommen.




[2] Damit ist auch der geraden Linie ein Naturobjekt
zugeordnet. Drei Punkte eines starren Körpers A, B,
C liegen dann in einer Geraden, wenn bei gegebenen Punkten
A und C der Punkt B so gewählt ist, daß die Summe
der Entfernungen AB und BC möglichst gering wird.
Diese lückenhafte Andeutung mag in diesem Zusammenhange genügen.



[3] Dabei ist allerdings angenommen, daß die Messung aufgehe,
d. h. eine ganze Zahl ergebe. Von dieser Schwierigkeit befreit man
sich durch die Anwendung geteilter Maßstäbe, deren Einführung keine
prinzipiell neue Methode verlangt.



[4] Eine weitere Untersuchung darüber, was hier „räumliche
Koinzidenz“ bedeutet, ist hier nicht nötig; denn dieser Begriff ist
insofern klar, als im einzelnen realen Falle Meinungsverschiedenheiten
darüber, ob er zutreffe oder nicht, kaum auftreten dürften.



[5] Erst durch die im zweiten Teil des Büchleins behandelte
allgemeine Relativitätstheorie wird eine Verfeinerung und Änderung
dieser Auffassungen nötig.



[6] Wir nehmen ferner an, daß, wenn drei Ereignisse A,
B, C derartig an verschiedenen Orten stattfinden, daß,
wenn A gleichzeitig mit B und B gleichzeitig mit
C ist (gleichzeitig im Sinne obiger Definition), das Kriterium
der Gleichzeitigkeit auch für das Ereignispaar A–C
erfüllt sei. Diese Annahme ist eine physikalische Hypothese über
das Ausbreitungsgesetz des Lichtes; sie muß unbedingt erfüllt sein,
wenn es möglich sein soll, an dem Gesetz von der Konstanz der
Vakuum-Lichtgeschwindigkeit festzuhalten.



[7] Vom Fahrdamm aus beurteilt!



[8] Etwa die Mitte des 1. und 100. Wagens.



[9] Fizeau fand
W = w + v (1 − 1n2),
wobei n = cw der
Brechungsexponent der Flüssigkeit ist. Andererseits kann für (B) wegen
der Kleinheit von v wc2 gegenüber 1 zunächst
W = (w + v) (1 − v wc2),
oder mit der gleichen Näherung W = w + v (1 − 1n2) gesetzt werden, was mit
Fizeaus Resultat übereinstimmt.



[10] E0 ist die aufgenommene Energie, von einem mit
dem Körper bewegten Koordinatensystem aus beurteilt.



[11] Von einem mitbewegten Koordinatensystem aus beurteilt.










  
    Zweiter Teil.
    

    Über die allgemeine Relativitätstheorie.
  




§ 18. Spezielles und
allgemeines Relativitätsprinzip.


Die Grundthese, um welche sich alle bisherigen Ausführungen drehten,
war das spezielle Relativitätsprinzip, d. h. das Prinzip von
der physikalischen Relativität aller gleichförmigen Bewegung.
Analysieren wir noch einmal genau seinen Inhalt!


Daß jegliche Bewegung ihrem Begriff nach nur als relative
Bewegung gedacht werden muß, war zu allen Zeiten einleuchtend. Bei
unserem viel benutzten Beispiel vom Bahndamm und vom Eisenbahnwagen
kann z. B. die Tatsache der hier stattfindenden Bewegung mit gleichem
Rechte in den beiden Formen ausgesprochen werden:


a) Der Wagen bewegt sich relativ zum Bahndamm,

b) Der Bahndamm bewegt sich relativ zum Wagen.


Im Falle a) dient bei dieser Aussage der Bahndamm, im Falle b) der
Wagen als Bezugskörper. Bei der bloßen Feststellung bzw. Beschreibung
der Bewegung ist es prinzipiell gleichgültig, auf was für einen
Bezugskörper man die Bewegung bezieht. Dies ist, wie gesagt,
selbstverständlich und darf nicht mit der viel weitergehenden Aussage
verwechselt werden, welche wir „Relativitätsprinzip“ genannt und
unseren Untersuchungen zugrunde gelegt haben.


Das von uns benutzte Prinzip behauptet nicht nur, daß man für
die Beschreibung jeglichen Geschehens ebensowohl den Wagen wie
den Bahndamm als Bezugskörper wählen könne (denn auch dies ist
selbstverständlich). Unser Prinzip behauptet vielmehr: Formuliert man
die allgemeinen Naturgesetze, wie sie sich aus der Erfahrung ergeben,
indem man sich


a) des Bahndammes als Bezugskörpers bedient,

b) des Wagens als Bezugskörpers bedient,


so lauten diese allgemeinen Naturgesetze (z. B. die Gesetze der
Mechanik oder das Gesetz der Lichtausbreitung im Vakuum) genau
gleich in beiden Fällen. Man kann das auch so ausdrücken: Für die
physikalische Beschreibung der Naturvorgänge ist keiner der
Bezugskörper K, K′ vor dem anderen ausgezeichnet. Diese
letztere Aussage muß nicht a priori notwendig zutreffen wie die
erstere; sie ist nicht in den Begriffen „Bewegung“ und „Bezugskörper“
enthalten und aus ihnen ableitbar, sondern über ihre Richtigkeit oder
Unrichtigkeit kann nur die Erfahrung entscheiden.


Wir haben nun aber bisher keineswegs die Gleichwertigkeit aller
Bezugskörper K mit Bezug auf die Formulierung der Naturgesetze
behauptet. Unser Weg war vielmehr folgender. Wir gingen zunächst
von der Annahme aus, daß es einen Bezugskörper K von solchem
Bewegungszustande gebe, daß relativ zu ihm der Galileische
Grundsatz gilt: Ein sich selbst überlassener, von allen übrigen
hinlänglich entfernter Massenpunkt bewegt sich gleichförmig und
geradlinig. Auf K (Galileischer Bezugskörper) bezogen
sollten die Naturgesetze möglichst einfache sein. Außer K
sollten aber alle diejenigen Bezugskörper K′ in diesem Sinne
bevorzugt und mit K für die Formulierung der Naturgesetze genau
gleichwertig sein, welche relativ zu K eine geradlinig
gleichförmige, rotationsfreie Bewegung ausführen; alle diese
Bezugskörper werden als Galileische Bezugskörper angesehen. Nur
für diese Bezugskörper wurde die Gültigkeit des Relativitätsprinzips
angenommen, für andere (anders bewegte) nicht. In diesem Sinne
sprechen wir vom speziellen Relativitätsprinzip bzw. spezieller
Relativitätstheorie.





Im Gegensatz hierzu wollen wir unter „allgemeinem Relativitätsprinzip“
die Behauptung verstehen: Alle Bezugskörper K, K′
usw. sind für die Naturbeschreibung (Formulierung der allgemeinen
Naturgesetze) gleichwertig, welches auch deren Bewegungszustand sein
mag. Es sei aber gleich bemerkt, daß diese Formulierung später durch
eine abstraktere ersetzt werden muß aus Gründen, die erst später zutage
treten werden.


Nachdem sich die Einführung des speziellen Relativitätsprinzips bewährt
hat, muß es jedem nach Verallgemeinerung strebenden Geiste verlockend
erscheinen, den Schritt zum allgemeinen Relativitätsprinzip zu wagen.
Aber eine einfache, scheinbar ganz zuverlässige Betrachtung läßt einen
solchen Versuch zunächst aussichtslos erscheinen. Der Leser denke sich
in den schon so oft betrachteten, gleichförmig fahrenden Eisenbahnwagen
versetzt. Solange der Wagen gleichförmig fährt, ist für den Insassen
nichts vom Fahren des Wagens zu merken. Daher kommt es auch, daß der
Insasse den Tatbestand ohne inneres Widerstreben dahin deuten kann, daß
der Wagen ruhe, der Bahndamm aber bewegt sei. Diese Interpretation ist
übrigens nach dem speziellen Relativitätsprinzip auch physikalisch ganz
berechtigt.


Wird nun aber die Bewegung des Wagens etwa dadurch in eine
ungleichförmige verwandelt, daß der Wagen kräftig gebremst wird, so
erhält der Insasse einen entsprechend kräftigen Ruck nach vorne. Die
beschleunigte Bewegung des Wagens äußert sich in dem mechanischen
Verhalten der Körper relativ zu ihm; das mechanische Verhalten ist ein
anderes als im vorhin betrachteten Falle, und es erscheint deshalb
ausgeschlossen zu sein, daß relativ zum ungleichförmig bewegten Wagen
die gleichen mechanischen Gesetze gelten, wie relativ zum ruhenden
bzw. gleichförmig bewegten Wagen. Jedenfalls ist klar, daß relativ zum
ungleichförmig bewegten Wagen der Galileische Grundsatz nicht
gilt. Wir fühlen uns daher zunächst genötigt, entgegen dem allgemeinen
Relativitätsprinzip der ungleichförmigen Bewegung eine Art absolute
physikalische Realität zuzusprechen. Im folgenden werden wir aber bald
sehen, daß dieser Schluß nicht stichhaltig ist.








  § 19. Das Gravitationsfeld.






