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Vorwort.
Das vorliegende Büchlein soll solchen eine möglichst exakte Einsicht in die Relativitätstheorie vermitteln, die sich vom allgemein wissenschaftlichen, philosophischen Standpunkt für die Theorie interessieren, ohne den mathematischen Apparat[1] der theoretischen Physik zu beherrschen. Die Lektüre setzt etwa Maturitätsbildung und — trotz der Kürze des Büchleins — ziemlich viel Geduld und Willenskraft beim Leser voraus. Der Verfasser hat sich die größte Mühe gegeben, die Hauptgedanken möglichst deutlich und einfach vorzubringen, im ganzen in solcher Reihenfolge und in solchem Zusammenhange, wie sie tatsächlich entstanden sind. Im Interesse der Deutlichkeit erschien es mir unvermeidlich, mich oft zu wiederholen, ohne auf die Eleganz der Darstellung die geringste Rücksicht zu nehmen; ich hielt mich gewissenhaft an die Vorschrift des genialen Theoretikers L. Boltzmann, man solle die Eleganz Sache der Schneider und Schuster sein lassen. Schwierigkeiten, die in der Sache begründet liegen, glaube ich dem Leser nicht vorenthalten zu haben. Dagegen habe ich die empirischen physikalischen Unterlagen der Theorie absichtlich stiefmütterlich behandelt, damit es dem der Physik ferner stehenden Leser nicht ergehe wie dem Wanderer, der vor lauter Bäumen keinen Wald sieht. Möge das Büchlein manchem einige frohe Stunden der Anregung bringen!
Dezember 1916.
A. Einstein.
[1] Die mathematischen Grundlagen der speziellen Relativitätstheorie findet man in den bei B. G. Teubner in der Monographiensammlung „Fortschritte der mathematischen Wissenschaften“ unter dem Titel „Das Relativitätsprinzip“ erschienenen Originalabhandlungen von H. A. Lorentz, A. Einstein, H. Minkowski, sowie in M. Laues ausführlichem Buche „Das Relativitätsprinzip“ (Verlag von Friedr. Vieweg & Sohn, Braunschweig). Die allgemeine Relativitätstheorie nebst den zugehörigen mathematischen Hilfsmitteln der Invariantentheorie ist in der Broschüre des Verfassers, „Die Grundlagen der allgemeinen Relativitätstheorie“ (Joh. Ambr. Barth, 1916) behandelt; diese Broschüre setzt einige Vertrautheit mit der speziellen Relativitätstheorie voraus.
Erster Teil.
Über die spezielle Relativitätstheorie.
§ 1. Physikalischer Inhalt geometrischer Sätze.
Gewiß hast auch du, lieber Leser, als Knabe oder Mädchen mit dem stolzen Gebäude der Geometrie Euklids Bekanntschaft gemacht und erinnerst dich vielleicht mit mehr Achtung als Liebe an den stolzen Bau, auf dessen hohen Treppen du von gewissenhaften Fachlehrern in ungezählten Stunden umhergejagt wurdest. Gewiß würdest du kraft dieser deiner Vergangenheit jeden mit Verachtung strafen, der auch nur das abgelegenste Sätzchen dieser Wissenschaft für unwahr erklärte. Aber dies Gefühl stolzer Sicherheit verließe dich vielleicht sogleich, wenn dich einer fragte: „Was meinst du denn mit der Behauptung, daß diese Sätze wahr seien?“ Bei dieser Frage wollen wir ein wenig verweilen.