Auf die Frage: „Warum fällt ein Stein, den wir emporheben und darauf
loslassen, zur Erde?“ antwortet man gewöhnlich: „Weil er von der Erde
angezogen wird.“ Die moderne Physik formuliert die Antwort etwas anders
aus folgendem Grunde. Durch genaueres Studium der elektromagnetischen
Erscheinungen ist man zu der Auffassung gekommen, daß es eine
unvermittelte Wirkung in die Ferne nicht gebe. Zieht z. B. ein Magnet
ein Stück Eisen an, so darf man sich nicht mit der Auffassung zufrieden
geben, daß der Magnet durch den leeren Zwischenraum hindurch auf das
Eisen direkt einwirke, sondern man stellt sich nach Faraday vor,
daß der Magnet in dem ihn umgebenden Raume etwas physikalisch Reales
stets hervorrufe, was man als „magnetisches Feld“ bezeichnet. Dies
magnetische Feld wirkt seinerseits wieder auf das Eisenstück ein, so
daß es sich zum Magneten zu bewegen strebt. Die Berechtigung dieses an
sich willkürlichen Zwischenbegriffes wollen wir hier nicht erörtern.
Es sei nur bemerkt, daß man mit seiner Hilfe die elektromagnetischen
Erscheinungen, insbesondere die Ausbreitung der elektromagnetischen
Wellen, viel befriedigender theoretisch darstellen kann als ohne
denselben. Analog faßt man auch die Wirkungen der Gravitation auf.


Die Einwirkung der Erde auf den Stein kommt indirekt zustande. Die
Erde erzeugt in ihrer Umgebung ein Gravitationsfeld. Dieses wirkt auf
den Stein und veranlaßt seine Fallbewegung. Die Stärke der Einwirkung
auf einen Körper nimmt erfahrungsgemäß ab, wenn man sich mehr und
mehr von der Erde entfernt, nach einem ganz bestimmten Gesetze.
Dies heißt in unserer Auffassungsweise: Das Gesetz, welches die
räumlichen Eigenschaften des Gravitationsfeldes beherrscht, muß ein
ganz bestimmtes sein, um die Abnahme der Gravitationswirkung mit der
Entfernung vom wirksamen Körper richtig darzustellen. Man stellt sich
etwa vor, der Körper erzeuge direkt das Feld in seiner unmittelbaren
Nähe; Stärke und Richtung des Feldes in größerer Entfernung sind
dann hieraus durch das Gesetz bestimmt, welches die räumlichen
Eigenschaften der Gravitationsfelder selbst beherrscht.


Das Gravitationsfeld weist im Gegensatz zum elektrischen und
magnetischen Felde eine höchst merkwürdige Eigenschaft auf, welche
für das Folgende von fundamentaler Bedeutung ist. Körper, die
sich unter ausschließlicher Wirkung des Schwerefeldes bewegen,
erfahren eine Beschleunigung, welche weder vom Material noch vom
physikalischen Zustande des Körpers im geringsten abhängt. Ein
Stück Blei und ein Stück Holz fallen beispielsweise im Schwerefelde (im
luftleeren Raume) genau gleich, wenn man sie ohne bzw. mit gleicher
Anfangsgeschwindigkeit fallen läßt. Man kann dies äußerst genau gültige
Gesetz auch noch anders formulieren auf Grund folgender Erwägung.


Nach Newtons Bewegungsgesetz ist


(Kraft) = (träge Masse) . (Beschleunigung),


wobei die „träge Masse“ eine charakteristische Konstante des
beschleunigten Körpers ist. Ist nun die beschleunigende Kraft die
Schwere, so ist andererseits


(Kraft) = (schwere Masse) . (Intensität des Schwerefeldes),


wobei die „schwere Masse“ ebenfalls eine für den Körper
charakteristische Konstante ist. Aus beiden Relationen folgt:


(Beschleunigung) = (schwere Masse)(träge Masse) . (Intensität des
Schwerefeldes)


Soll nun, wie die Erfahrung ergibt, bei gegebenem Schwerefelde die
Beschleunigung unabhängig von der Natur und dem Zustande des Körpers
stets dieselbe sein, so muß das Verhältnis der schweren zur trägen
Masse ebenfalls für alle Körper gleich sein. Man kann also dies
Verhältnis bei passender Wahl der Einheiten zu 1 machen; dann gilt der
Satz: Die schwere und die träge Masse eines Körpers sind
einander gleich.


Die bisherige Mechanik hat diesen wichtigen Satz zwar
registriert, aber nicht interpretiert. Eine befriedigende
Interpretation kann nur so zustande kommen, daß man einsieht:
Dieselbe Qualität des Körpers äußert sich je nach Umständen als
„Trägheit“ oder als „Schwere“. Inwiefern dies tatsächlich der Fall
ist, und wie diese Frage mit dem allgemeinen Relativitätspostulat
zusammenhängt, wird im nächsten Paragraphen dargelegt werden.





  § 20. Die Gleichheit der trägen und schweren Masse als Argument für das
  allgemeine Relativitätspostulat.






Wir denken uns ein geräumiges Stück leeren Weltraumes, so weit weg von
Sternen und erheblichen Massen, daß wir mit erheblicher Genauigkeit
den Fall vor uns haben, der im Galileischen Grundgesetz
vorgesehen ist. Es ist dann möglich, für diesen Teil Welt einen
Galileischen Bezugskörper zu wählen, relativ zu dem ruhende
Punkte ruhend bleiben, bewegte dauernd in geradlinig gleichförmiger
Bewegung verharren. Als Bezugskörper denken wir uns einen geräumigen
Kasten von der Gestalt eines Zimmers; darin befinde sich ein mit
Apparaten ausgestatteter Beobachter. Für diesen gibt es natürlich keine
Schwere. Er muß sich mit Schnüren am Boden befestigen, wenn er nicht
beim leisesten Stoß gegen den Boden langsam gegen die Decke des Zimmers
entschweben will.


In der Mitte der Kastendecke sei außen ein Haken mit Seil befestigt und
an diesem fange nun ein Wesen von uns gleichgültiger Art mit konstanter
Kraft zu ziehen an. Dann beginnt der Kasten samt dem Beobachter in
gleichförmig beschleunigtem Fluge nach „oben“ zu fliegen. Seine
Geschwindigkeit wird im Laufe der Zeit ins Phantastische zunehmen —
falls wir all dies beurteilen von einem anderen Bezugskörper aus, an
dem nicht mit einem Stricke gezogen wird.


Wie beurteilt aber der Mann im Kasten den Vorgang? Die Beschleunigung
des Kastens wird vom Boden desselben durch Gegendruck auf ihn
übertragen. Er muß also diesen Druck mittels seiner Beine aufnehmen,
wenn er nicht seiner ganzen Länge nach den Boden berühren will. Er
steht dann im Kasten genau wie einer in einem Zimmer eines Hauses
auf unserer Erde steht. Läßt er einen Körper los, den er vorher in
der Hand hatte, so wird auf diesen die Beschleunigung des Kastens
nicht mehr übertragen; der Körper wird sich daher in beschleunigter
Relativbewegung dem Boden des Kastens nähern. Der Beobachter wird
sich ferner überzeugen, daß die Beschleunigung des Körpers gegen
den Boden immer gleich groß ist, mit was für einem Körper er auch den
Versuch ausführen mag.


Der Mann im Kasten wird also, gestützt auf seine Kenntnisse vom
Schwerefelde, wie wir sie im letzten Paragraphen besprochen, zu
dem Ergebnis kommen, daß er samt dem Kasten sich in einem zeitlich
konstanten Schwerefelde befinde. Er wird allerdings einen Augenblick
verwundert sein darüber, daß der Kasten in diesem Schwerefelde nicht
falle. Da entdeckt er aber den Haken in der Mitte der Decke und das an
demselben befestigte gespannte Seil, und er kommt folgerichtig zu dem
Ergebnis, daß der Kasten in dem Schwerefelde ruhend aufgehängt sei.


Dürfen wir über den Mann lächeln und sagen, er befinde sich mit
seiner Auffassung im Irrtum? Ich glaube, wir dürfen das nicht,
wenn wir konsequent bleiben wollen, sondern wir müssen zugeben,
daß seine Auffassungsweise weder gegen die Vernunft noch gegen die
bekannten mechanischen Gesetze verstößt. Wir können den Kasten, wenn
er auch gegen den zuerst betrachteten „Galileischen Raum“
beschleunigt ist, dennoch als ruhend ansehen. Wir haben also guten
Grund, das Relativitätsprinzip auszudehnen auf relativ zueinander
beschleunigte Bezugskörper und haben so ein kräftiges Argument für ein
verallgemeinertes Relativitätspostulat gewonnen.


Man beachte wohl, daß die Möglichkeit dieser Auffassungsweise auf der
fundamentalen Eigenschaft des Schwerefeldes beruht, allen Körpern
dieselbe Beschleunigung zu erteilen, oder, was dasselbe bedeutet, auf
dem Satz von der Gleichheit der trägen und schweren Masse. Würde dies
Naturgesetz nicht bestehen, so würde der Mann im beschleunigten Kasten
das Verhalten der Körper seiner Umgebung nicht durch die Voraussetzung
eines Gravitationsfeldes deuten können, und er wäre auf Grund keiner
Erfahrung berechtigt, seinen Bezugskörper als einen „ruhenden“
vorauszusetzen.


Der Mann im Kasten befestige an der Innenseite der Kastendecke ein
Seil und an dessen freiem Ende einen Körper. Durch diesen wird bewirkt
werden, daß das Seil in gespanntem Zustande „vertikal“ herabhängt. Wir
fragen nach der Ursache der Spannung des Seiles. Der Mann im Kasten
wird sagen: „Der aufgehängte Körper erfährt in dem Schwerefelde eine
Kraft nach unten, welcher durch die Seilspannung das Gleichgewicht
gehalten wird; maßgebend für die Größe der Seilspannung ist die
schwere Masse des aufgehängten Körpers.“ Andererseits wird aber
ein Beurteiler, der frei im Raume schwebt, den Zustand so beurteilen:
„Das Seil ist gezwungen, die beschleunigte Bewegung des Kastens
mitzumachen und überträgt diese auf den daran befestigten Körper. Die
Seilspannung ist so groß, daß sie die Beschleunigung des letzteren
gerade zu bewirken vermag. Maßgebend für die Größe der Spannung im
Seile ist die träge Masse des Körpers.“ Wir sehen aus diesem
Beispiele, daß unsere Erweiterung des Relativitätsprinzips den Satz
von der Gleichheit der trägen und schweren Masse als notwendig
erscheinen läßt. Damit ist eine physikalische Interpretation dieses
Satzes gewonnen.