Die Geometrie geht aus von gewissen Grundbegriffen, wie Ebene, Punkt, Gerade, mit denen wir mehr oder minder deutliche Vorstellungen zu verbinden imstande sind, und von gewissen einfachen Sätzen (Axiomen), die wir auf Grund jener Vorstellungen als „wahr“ hinzunehmen geneigt sind. Alle übrigen Sätze werden dann auf Grund einer logischen Methode, deren Berechtigung wir uns anzuerkennen genötigt fühlen, auf jene Axiome zurückgeführt, d. h. bewiesen. Ein Satz ist dann richtig bzw. „wahr“, wenn er in der anerkannten Weise aus den Axiomen hergeleitet ist. Die Frage nach der „Wahrheit“ der einzelnen geometrischen Sätze führt also zurück auf die Frage nach der „Wahrheit“ der Axiome. Längst aber ist es bekannt, daß die letztere Frage nicht nur durch die Methoden der Geometrie nicht beantwortbar, sondern überhaupt an sich ohne Sinn ist. Man kann nicht fragen, ob es wahr sei, daß durch zwei Punkte nur eine Gerade hindurchgeht. Man kann nur sagen, daß die Euklidische Geometrie von Gebilden handelt, die sie „Gerade“ nennt, und denen sie die Eigenschaft beilegt, durch zwei ihrer Punkte eindeutig bestimmt zu sein. Der Begriff „wahr“ paßt nicht auf die Aussagen der reinen Geometrie, weil wir mit dem Worte „wahr“ in letzter Linie stets die Übereinstimmung mit einem „realen“ Gegenstande zu bezeichnen pflegen; die Geometrie aber befaßt sich nicht mit der Beziehung ihrer Begriffe zu den Gegenständen der Erfahrung, sondern nur mit dem logischen Zusammenhang dieser Begriffe untereinander.
Daß wir uns trotzdem dazu hingezogen fühlen, die Sätze der Geometrie als „wahr“ zu bezeichnen, erklärt sich leicht. Den geometrischen Begriffen entsprechen mehr oder weniger exakt Gegenstände in der Natur, welch letztere ohne Zweifel die alleinige Ursache für die Entstehung jener Begriffe sind. Mag die Geometrie, um ihrem Gebäude die größtmögliche logische Geschlossenheit zu geben, hiervon Abstand nehmen; die Gewohnheit, beispielsweise in einer Strecke zwei markierte Stellen auf einem praktisch starren Körper zu sehen, steckt tief in unseren Denkgewohnheiten. Wir sind ferner gewohnt, drei Orte als auf einer Geraden befindlich anzunehmen, wenn wir ihre scheinbaren Sehorte durch passende Wahl des Beobachtungsortes bei einäugigem Sehen zusammenfallen lassen können.
Wenn wir nun, der Denkgewohnheit folgend, den Sätzen der Euklidischen Geometrie den einzigen Satz zufügen, daß zwei Punkten eines praktisch starren Körpers stets die nämliche Entfernung (Strecke) entspreche, was für Lagenänderungen wir auch mit dem Körper vornehmen mögen, so werden aus den Sätzen der euklidischen Geometrie Sätze über die mögliche relative Lagerung praktisch starrer Körper[2]. Die so ergänzte Geometrie ist dann als ein Zweig der Physik zu behandeln. Jetzt kann mit Recht nach der „Wahrheit“ so interpretierter geometrischer Sätze gefragt werden, denn es kann gefragt werden, ob jene Sätze zutreffen für diejenigen realen Dinge, welche wir den geometrischen Begriffen zugeordnet haben. Etwas ungenau können wir also sagen, daß wir unter der „Wahrheit“ eines geometrischen Satzes in diesem Sinne sein Zutreffen bei einer Konstruktion mit Zirkel und Lineal verstehen.
Die Überzeugung von der „Wahrheit“ der geometrischen Sätze in diesem Sinne beruht natürlich ausschließlich auf ziemlich unvollkommenen Erfahrungen. Wir werden jene Wahrheit der geometrischen Sätze zunächst voraussetzen, um dann im letzten Teile unserer Betrachtungen (bei der allgemeinen Relativitätstheorie) zu sehen, daß und inwiefern jene Wahrheit ihre Grenzen hat.
§ 2. Das Koordinatensystem.
Auf Grund der angedeuteten physikalischen Interpretation des Abstandes sind wir auch in der Lage, den Abstand zweier Punkte eines starren Körpers auf Grund von Messungen festzusetzen. Dazu brauchen wir eine ein- für allemal zu benutzende Strecke (Stäbchen S), welche als Einheitsmaßstab verwendet wird. Sind nun A und B zwei Punkte eines starren Körpers, so ist deren Verbindungsgerade konstruierbar nach den Gesetzen der Geometrie; hierauf kann man auf dieser Verbindungsgeraden die Strecke S von A aus so oft abtragen, bis man nach B gelangt. Die Zahl der Wiederholungen des Abtragens ist die Maßzahl der Strecke AB. Hierauf beruht alles Messen von Längen[3].