Aus der Betrachtung des beschleunigten Kastens sieht man, daß eine
allgemeine Relativitätstheorie wichtige Ergebnisse über die Gesetze der
Gravitation liefern muß. Tatsächlich hat die konsequente Verfolgung
des allgemeinen Relativitätsgedankens die Gesetze geliefert, denen das
Gravitationsfeld genügt. Ich muß jedoch schon hier den Leser vor einem
Mißverständnis warnen, das durch diese Überlegungen nahegelegt wird.
Für den Mann im Kasten existiert ein Gravitationsfeld, trotzdem für das
zuerst gewählte Koordinatensystem ein solches nicht vorhanden war. Man
könnte nun leicht meinen, daß die Existenz eines Gravitationsfeldes
stets eine nur scheinbare sei. Man könnte denken, daß, was auch
immer für ein Gravitationsfeld vorhanden sein mag, man immer einen
anderen Bezugskörper so wählen könne, daß in bezug auf ihn kein
Gravitationsfeld existiert. Dies trifft aber keineswegs für alle
Gravitationsfelder zu, sondern nur für solche von ganz speziellem Bau.
So ist es beispielsweise unmöglich, einen Bezugskörper so zu wählen,
daß von ihm aus beurteilt das Gravitationsfeld der Erde (in seiner
ganzen Ausdehnung) verschwindet.


Wir bemerken jetzt, warum das gegen das allgemeine Relativitätsprinzip
am Ende des § 18 vorgebrachte Argument nicht beweisend ist. Es ist wohl
richtig, daß der im gebremsten Eisenbahnwagen befindliche Beobachter
infolge der Bremsung einen Ruck nach vorn empfindet und daß er daran
die Ungleichförmigkeit (Beschleunigung) des Wagens merkt. Aber niemand
zwingt ihn, den Ruck auf eine „wirkliche“ Beschleunigung des Wagens
zurückzuführen. Er kann sein Erlebnis auch so interpretieren: „Mein
Bezugskörper (der Wagen) bleibt dauernd in Ruhe. Es herrscht aber
(während der Bremsungsperiode) in bezug auf denselben ein nach vorn
gerichtetes, zeitlich veränderliches Schwerefeld. Unter dem Einfluß des
letzteren bewegt sich der Bahndamm samt der Erde ungleichförmig derart,
daß dessen ursprüngliche, nach rückwärts gerichtete Geschwindigkeit
immer mehr abnimmt.“





  § 21. Inwiefern sind die Grundlagen der klassischen Mechanik und der
  speziellen Relativitätstheorie unbefriedigend?






Wie schon mehrfach erwähnt, geht die klassische Mechanik von dem
Satze aus: Von anderen materiellen Punkten hinreichend entfernte
materielle Punkte bewegen sich geradlinig gleichförmig oder verharren
im Ruhezustande. Wir haben auch mehrfach hervorgehoben, daß das
Grundgesetz nur gültig sein kann für Bezugskörper K von gewissen
ausgezeichneten Bewegungszuständen, welche relativ zueinander sich
in gleichförmiger Translationsbewegung befinden. Relativ zu anderen
Bezugskörpern K gilt der Satz nicht. Sowohl in der klassischen
Mechanik wie in der speziellen Relativitätstheorie unterscheidet
man demgemäß zwischen Bezugskörpern K, relativ zu denen die
Naturgesetze gültig sind, und zwischen Bezugskörpern K, relativ
zu welchen die Naturgesetze nicht gelten.


Mit dieser Sachlage kann sich aber kein konsequent denkender
Mensch zufrieden geben. Er fragt: „Wie ist es möglich, daß gewisse
Bezugskörper (bzw. deren Bewegungszustände) vor anderen Bezugskörpern
(bzw. deren Bewegungszuständen) ausgezeichnet sind? Welches ist der
Grund für diese Bevorzugung?“ Um deutlich zu zeigen, was ich mit
dieser Frage meine, will ich mich eines Vergleichs bedienen.


Ich stehe vor einem Gasherde. Auf demselben stehen nebeneinander
zwei Kochtöpfe, die einander zum Verwechseln ähnlich sind. Beide
sind zur Hälfte mit Wasser gefüllt. Ich nehme wahr, daß aus dem
einen unaufhörlich Dampf entweicht, aus dem anderen nicht. Hierüber
wundere ich mich, auch wenn mir ein Gasherd und ein Kochtopf noch nie
zu Gesicht gekommen ist. Nehme ich nun unter dem ersteren Kochtopfe
ein bläulich leuchtendes Etwas wahr, unter dem letzteren nicht,
so schwindet meine Verwunderung auch dann, wenn ich noch nie eine
Gasflamme wahrgenommen habe. Denn ich kann nur sagen, daß dieses
bläuliche Etwas das Entweichen des Dampfes verursachen wird, oder
wenigstens möglicherweise verursacht. Nehme ich aber bei
keinem Topfe das bläuliche Etwas wahr, und sehe ich, daß der eine
unaufhörlich dampft, der andere nicht, so bin ich so lange verwundert
und unbefriedigt, bis ich irgendeinen Umstand wahrgenommen habe, den
ich für das verschiedene Verhalten beider Töpfe verantwortlich machen
kann.


Analog suche ich in der klassischen Mechanik (bzw. in der speziellen
Relativitätstheorie) vergeblich nach einem realen Etwas, auf das ich
das verschiedene Verhalten der Körper gegenüber den Bezugssystemen
K und K′ zurückführen könnte⁠[12]. Diesen Mangel fühlte
schon Newton und suchte ihn vergeblich zu entkräften. Am
klarsten hat ihn aber E. Mach erkannt und seinetwegen gefordert,
daß die Mechanik auf eine neue Grundlage gestellt werden müsse.
Dieser Einwand läßt sich nur durch eine Physik vermeiden, welche dem
allgemeinen Relativitätsprinzip entspricht. Denn die Gleichungen
einer solchen Theorie gelten für jeden Bezugskörper, in was für einem
Bewegungszustande derselbe auch sein mag.





  §22. Einige Schlüsse aus dem allgemeinen Relativitätsprinzip.






Die Betrachtungen des § 20 zeigen, daß das allgemeine
Relativitätsprinzip uns in den Stand setzt, auf rein theoretischem
Wege Eigenschaften des Gravitationsfeldes abzuleiten. Es sei nämlich
der raum-zeitliche Verlauf irgendeines Naturvorganges bekannt,
so wie er sich im Galileischen Gebiete relativ zu einem
Galileischen Bezugskörper K abspielt. Dann kann man durch
rein theoretische Operationen, d. h. durch bloße Rechnung, finden,
wie sich dieser bekannte Naturvorgang von einem relativ zu K
beschleunigten Bezugskörper K′ aus ausnimmt. Da aber relativ zu
diesem neuen Bezugskörper K′ ein Gravitationsfeld existiert,
so erfährt man bei der Betrachtung, wie das Gravitationsfeld den
studierten Vorgang beeinflußt.


So erfahren wir beispielsweise, daß ein Körper, der gegenüber K
eine geradlinig gleichförmige Bewegung ausführt (entsprechend dem
Galileischen Satze), gegenüber dem beschleunigten Bezugskörper
K′ (Kasten) eine beschleunigte, im allgemeinen krummlinige
Bewegung ausführt. Diese Beschleunigung bzw. Krümmung entspricht dem
Einfluß des relativ zu K′ herrschenden Gravitationsfeldes auf
den bewegten Körper. Daß das Gravitationsfeld in dieser Weise die
Bewegung der Körper beeinflußt, ist bekannt, so daß die Überlegung
nichts prinzipiell Neues liefert.


Ein neues Ergebnis von fundamentaler Wichtigkeit erhält man aber, wenn
man die entsprechende Überlegung für einen Lichtstrahl durchführt.
Gegenüber dem Galileischen Bezugskörper K pflanzt sich
dieser in gerader Linie mit der Geschwindigkeit c fort. In
bezug auf den beschleunigten Kasten (Bezugskörper K′) ist,
wie leicht abzuleiten ist, die Bahn desselben Lichtstrahles keine
Gerade mehr. Hieraus ist zu schließen, daß sich Lichtstrahlen in
Gravitationsfeldern im allgemeinen krummlinig fortpflanzen. Dies
Ergebnis ist in zweifacher Hinsicht von großer Wichtigkeit.


Erstens nämlich kann dasselbe mit der Wirklichkeit verglichen werden.
Wenn eine eingehende Überlegung auch ergibt, daß die Krümmung der
Lichtstrahlen, welche die allgemeine Relativitätstheorie liefert, für
die uns in der Erfahrung zur Verfügung stehenden Gravitationsfelder nur
äußerst gering ist, so soll sie für Lichtstrahlen, die in der Nähe der
Sonne vorbeigehen, doch 1,7 Bogensekunden betragen. Dies müßte sich
dadurch äußern, daß die in der Nähe der Sonne erscheinenden Fixsterne,
welche bei totalen Sonnenfinsternissen der Beobachtung zugänglich
sind, um diesen Betrag von der Sonne weggerückt erscheinen müssen
gegenüber der Lage, die sie für uns am Himmel annehmen, wenn die Sonne
an einer anderen Stelle am Himmel steht. Die Prüfung des Zutreffens
oder Nichtzutreffens dieser Konsequenz ist eine Aufgabe von höchster
Wichtigkeit, deren baldige Lösung wir von den Astronomen erhoffen
dürfen.


Zweitens aber zeigt diese Konsequenz, daß nach der allgemeinen
Relativitätstheorie das schon oft erwähnte Gesetz von der Konstanz der
Vakuumlichtgeschwindigkeit, das eine der beiden grundlegenden Annahmen
der speziellen Relativitätstheorie bildet, keine unbegrenzte Gültigkeit
beanspruchen kann. Eine Krümmung der Lichtstrahlen kann nämlich nur
dann eintreten, wenn die Ausbreitungsgeschwindigkeit des Lichtes mit
dem Orte variiert. Man könnte nun denken, daß durch diese Konsequenz
die spezielle Relativitätstheorie, und mit ihr die Relativitätstheorie
überhaupt, zu Fall gebracht würde. Dies trifft aber in Wahrheit nicht
zu. Es läßt sich nur schließen, daß die spezielle Relativitätstheorie
kein unbegrenztes Gültigkeitsgebiet beanspruchen kann; ihre Ergebnisse
gelten nur insoweit, als man von den Einflüssen der Gravitationsfelder
auf die Erscheinungen (z. B. des Lichtes) absehen kann.





Da die Gegner der Relativitätstheorie öfters behauptet haben,
die spezielle Relativitätstheorie werde durch die allgemeine
Relativitätstheorie über den Haufen geworfen, will ich den wirklichen
Sachverhalt durch einen Vergleich deutlicher machen. Vor der
Aufstellung der Elektrodynamik wurden die Gesetze der Elektrostatik
für die Gesetze der Elektrizität schlechthin angesehen. Heute wissen
wir, daß die Elektrostatik die elektrischen Felder nur in dem nie
streng realisierten Falle richtig liefern kann, daß die elektrischen
Massen relativ zueinander und zum Koordinatensystem exakt ruhen.
Ist deshalb die Elektrostatik durch Maxwells Feldgleichungen
der Elektrodynamik über den Haufen geworfen worden? Keineswegs! Die
Elektrostatik ist als Grenzfall in der Elektrodynamik enthalten; die
Gesetze der letzteren führen direkt auf die ersteren in dem Falle,
daß die Felder zeitlich unveränderlich sind. Es ist das schönste Los
einer physikalischen Theorie, wenn sie selbst zur Aufstellung einer
umfassenden Theorie den Weg weist, in welcher sie als Grenzfall
weiterlebt.


Bei dem eben behandelten Beispiel der Lichtausbreitung haben wir
gesehen, daß das allgemeine Relativitätsprinzip uns in den Stand
setzt, den Einfluß des Gravitationsfeldes auf den Ablauf von Vorgängen
auf theoretischem Wege abzuleiten, deren Gesetze für den Fall des
Fehlens eines Gravitationsfeldes bereits bekannt sind. Die reizvollste
Aufgabe, zu deren Lösung das allgemeine Relativitätsprinzip den
Schlüssel liefert, betrifft aber die Ermittelung der Gesetze, denen das
Gravitationsfeld selbst genügt. Der Sachverhalt ist hier folgender.


Wir kennen raum-zeitliche Gebiete, die sich bei passender Wahl des
Bezugskörpers (annähernd) „galileisch“ verhalten, d. h. Gebiete, in
denen Gravitationsfelder fehlen. Beziehen wir nun ein solches Gebiet
auf einen beliebig bewegten Bezugskörper K′, so ist in bezug auf
K′ ein zeitlich und räumlich veränderliches Gravitationsfeld
vorhanden⁠[13]. Die Beschaffenheit des letzteren hängt natürlich davon
ab, wie wir die Bewegung von K′ wählen. Das allgemeine Gesetz
des Gravitationsfeldes muß nach der allgemeinen Relativitätstheorie
für alle so erhältlichen Gravitationsfelder erfüllt sein. Wenn nun
auch keineswegs alle Gravitationsfelder auf diese Weise erzeugt werden
können, so schöpft man doch Hoffnung, aus diesen Gravitationsfeldern
spezieller Art das allgemeine Gesetz der Gravitation ableiten zu
können. Diese Hoffnung ist aufs schönste in Erfüllung gegangen!
Aber vom klaren Sehen dieses Zieles bis zum tatsächlichen Erreichen
desselben bedurfte es noch der Überwindung einer ernstlichen
Schwierigkeit, die ich dem Leser nicht vorenthalten darf, da sie tief
im Wesen der Sache liegt. Es bedarf einer abermaligen Vertiefung der
Begriffe von dem raum-zeitlichen Kontinuum.





  § 23. Verhalten von Uhren und Maßstäben auf einem rotierenden
  Bezugskörper.






Ich habe bis jetzt absichtlich nicht gesprochen über die physikalische
Interpretation von räumlichen und zeitlichen Angaben in dem Falle
der allgemeinen Relativitätstheorie. Dadurch habe ich mich einer
gewissen Unsauberkeit schuldig gemacht, von der wir aus der speziellen
Relativitätstheorie wissen, daß sie keineswegs unwichtig und
verzeihlich ist. Nun ist es hohe Zeit, daß wir diese Lücke ausfüllen;
ich bemerke aber im voraus, daß diese Angelegenheit an die Geduld und
das Abstraktionsvermögen des Lesers keine geringen Anforderungen stellt.


Wir gehen wieder von oft herangezogenen, ganz speziellen Fällen aus.
Es liege ein raum-zeitliches Gebiet vor, in welchem relativ zu einem
Bezugskörper K von passend gewähltem Bewegungszustande kein
Gravitationsfeld existiere; in bezug auf das ins Auge gefaßte Gebiet
ist dann K ein Galileischer Bezugskörper, und es gelten
relativ zu K die Ergebnisse der speziellen Relativitätstheorie.
Dasselbe Gebiet denken wir uns auf einen zweiten Bezugskörper K′
bezogen, welcher relativ zu K gleichförmig rotiert. Um die
Vorstellung zu fixieren, denken wir uns K′ in Gestalt einer
ebenen Kreisscheibe, welche um ihren Mittelpunkt in ihrer Ebene
gleichmäßig rotiere. Ein exzentrisch auf der Kreisscheibe K′
sitzender Beobachter empfindet eine Kraft, die in radialer Richtung
nach außen wirkt, und welche von einem relativ zum ursprünglichen
Bezugskörper K ruhenden Beobachter als Trägheitswirkung
(Zentrifugalkraft) gedeutet wird. Der auf der Scheibe sitzende
Beobachter möge jedoch seine Scheibe als „ruhenden“ Bezugskörper
auffassen; dazu ist er auf Grund des allgemeinen Relativitätsprinzips
berechtigt. Die auf ihn und überhaupt auf relativ zur Scheibe ruhende
Körper wirkende Kraft faßt er als Wirkung eines Gravitationsfeldes
auf. Allerdings ist die räumliche Verteilung dieses Schwerefeldes eine
solche, wie sie nach Newtons Theorie der Gravitation nicht
möglich wäre⁠[14]. Aber da der Beobachter an die allgemeine Relativität
glaubt, stört ihn dies nicht; er hofft mit Recht, daß ein allgemeines
Gravitationsgesetz sich aufstellen lasse, welches nicht nur die
Bewegung der Gestirne, sondern auch das von ihm wahrgenommene Kraftfeld
richtig erklärt.


Dieser Beobachter experimentiert auf seiner Kreisscheibe mit Uhren
und Maßstäben, in der Absicht, auf Grund seiner Beobachtungen exakte
Definitionen für die Bedeutung zeitlicher und räumlicher Angaben in
bezug auf die Kreisscheibe K′ zu erhalten. Was wird er dabei für
Erfahrungen machen?


Der Beobachter stelle zunächst von zwei gleich beschaffenen Uhren die
eine in dem Mittelpunkte der Kreisscheibe, die andere an der Peripherie
derselben auf, so daß sie relativ zur Kreisscheibe ruhen. Wir fragen
uns zunächst, ob diese beiden Uhren gleich schnell gehen vom Standpunkt
des nicht rotierenden Galileischen Bezugskörpers K. Von
diesem aus beurteilt, hat die Uhr im Mittelpunkt keine Geschwindigkeit,
während die Uhr an der Peripherie infolge der Rotation relativ zu
K in Bewegung ist. Nach einem Ergebnis des § 12 geht deshalb die
letztere Uhr von K aus beurteilt dauernd langsamer als die Uhr
in der Mitte der Kreisscheibe. Dasselbe müßte offenbar auch der Mann
auf der Kreisscheibe konstatieren, den wir uns etwa als in der Mitte
der Kreisscheibe neben der dortigen Uhr sitzend vorstellen wollen. Auf
unserer Kreisscheibe und allgemeiner in jedem Gravitationsfelde wird
also eine Uhr rascher oder langsamer laufen, je nach der Stelle, in
welcher die Uhr (ruhend) angeordnet ist. Eine vernünftige Definition
der Zeit mit Hilfe von relativ zum Bezugskörper ruhend angeordneten
Uhren ist also nicht möglich. Eine ähnliche Schwierigkeit zeigt sich,
wenn man versucht, unsere frühere Definition der Gleichzeitigkeit hier
anzuwenden, worauf ich nicht weiter eingehen will.