Jede räumliche Beschreibung des Ortes eines Ereignisses oder Gegenstandes beruht darauf, daß man den Punkt eines starren Körpers (Bezugskörpers) angibt, mit dem jenes Ereignis koinzidiert. Dies gilt nicht nur für die wissenschaftliche Beschreibung, sondern auch für das tägliche Leben. Analysiere ich die Ortsangabe „in Berlin, auf dem Potsdamer Platz“, so bedeutet sie folgendes. Die Erdoberfläche ist der starre Körper, auf den sich die Ortsangabe bezieht; auf ihm ist „Potsdamerplatz in Berlin“ ein markierter, mit Namen versehener Punkt, mit dem das Ereignis räumlich koinzidiert[4].
Diese primitive Art der Ortsangabe kennt nur Orte an der Oberfläche starrer Körper und ist an das Vorhandensein unterscheidbarer Punkte dieser Oberfläche gebunden. Sehen wir zu, wie sich der menschliche Geist von diesen beiden Beschränkungen befreit, ohne daß das Wesen der Ortsangabe eine Änderung erfährt! Schwebt beispielsweise über dem Potsdamer Platz eine Wolke, so kann der Ort dieser, bezogen auf die Erdoberfläche, dadurch festgelegt werden, daß man auf dem Platze senkrecht eine Stange errichtet, die bis zur Wolke hinaufreicht. Die mit dem Einheitsmaßstab gemessene Länge der Stange in Verbindung mit der Angabe des Ortes des Fußpunktes der Stange ist dann eine vollständige Ortsangabe. An diesem Beispiele sehen wir, auf welchem Wege eine Verfeinerung des Ortsbegriffes vor sich gegangen ist.
a) Man setzt den starren Körper, auf den sich die Ortsangabe bezieht, in solcher Weise fort, daß der zu lokalisierende Gegenstand von dem vervollständigten starren Körper erreicht wird.
b) Man benutzt zur Charakterisierung des Ortes die Zahl statt benannter Merkpunkte (hier die mit dem Maßstab gemessene Länge der Stange).
c) Man spricht von der Höhe der Wolke auch dann, wenn eine Stange, welche die Wolke erreicht, gar nicht errichtet ist. In unserem Falle ermittelt man aus optischen Aufnahmen der Wolke von verschiedenen Stellen des Bodens aus unter Berücksichtigung der Ausbreitungseigenschaften des Lichtes, wie lang die Stange gemacht werden müßte, um die Wolke zu erreichen.
Aus dieser Überlegung sieht man, daß es für die Beschreibung von Orten vorteilhaft sein wird, wenn es gelingt, sich durch Verwendung von Meßzahlen von der Existenz mit Namen versehener Merkpunkte auf dem starren Körper, auf den sich die Ortsangabe bezieht, unabhängig zu machen. Dies erreicht die messende Physik durch Anwendung des Kartesischen Koordinatensystems.
Dieses besteht in drei zueinander senkrechten, zu einem starren Körper verbundenen starren, ebenen Wänden. Der Ort irgendeines Geschehnisses in bezug auf das Koordinatensystem wird (im wesentlichen) beschrieben durch die Angabe der Länge der drei Lote oder Koordinaten (x, y, z), welche von dem Geschehnis aus auf jene drei ebenen Wände gefällt werden können. Die Längen dieser drei Lote sind durch eine Folge von Manipulationen mit starren Stäben ermittelbar, welche Manipulationen durch die Gesetze und Methoden der Euklidischen Geometrie vorgeschrieben werden.
Bei den Anwendungen sind jene das Koordinatensystem bildenden starren Wände meist nicht realisiert; auch werden die Koordinaten nicht wirklich durch Konstruktionen mit starren Stäben, sondern indirekt ermittelt. Der physikalische Sinn der Ortsangaben muß jedoch stets den vorstehenden Eröterungen gemäß gesucht werden, wenn die Ergebnisse der Physik und Astronomie nicht ins Unklare zerfließen sollen[5].