Aber auch die Definition der räumlichen Koordinaten macht hier zunächst
unüberwindliche Schwierigkeiten. Legt nämlich der Beobachter seinen
Einheitsmaßstab (ein relativ zum Scheibenradius kleines Stäbchen) an
der Scheibenperipherie tangential zu dieser an, so ist derselbe, vom
Galileischen System aus beurteilt, kürzer als 1, weil bewegte
Körper nach § 12 in Richtung der Bewegung eine Verkürzung erfahren.
Legt er dagegen seinen Maßstab in die Richtung des Scheibenradius, so
erfährt er, von K aus beurteilt, keine Verkürzung. Mißt der
Beobachter also zuerst den Scheibenumfang, dann den Scheibendurchmesser
mit seinem Maßstab und dividiert er hierauf diese beiden Meßergebnisse,
so findet er als Quotienten nicht die bekannte Zahl π = 3,14...,
sondern eine größere Zahl, während sich auf einer relativ zu K
ruhenden Scheibe bei dieser Operation natürlich exakt π ergeben
müßte. Damit ist bereits bewiesen, daß die Sätze der Euklidischen
Geometrie auf der rotierenden Scheibe und damit überhaupt in einem
Gravitationsfelde nicht genau gelten können, wenigstens wenn man dem
Stäbchen überall und in jeder Orientierung die Länge 1 zuschreibt.
Auch der Begriff der geraden Linie verliert damit seine Bedeutung. Wir
sind deshalb nicht in der Lage, relativ zur Scheibe die Koordinaten
x, y, z nach der in der speziellen Relativität
benutzten Methode exakt zu definieren. Solange jedoch Koordinaten und
Zeiten der Ereignisse nicht definiert sind, haben auch Naturgesetze, in
welchen diese vorkommen, keine exakte Bedeutung.





Damit scheinen alle Überlegungen, welche wir bisher über allgemeine
Relativität angestellt haben, in Frage gestellt zu sein. In der Tat
bedarf es eines subtilen Umweges, um das Postulat der allgemeinen
Relativität exakt anzuwenden. Auf diesen wird der Leser durch die
folgenden Betrachtungen vorbereitet werden.





  § 24. Euklidisches und Nicht-Euklidisches Kontinuum.






Die Oberfläche eines Marmortisches liegt vor mir. Ich kann von
irgendeinem Punkte derselben aus zu irgendeinem anderen gelangen,
indem ich eine (große) Anzahl von Malen immer zu einem „benachbarten“
Punkte übergehe, oder — anders gesagt — indem ich von Punkt zu Punkt
gehe, ohne „Sprünge“ zu machen. Was hier unter „benachbart“ und unter
„Sprüngen“ zu verstehen ist, empfindet der Leser gewiß mit genügender
Schärfe (wenn er nicht gar zu anspruchsvoll ist). Dies drücken wir aus,
indem wir sagen, die Oberfläche sei ein Kontinuum.


Wir denken uns nun eine große Zahl gegen die Abmessungen der
Tischplatte kleiner Stäbchen hergestellt, die alle gleich lang seien.
Darunter ist verstanden, daß die Enden je zweier davon zur Deckung
gebracht werden können. Wir legen nun vier dieser Stäbchen auf der
Tischplatte so aufeinander, daß ihre Enden ein Viereck bilden,
dessen Diagonalen gleich lang seien (Quadrat). Zur Erzielung der
Diagonalengleichheit bedienen wir uns eines Probierstäbchens. An dies
Quadrat legen wir gleiche Quadrate an, welche mit ihm ein Stäbchen
gemein haben, an diese letzteren Quadrate ebenfalls usw. Schließlich
ist die ganze Tischplatte mit Quadraten belegt, derart, daß jede
Quadratseite zu zwei Quadraten und jede Quadratecke zu vier Quadraten
gehört.


Daß man dies Geschäft ausführen kann, ohne in die größten
Schwierigkeiten zu geraten, ist ein wahres Wunder! Man braucht nur
an folgendes zu denken. Stoßen an einer Ecke bereits drei Quadrate
zusammen, so sind auch von dem vierten bereits zwei Seiten gelegt. Wie
die beiden anderen Seiten desselben gelegt werden müssen, ist dadurch
schon vollkommen bestimmt. Jetzt kann ich das Viereck aber nicht mehr
zurechtrücken, damit seine Diagonalen gleich werden. Sind sie es von
selbst schon, so ist dies eine besondere Gunst der Tischplatte und der
Stäbchen, über die ich mich nur dankbar wundern kann! Analoger Wunder
müssen wir viele erleben, wenn die Konstruktion gelingen soll.


Ist wirklich alles glatt vonstatten gegangen, so sage ich, daß die
Punkte der Tischplatte ein Euklidisches Kontinuum mit Bezug auf das
benutzte Stäbchen als Strecke bilden. Hebe ich eine Quadratecke als
„Anfangspunkt“ hervor, so kann ich jede andere Quadratecke mit Bezug
auf den Anfangspunkt durch zwei Zahlen charakterisieren. Ich brauche
nur anzugeben, wie viele Stäbchen ich nach „rechts“ und wie viele
darauf nach „oben“ ich vom Anfangspunkte zurücklegen muß, um zu der ins
Auge gefaßten Quadratecke zu gelangen. Diese zwei Zahlen sind dann die
„Kartesischen Koordinaten“ der letzteren mit Bezug auf das durch die
gelegten Stäbchen bestimmte „Kartesische Koordinatensystem“.


Daß es auch Fälle geben muß, in denen das Experiment mißlingt, erkennen
wir an folgender Modifikation des Gedankenexperiments. Die Stäbchen
sollen sich nach Maßgabe der Temperatur „ausdehnen“. Die Tischplatte
werde in der Mitte erwärmt, am Rande aber nicht, wobei zwei unserer
Stäbchen immer noch an jeder Stelle des Tisches zur Deckung gebracht
werden können. Aber unsere Quadratkonstruktion muß dabei notwendig
in Unordnung kommen, weil sich die Stäbchen der inneren Partie der
Tischplatte ausdehnen, die der äußeren Partie aber nicht.


Mit Bezug auf unsere Stäbchen — als Einheitsstrecken definiert — ist
die Tischplatte nun kein Euklidisches Kontinuum mehr, und wir sind
auch nicht mehr in der Lage, unmittelbar mit ihrer Hilfe Kartesische
Koordinaten zu definieren, da die obige Konstruktion sich nicht mehr
durchführen läßt. Da es aber andere Dinge gibt, welche durch die
Temperatur des Tisches nicht in analoger Weise wie die Stäbchen (oder
überhaupt nicht) beeinflußt werden, gelingt es, in einer natürlichen
Weise die Auffassung aufrecht zu erhalten, daß die Tischplatte ein
„Euklidisches Kontinuum“ sei; es gelingt in befriedigender Weise
durch eine subtilere Festsetzung über das Messen bzw. Vergleichen von
Strecken.


Würden aber Stäbchen jeder Art, d. h. jeden Materials, sich in
gleicher Weise temperaturempfindlich verhalten auf der
verschieden temperierten Tischplatte, und hätten wir kein anderes
Mittel, die Wirkung der Temperatur wahrzunehmen, als das geometrische
Verhalten der Stäbchen bei Experimenten analog dem oben beschriebenen,
so könnte es wohl zweckmäßig sein, zwei Punkten des Tisches die
Entfernung 1 zuzuschreiben, wenn sich die Enden eines unserer Stäbchen
mit ihnen zur Deckung bringen lassen; denn wie sollte man ohne die
krasseste Willkür die Strecke anders definieren? Dann aber muß die
Kartesische Koordinatenmethode verlassen und durch eine andere
ersetzt werden, welche die Gültigkeit der Euklidischen Geometrie für
starre Körper nicht voraussetzt⁠[15]. Der Leser bemerkt, daß die hier
geschilderte Situation derjenigen entspricht, welche das allgemeine
Relativitätspostulat mit sich gebracht hat (§ 23).








  § 25. Gaußsche Koordinaten.







  
      Fig. 3.
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Diese analytisch-geometrische Behandlungsweise läßt sich nach
Gauß folgendermaßen erzielen. Man denke sich auf die Tischplatte
ein System von beliebigen Kurven (vgl. Fig. 3) aufgezeichnet, die
wir als u-Kurven bezeichnen und die wir je mit einer Zahl
bezeichnen. In der Zeichnung sind die Kurven u = 1,
u = 2 und u = 3 gezeichnet. Zwischen den Kurven
u = 1 und u = 2 sind aber noch unendlich viele eingezeichnet zu denken,
welche allen reellen Zahlen entsprechen, die zwischen 1 und 2 liegen.
Es liegt dann ein System von u-Kurven vor, welche unendlich
dicht die ganze Tischplatte überdecken. Keine u-Kurve soll
eine andere schneiden, sondern durch jeden Punkt der Tischplatte eine
und nur eine Kurve hindurchgehen. Zu jedem Punkte der Oberfläche der
Tischplatte gehört dann ein ganz bestimmter u-Wert. Ebenso
sei auf die Fläche ein System von v Kurven gezeichnet, die
denselben Bedingungen genügen, in entsprechender Weise mit Zahlen
versehen sind, aber ebenfalls beliebig gestaltet sein können. Es
gehört dann zu jedem Punkte der Tischplatte ein u-Wert und ein
v-Wert, welche beiden Zahlen wir die Koordinaten der Tischplatte
nennen (Gaußsche Koordinaten). Der Punkt P der Figur hat
beispielsweise die Gaußschen Koordinaten
u = 3; v = 1. Zwei benachbarten Punkten P und P′ auf der Fläche
entsprechen dann die Koordinaten


P : u; v

P′ : u + du, v + dv,



wobei du und dv sehr kleine Zahlen bedeuten. Der mit
einem Stäbchen gemessene Abstand von P und P′ sei die
ebenfalls sehr kleine Zahl ds. Dann ist nach Gauß:


ds² = g11 du² +
2 g12 du dv + g22 dv²,





wobei g11, g12, g22 Größen sind, die in
ganz bestimmter Weise von u und v abhängen. Die Größen
g11, g12 und g22 bestimmen das Verhalten
der Stäbchen relativ zu den u-Kurven und v-Kurven,
also auch relativ zur Oberfläche des Tisches. In dem Falle, daß die
Punkte der betrachteten Oberfläche in bezug auf die Meßstäbchen ein
Euklidisches Kontinuum bilden, aber auch nur dann, ist es möglich, die
u-Kurven und v-Kurven so zu zeichnen und mit Zahlen zu
versehen, daß einfach


ds² = du² + dv²


wird. Dann sind die u-Kurven und v-Kurven gerade Linien
im Sinne der Euklidischen Geometrie, welche aufeinander senkrecht
stehen. Dann sind die Gaußschen Koordinaten einfach Kartesische.
Man sieht, daß die Gaußschen Koordinaten weiter nichts sind als
eine Zuordnung je zweier Zahlen zu den Punkten der betrachteten Fläche,
derart, daß räumlich benachbarten Punkten sehr wenig verschiedene
Zahlenwerte zugeordnet sind.


Diese Betrachtungen gelten zunächst für ein Kontinuum von zwei
Dimensionen. Aber die Gaußsche Methode läßt sich auch auf
ein Kontinuum von drei, vier oder mehr Dimensionen anwenden. Liegt
z. B. ein Kontinuum von vier Dimensionen vor, so ergibt sich folgende
Darstellung. Jedem Punkte des Kontinuums werden willkürlich vier Zahlen
x1, x2, x3, x4 zugeordnet,
welche „Koordinaten“ genannt werden. Benachbarten Punkten entsprechen
benachbarte Koordinatenwerte. Ist nun benachbarten Punkten P
und P′ ein durch Messungen ermittelbarer, physikalisch
wohldefinierter Abstand ds zugeordnet, so gilt eine Formel:


ds² = g11 dx1² +
2 g12 dx1 dx2 ··· +
g44 dx4² ,


wobei die Größen g11 usw. Werte haben, die mit dem Orte im Kontinuum
variieren. Nur in dem Falle, daß das Kontinuum ein Euklidisches ist,
ist es möglich, die Koordinaten x1···x4 den Punkten
des Kontinuums so zuzuordnen, daß einfach


ds² = dx1² + dx2² +
dx3² + dx4²


wird. Dann gelten in dem vierdimensionalen Kontinuum Beziehungen,
welche den in unseren dreidimensionalen Messungen geltenden analog sind.





Die angegebene Gaußsche Darstellung für ds² ist übrigens
nicht immer möglich, sondern nur dann, wenn genügend kleine Gebiete
des betrachteten Kontinuums sich als Euklidische Kontinua ansehen
lassen. Dies trifft z. B. offenbar zu in dem Falle der Tischplatte
und örtlich veränderlicher Temperatur. Denn für einen kleinen Teil
der Platte ist die Temperatur praktisch konstant, das geometrische
Verhalten der Stäbchen also beinahe ein solches, wie es gemäß
den Regeln der Euklidischen Geometrie sein soll. Die Unstimmigkeiten
der Quadratkonstruktion des vorigen Paragraphen treten somit erst
deutlich zutage, wenn die Konstruktion des vorigen Paragraphen über
einen beträchtlichen Teil der Tischplatte ausgedehnt wird.


Zusammenfassend können wir also sagen: Gauß hat eine Methode
zur mathematischen Behandlung beliebiger Kontinua erfunden, in denen
Maßbeziehungen („Abstand“ benachbarter Punkte) definiert sind.
Jedem Punkte des Kontinuums werden so viel Zahlen (Gaußsche
Koordinaten) zugeordnet, als das Kontinuum Dimensionen hat. Die
Zuordnung erfolgt so, daß die Eindeutigkeit der Zuordnung gewahrt
wird, und daß benachbarten Punkten unendlich wenig verschiedene Zahlen
(Gaußsche Koordinaten) zugeordnet werden. Das Gaußsche
Koordinatensystem ist eine logische Verallgemeinerung des Kartesischen
Koordinatensystems. Es ist auch auf Nicht-Euklidische Kontinua
anwendbar, allerdings nur dann, wenn kleine Teile des betrachteten
Kontinuums mit Bezug auf das definierte Maß („Abstand“) sich mit desto
größerer Annäherung Euklidisch verhalten, je kleiner der ins Auge
gefaßte Teil des Kontinuums ist.





  § 26. Das raum-zeitliche Kontinuum der speziellen Relativitätstheorie
  als Euklidisches Kontinuum.






Wir sind nun in der Lage, den in § 17 nur lose angedeuteten Gedanken
Minkowskis etwas genauer zu formulieren. Gemäß der speziellen
Relativitätstheorie sind für die Beschreibung des raum-zeitlichen,
vierdimensionalen Kontinuums gewisse Koordinatensysteme bevorzugt,
die wir „Galileische Koordinatensysteme“ genannt haben. Für
sie sind die vier Koordinaten x, y, z, t,
welche ein Ereignis oder — anders ausgedrückt — einen Punkt des
vierdimensionalen Kontinuums bestimmen, in einfacher Weise physikalisch
definiert, wie im ersten Teile dieses Büchleins ausführlich dargelegt
ist. Für den Übergang von einem Galileischen System zu
einem anderen, relativ zum ersten gleichförmig bewegten gelten die
Gleichungen der Lorentz-Transformation, welche die Basis für die
Ableitung der Konsequenzen der speziellen Relativitätstheorie bilden
und ihrerseits weiter nichts sind als der Ausdruck der universellen
Gültigkeit des Lichtausbreitungsgesetzes für alle Galileischen
Bezugssysteme.


Minkowski fand, daß die Lorentz-Transformationen folgenden
einfachen Bedingungen genügen. Es seien zwei benachbarte Ereignisse
betrachtet, deren gegenseitige Lage im vierdimensionalen Kontinuum
durch die räumlichen Koordinatendifferenzen dx, dy,
dz und die zeitliche Differenz dt bezüglich eines
Galileischen Bezugskörpers K gegeben seien. Bezüglich
eines zweiten Galileischen Systems seien die analogen
Differenzen für diese beiden Ereignisse dx′, dy′,
dz′, dt′. Dann gilt zwischen ihnen stets die Bedingung:


d x2 + d y2 +
d z2 − c2 d t2
= d x′2 + d y′2
+ d z′2 − c2 d t′2 .


Diese Bedingung hat die Gültigkeit der Lorentz-Transformation zur
Konsequenz. Wir können das so aussprechen: Die zu zwei benachbarten
Punkten des vierdimensionalen raum-zeitlichen Kontinuums gehörige Größe


d s2 = d x2
+ d y2 + d z2 −
c2 d t2



hat für alle bevorzugten (Galileischen) Bezugskörper denselben
Wert. Ersetzt man x, y, z, √−1  c t
durch x1, x2, x3, x4, so erhält
man auch das Resultat, daß


d s2 = d x12
+ d x22 + dx 32 +
d x42


von der Wahl des Bezugskörpers unabhängig ist. Die Größe ds
nennen wir den „Abstand“ der beiden Ereignisse oder vierdimensionalen
Punkte.





Wählt man also die imaginäre Variable √−1  c t statt des
reellen t als Zeitvariable, so kann man das raum-zeitliche
Kontinuum gemäß der speziellen Relativitätstheorie als ein
„Euklidisches“ vierdimensionales Kontinuum auffassen, wie aus den
Darlegungen des letzten Paragraphen hervorgeht.





  § 27. Das raum-zeitliche Kontinuum der allgemeinen Relativitätstheorie
  ist kein Euklidisches Kontinuum.






Im ersten Teil dieses Schriftchens haben wir uns raum-zeitlicher
Koordinaten bedienen können, welche eine einfache, direkte
physikalische Interpretation zuließen und welche sich nach §
26 als vierdimensionale Kartesische Koordinaten deuten lassen.
Dies war möglich auf Grund des Gesetzes von der Konstanz der
Lichtgeschwindigkeit, an welchem aber nach § 21 die allgemeine
Relativitätstheorie nicht festhalten kann; wir kamen vielmehr zu
dem Ergebnis, daß gemäß letzterer Theorie die Lichtgeschwindigkeit
stets von den Koordinaten abhängen muß, falls ein Gravitationsfeld
vorhanden ist. Wir fanden ferner in § 23 an einem speziellen Beispiel,
daß das Vorhandensein eines Gravitationsfeldes jene Definition der
Koordinaten und der Zeit unmöglich macht, welche bei der speziellen
Relativitätstheorie zum Ziele geführt hat.


Mit Rücksicht auf diese Überlegungsergebnisse kommen wir zu der
Überzeugung, daß gemäß dem allgemeinen Relativitätsprinzip das
raum-zeitliche Kontinuum nicht als ein Euklidisches aufgefaßt werden
kann, sondern daß hier der allgemeine Fall vorliegt, welchen wir für
das zweidimensionale Kontinuum der Tischplatte von örtlich variabler
Temperatur kennen gelernt haben. Wie es dort unmöglich war, aus
gleichen Stäbchen ein Kartesisches Koordinatensystem zu konstruieren,
so ist es hier unmöglich, aus starren Körpern und Uhren ein System
(Bezugskörper) aufzubauen, derart, daß relativ zueinander fest
angeordnete Maßstäbe und Uhren direkt Ort und Zeit anzeigen. Dies ist
das Wesen der Schwierigkeit, die uns in § 23 entgegentrat.


Die Darlegungen des § 25 und § 26 zeigen aber den Weg, auf dem diese
Schwierigkeit zu überwinden ist. Wir beziehen das vierdimensionale
raum-zeitliche Kontinuum in willkürlicher Weise auf Gaußsche
Koordinaten. Jedem Punkte des Kontinuums (Ereignis) ordnen wir
vier Zahlen x1, x2, x3, x4
(Koordinaten) zu, die gar keine unmittelbare physikalische Bedeutung
besitzen, sondern nur dazu dienen, die Punkte des Kontinuums in
bestimmter, aber willkürlicher Weise zu numerieren. Solche Koordinaten
legen wir der Beschreibung der physikalischen Vorgänge zugrunde.
Bei dieser Zuordnung ist zwischen „räumlicher“ und „zeitlicher“
Ausdehnung nicht unterschieden, so daß man nicht mehr die Koordinaten
x1, x2, x3 als „räumliche“, die
Koordinaten x4 als „zeitliche“ unterscheiden kann.


Der Leser könnte denken, daß eine derartige Beschreibung der Welt
gänzlich unzulänglich wäre. Was bedeutet es, wenn ich einem Ereignis
die bestimmten Koordinaten x1, x2, x3,
x4 zuschreibe, wenn diese Koordinaten selbst nichts
bedeuten? Bei genauerer Überlegung zeigt sich jedoch, daß diese Sorge
nicht begründet ist. Betrachten wir z. B. einen beliebig bewegten
materiellen Punkt! Hätte derselbe nur eine momentane Existenz ohne
Dauer, so wäre er raum-zeitlich beschrieben durch ein einziges
Wertsystem x1, x2, x3, x4.
Seine bleibende Existenz ist also durch eine unendlich große Zahl
von solchen Wertsystemen charakterisiert, deren Koordinatenwerte
sich stetig aneinanderreihen; dem Massenpunkte entspricht also eine
(eindimensionale) Linie im vierdimensionalen Kontinuum. Vielen bewegten
Punkten entsprechen ebensowohl derartige Linien in unserem Kontinuum.
Die einzigen diese Punkte betreffenden Aussagen, welche physikalische
Realität beanspruchen können, sind in Wahrheit die Aussagen über
Begegnungen dieser Punkte. Eine solche Begegnung äußert sich in
unserer mathematischen Darstellung darin, daß die beiden Linien,
welche die betreffenden Punktbewegungen darstellen, ein gewisses
System x1, x2, x3, x4 von
Koordinatenwerten gemeinsam haben. Daß solche Begegnungen in Wahrheit
die einzigen tatsächlichen Konstatierungen zeit-räumlichen Charakters
sind, die wir in physikalischen Aussagen antreffen, wird der Leser nach
eingehender Überlegung ohne Zweifel zugeben.





Wenn wir früher die Bewegung eines materiellen Punktes relativ zu
einem Bezugskörper beschrieben, gaben wir nichts weiter an, als die
Begegnungen dieses Punktes mit bestimmten Punkten des Bezugskörpers.
Auch die zugehörigen Zeitangaben lassen sich auflösen in die
Konstatierung von Begegnungen des Körpers mit Uhren, in Verbindung mit
Konstatierung der Begegnung von Uhrzeigern mit bestimmten Punkten von
Zifferblättern. Nicht anders ist es mit den räumlichen Messungen durch
Maßstäbe, wie einiges Nachdenken zeigt.


Allgemein gilt: „Jede physikalische Beschreibung löst sich auf in eine
Zahl von Aussagen, deren jede sich auf die raum-zeitliche Koinzidenz
zweier Ereignisse A und B bezieht. Jede solche Aussage drückt sich
in Gaußschen Koordinaten durch die Übereinstimmung der vier
Koordinaten x1, x2, x3, x4
aus.“ Die Beschreibung des zeit-räumlichen Kontinuums durch
Gaußsche Koordinaten ersetzt also tatsächlich die Beschreibung
mit Hilfe eines Bezugskörpers vollständig, ohne an den Mängeln der
letzteren Beschreibungsmethode zu kranken; sie ist nicht an den
Euklidischen Charakter des darzustellenden Kontinuums gebunden.





  § 28. Exakte Formulierung des allgemeinen Relativitätsprinzips.






Nun sind wir in der Lage, die in § 18 gegebene vorläufige Formulierung
des allgemeinen Relativitätsprinzips durch eine exakte zu ersetzen.
Die damalige Fassung, „Alle Bezugskörper K, K′ usw.
sind für die Naturbeschreibung (Formulierung der allgemeinen
Naturgesetze) gleichwertig, welches auch deren Bewegungszustand sein
mag“, läßt sich nicht aufrecht erhalten, weil die Benutzung von
starren Bezugskörpern bei der raum-zeitlichen Beschreibung im Sinne
der bei der speziellen Relativitätstheorie befolgten Methode im
allgemeinen nicht möglich ist. An die Stelle des Bezugskörpers hat
das Gaußsche Koordinatensystem zu treten. Dem Grundgedanken
des allgemeinen Relativitätsprinzips entspricht die Aussage: „Alle
Gaußschen Koordinatensysteme sind für die Formulierung der allgemeinen
Naturgesetze prinzipiell gleichwertig.“


Man kann dies allgemeine Relativitätsprinzip auch noch in einer anderen
Form aussprechen, die dasselbe noch deutlicher als die naturgemäße
Erweiterung des speziellen Relativitätsprinzips erkennen läßt. Nach der
speziellen Relativitätstheorie gehen die die allgemeinen Naturgesetze
ausdrückenden Gleichungen in Gleichungen derselben Form über, wenn man
statt der Raum-Zeit-Variabeln x, y, z, t
eines (Galileischen) Bezugskörpers K unter Benutzung der
Lorentz-Transformation die Raum-Zeit-Variabeln x′, y′,
z′, t′ eines neuen Bezugskörpers K′ einführt. Nach
der allgemeinen Relativitätstheorie dagegen müssen die Gleichungen
bei Anwendung beliebiger Substitutionen der Gaußschen
Variabeln x1, x2, x3, x4
in Gleichungen derselben Form übergehen; denn jede Transformation
(nicht nur die Lorentz-Transformation) entspricht dem Übergang eines
Gaußschen Koordinatensystems in ein anderes.


Will man auf die gewohnte dreidimensionale Anschauung nicht
verzichten, so kann man die Entwicklung, welche wir den Grundgedanken
der allgemeinen Relativitätstheorie durchmachen sehen, wie folgt
charakterisieren: Die spezielle Relativitätstheorie bezieht sich
auf Galileische Gebiete, d. h. auf solche, in welchen kein
Gravitationsfeld existiert. Als Bezugskörper dient dabei ein
Galileischer Bezugskörper, d. h. ein starrer Körper von so
gewähltem Bewegungszustande, daß relativ zu ihm der Galileische
Satz von der gleichförmig-geradlinigen Bewegung „isolierter“
materieller Punkte gilt.


Gewisse Überlegungen legen es nahe, dieselben Galileischen
Gebiete auch auf Nicht-Galileische Bezugskörper zu beziehen.
Relativ zu diesen ist dann ein Gravitationsfeld von spezieller Art
vorhanden (§ 20 und § 23).


Starre Körper mit Euklidischen Eigenschaften gibt es aber in
Gravitationsfeldern nicht; die Fiktion des starren Bezugskörpers
versagt daher in der allgemeinen Relativitätstheorie. Auch wird der
Gang der Uhren von Gravitationsfeldern beeinflußt, derart, daß eine
physikalische Zeitdefinition direkt mit Hilfe von Uhren durchaus nicht
jenen Grad der Evidenz hat wie in der speziellen Relativitätstheorie.


Man benutzt daher nichtstarre Bezugskörper, welche nicht nur als
Ganzes beliebig bewegt sind, sondern auch während ihrer Bewegung
beliebige Gestaltsänderungen erleiden. Zur Definition der Zeit dienen
Uhren von beliebigem, noch so unregelmäßigem Ganggesetz, welche man
sich je an einem Punkte des nichtstarren Bezugskörpers befestigt
zu denken hat, und welche nur die eine Bedingung erfüllen, daß die
gleichzeitig wahrnehmbaren Angaben örtlich benachbarter Uhren unendlich
wenig voneinander abweichen. Dieser nichtstarre Bezugskörper, den
man nicht mit Unrecht als „Bezugsmolluske“ bezeichnen könnte, ist
im wesentlichen gleichwertig mit einem beliebigen Gaußschen
vierdimensionalen Koordinatensystem. Was der „Molluske“ gegenüber dem
Gaußschen Koordinatensystem eine gewisse Anschaulichkeit gibt,
ist die (eigentlich unberechtigte) formale Wahrung der Sonderexistenz
der räumlichen Koordinaten gegenüber der Zeitkoordinate. Jeder Punkt
der Molluske wird als Raumpunkt behandelt, jeder relativ zu ihm
ruhende materielle Punkt schlechthin als ruhend, solange die Molluske
als Bezugskörper behandelt wird. Das allgemeine Relativitätsprinzip
fordert, daß alle diese Mollusken mit gleichem Rechte und gleichem
Erfolge bei der Formulierung der allgemeinen Naturgesetze als
Bezugskörper verwendet werden können; die Gesetze sollen von der
Molluskenwahl gänzlich unabhängig sein.


In der weitgehenden Beschränkung, welche hierdurch den Naturgesetzen
auferlegt wird, liegt die Spürkraft, die dem allgemeinen
Relativitätsprinzip innewohnt.





  § 29. Die Lösung des Gravitationsproblems auf Grund des allgemeinen
  Relativitätsprinzips.






Ist der Leser allen bisherigen Überlegungen gefolgt, so bereitet
ihm das Verstehen der zur Lösung des Gravitationsproblems führenden
Methoden keine Schwierigkeiten mehr.


Wir gehen aus von der Betrachtung eines Galileischen Gebietes,
d. h. eines solchen, in welchem relativ zum Galileischen
Bezugskörper K kein Gravitationsfeld existiert. Das Verhalten
von Maßstäben und Uhren in bezug auf K ist aus der speziellen
Relativitätstheorie bekannt, ebenso das Verhalten von „isolierten“
Massepunkten; letztere bewegen sich geradlinig und gleichförmig.


Nun beziehen wir dies Gebiet auf ein beliebiges Gaußsches
Koordinatensystem bzw. auf eine „Molluske“ als Bezugskörper K′.
In bezug auf K′ besteht dann ein Gravitationsfeld G
(besonderer Art). Durch bloße Umrechnung erfährt man dann das Verhalten
von Maßstäben und Uhren sowie von frei beweglichen materiellen Punkten
in bezug auf K′. Dies Verhalten interpretiert man als das
Verhalten von Maßstäben, Uhren, materiellen Punkten unter der Wirkung
des Gravitationsfeldes G. Man führt hierauf die Hypothese ein,
daß die Einwirkung des Gravitationsfeldes auf Maßstäbe, Uhren und frei
bewegliche, materielle Punkte auch dann nach denselben Gesetzen vor
sich gehe, wenn sich das herrschende Gravitationsfeld nicht
durch bloße Koordinatentransformation aus dem Galileischen
Spezialfall ableiten läßt.


Hierauf untersucht man das raum-zeitliche Verhalten des aus dem
Galileischen Spezialfall durch bloße Transformation der
Koordinaten abgeleiteten Gravitationsfeldes G und formuliert
dies Verhalten durch ein Gesetz, das immer gültig ist, wie auch der zur
Beschreibung benutzte Bezugskörper (Molluske) gewählt werden mag.


Dies Gesetz ist noch nicht das allgemeine Gesetz des
Gravitationsfeldes, da das studierte Gravitationsfeld G von
spezieller Art ist. Zur Auffindung des allgemeinen Feldgesetzes der
Gravitation bedarf es noch einer Verallgemeinerung des so gewonnenen
Gesetzes, welche jedoch ohne Willkür aufgefunden werden kann, unter
Berücksichtigung der folgenden Forderungen:



  
    a) 

    Die gesuchte Verallgemeinerung muß ebenfalls dem
    allgemeinen Relativitätspostulat genügen.

  

  
    b) 

    Ist Materie in dem betrachteten Gebiete vorhanden, so
    ist für deren felderregende Wirkung allein deren träge Masse, also gemäß
    § 15 allein deren Energie maßgebend.

  

  
    
     c) 

    Gravitationsfeld und Materie zusammen müssen dem
    Gesetz von der Erhaltung der Energie (und des Impulses) genügen.

  




Endlich erlaubt uns das allgemeine Relativitätsprinzip, den Einfluß
des Gravitationsfeldes auf den Ablauf aller derjenigen Vorgänge zu
ermitteln, die für den Fall des Fehlens eines Gravitationsfeldes
nach bekannten Gesetzen ablaufen, d. h. in den Rahmen der speziellen
Relativitätstheorie bereits eingefügt sind. Man verfährt dabei im
Prinzip nach der Methode, die vorhin für Maßstäbe, Uhren und frei
bewegliche Massenpunkte auseinandergesetzt worden ist.


Die so aus dem allgemeinen Relativitätspostulat abgeleitete
Gravitationstheorie zeichnet sich nicht nur durch ihre Schönheit aus,
sie beseitigt nicht nur den in § 21 beleuchteten Mangel, welcher
der klassischen Mechanik anhaftet, sie interpretiert nicht nur das
Erfahrungsgesetz von der Gleichheit der trägen und schweren Masse,
sondern sie hat auch schon ein Beobachtungsergebnis der Astronomie
erklärt, dem gegenüber die klassische Mechanik versagt.


Spezialisiert man sie nämlich auf den Fall, daß die Gravitationsfelder
als schwach anzusehen sind, und daß alle Massen sich mit
Geschwindigkeiten gegen das Koordinatensystem bewegen, welche gegen
die Lichtgeschwindigkeit klein sind, so erhält man zunächst die
Newtonsche Theorie als erste Näherung; letztere ergibt sich
also hier ohne besondere Annahme, während Newton die dem
Quadrat der Distanz aufeinander wirkender Massenpunkte indirekt
proportionale Anziehungskraft als Hypothese einführen mußte. Vergrößert
man die Genauigkeit der Rechnung, so treten Abweichungen von der
Newtonschen Theorie auf, die sich allerdings wegen ihrer
Kleinheit fast alle noch der Beobachtung entziehen müssen.


Eine dieser Abweichungen müssen wir hier speziell ins Auge fassen.
Nach der Newtonschen Theorie bewegt sich ein Planet um die
Sonne in einer Ellipse, welche gegenüber den Fixsternen ihre Lage
ewig beibehalten würde, wenn von der Einwirkung der anderen Planeten
auf den betrachteten Planeten und von der Eigenbewegung der Fixsterne
abgesehen werden könnte. Korrigiert man daher die beobachtete
Bewegung der Planeten auf diese beiden Einflüsse, so soll als Bahn
des Planeten eine gegen die Fixsterne feste Ellipse resultieren, wenn
Newtons Theorie genau richtig ist. Bei allen Planeten, bis auf
den der Sonne nächsten Planeten Merkur, hat sich diese mit eminenter
Genauigkeit prüfbare Konsequenz mit der Genauigkeit bestätigt, welche
die heute erreichbare Beobachtungsschärfe zu erzielen gestattet.
Vom Planeten Merkur aber wissen wir seit Leverrier, daß die
Ellipse seiner im obigen Sinne korrigierten Bahn gegenüber den
Fixsternen nicht feststeht, sondern, wenn auch ungeheuer langsam,
in der Ebene der Bahn im Sinne der Umlaufbewegung rotiert. Für
diese Rotationsbewegung der Bahnellipse ergab sich ein Betrag von
43 Bogen-Sekunden pro Jahrhundert, welcher Betrag bis auf wenige
Bogen-Sekunden sichergestellt ist. Die Erklärung dieser Erscheinung
nach der klassischen Mechanik gelingt nur unter Zugrundelegung
von ausschließlich ihrethalben ersonnenen, wenig wahrscheinlichen
Hypothesen.


Nach der allgemeinen Relativitätstheorie ergibt sich, daß jede
Planetenellipse um die Sonne in der oben angegebenen Weise notwendig
rotieren muß, daß diese Rotation bei allen Planeten außer Merkur
zu klein ist, um bei der heute erzielbaren Beobachtungsgenauigkeit
festgestellt zu werden, daß sie aber bei Merkur 43 Bogen-Sekunden pro
Jahrhundert betragen muß, genau wie es die Beobachtung verlangt.


Außerdem haben aus der Theorie bisher nur zwei Konsequenzen gezogen
werden können, die sich nicht wegen ihrer Kleinheit der Beobachtung
entziehen müssen, nämlich die Krümmung der Lichtstrahlen durch das
Gravitationsfeld der Sonne und eine Spektralverschiebung des von
großen Sternen zu uns gesandten Lichtes gegenüber dem auf der Erde
in entsprechender Weise (d. h. durch dieselbe Molekülart) erzeugten
Lichte. Ich zweifle nicht daran, daß auch diese Konsequenzen der
Theorie ihre Bestätigung finden werden.




[12] Der Einwand ist besonders dann von Gewicht, wenn der
Bewegungszustand des Bezugskörpers ein solcher ist, daß er zu seiner
Aufrechterhaltung keiner äußeren Einwirkung bedarf, z. B. in dem Falle,
daß der Bezugskörper gleichmäßig rotiert.



[13] Dies folgt durch Verallgemeinerung der Betrachtung des §
20.



[14] Das Feld verschwindet im Mittelpunkt der Scheibe und
nimmt proportional dem Abstand von diesem nach außen hin zu.



[15] Unser Problem ist den Mathematikern in folgender Form
entgegengetreten. Ist im Euklidischen, dreidimensionalen Meßraume eine
Fläche, z. B. ein Ellipsoid, gegeben, so gibt es auf dieser Fläche eine
zweidimensionale Geometrie, ebensogut wie in der Ebene. Gauß hat
sich das Problem gestellt, diese zweidimensionale Geometrie prinzipiell
zu behandeln, ohne zu benutzen, daß die Fläche einem Euklidischen
Kontinuum von drei Dimensionen angehört. Denkt man sich in der
Fläche mit starren Stäbchen Konstruktionen ausgeführt (ähnlich wie
vorhin auf der Tischplatte), so gelten für diese andere Gesetze als
gemäß der Euklidischen Geometrie der Ebene. Die Fläche ist in bezug
auf die Stäbchen kein Euklidisches Kontinuum, und es lassen sich in
der Fläche keine Kartesischen Koordinaten definieren. Gauß
zeigte, nach welchen Prinzipien man die geometrischen Verhältnisse
in der Fläche behandeln kann, und wies damit den Weg zu der
Riemannschen Behandlung mehr-dimensionaler, Nicht-Euklidischer
Kontinua. So kam es, daß die Mathematiker die formalen Probleme bereits
seit langem gelöst haben, zu denen das allgemeine Relativitätspostulat
führt.
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