Es ergibt sich also folgendes: Jede räumliche Beschreibung von Geschehnissen bedient sich eines starren Körpers, auf den die Geschehnisse räumlich zu beziehen sind. Jene Beziehung setzt voraus, daß für „Strecken“ die Gesetze der Euklidischen Geometrie gelten, wobei die „Strecke“ physikalisch repräsentiert wird durch zwei Marken auf einem starren Körper.
§ 3. Raum und Zeit in der klassischen Mechanik.
Wenn ich ohne schwere Bedenken und eingehende Erläuterungen die Aufgabe der Mechanik so formuliere: „Die Mechanik hat zu beschreiben, wie die Körper mit der Zeit ihren Ort im Raume ändern“, so nehme ich einige Todsünden gegen den heiligen Geist der Klarheit auf mein Gewissen; diese Sünden sollen zunächst aufgedeckt werden.
Es ist unklar, was hier unter „Ort“ und „Raum“ zu verstehen ist. Ich stehe am Fenster eines gleichförmig fahrenden Eisenbahnwagens und lasse einen Stein auf den Bahndamm fallen, ohne ihm einen Schwung zu geben. Dann sehe ich (abgesehen vom Einfluß des Luftwiderstandes) den Stein geradlinig herabfallen. Ein Fußgänger, der die Übeltat vom Fußwege aus mit ansieht, bemerkt, daß der Stein in einem Parabelbogen zur Erde herabfällt. Ich frage nun: Liegen die „Orte“, welche der Stein durchläuft, „in Wirklichkeit“ auf einer Geraden oder auf einer Parabel? Was bedeutet hier ferner Bewegung „im Raume“? Die Antwort ist nach den Überlegungen des § 2 selbstverständlich. Zunächst lassen wir das dunkle Wort „Raum“, unter dem wir uns bei ehrlichem Geständnis nicht das geringste denken können, ganz beiseite; wir setzen statt dessen „Bewegung in bezug auf einen praktisch starren Bezugskörper.“ Die Orte in bezug auf den Bezugskörper (Bahnwagen oder Erdboden) sind im vorigen Paragraphen bereits ausführlich definiert worden. Indem wir statt „Bezugskörper“ den für die mathematische Beschreibung nützlichen Begriff „Koordinatensystem“ einführen, können wir sagen: Der Stein beschreibt in bezug auf ein mit dem Wagen starr verbundenes Koordinatensystem eine Gerade, in bezug auf ein mit dem Erdboden starr verbundenes Koordinatensystem eine Parabel. Man sieht an diesem Beispiel deutlich, daß es eine Bahnkurve an sich nicht gibt, sondern nur eine Bahnkurve in bezug auf einen bestimmten Bezugskörper.
Eine vollständige Beschreibung der Bewegung kommt aber erst dadurch zustande, daß man angibt, wie der Körper seinen Ort mit der Zeit ändert; d. h. es muß für jeden Punkt der Bahnkurve angegeben werden, zu welcher Zeit der Körper sich dort befindet. Diese Angaben müssen durch eine solche Definition der Zeit vervollständigt werden, daß diese Zeitwerte kraft jener Definition als prinzipiell beobachtbare Größen (Resultate von Messungen) angesehen werden können. Dieser Forderung entsprechen wir — auf dem Boden der klassischen Mechanik stehend — für unser Beispiel in folgender Weise. Wir denken uns zwei genau gleich beschaffene Uhren; die eine hat der Mann am Eisenbahnwagenfenster, die andere der Mann auf dem Fußwege in der Hand. Jeder der beiden stellt fest, an welcher Stelle des betreffenden Bezugskörpers der Stein sich gerade befindet, wenn die Uhr tickt, die er in der Hand hat. Dabei verzichten wir auf ein Eingehen auf die Ungenauigkeit, welche durch die Endlichkeit der Fortpflanzungsgeschwindigkeit des Lichtes hereinkommt. Hiervon und von einer zweiten hier obwaltenden Schwierigkeit wird später ausführlich die Rede sein.
§ 4. Das Galileische Koordinatensystem.
Bekanntlich lautet das unter dem Namen Trägheitsgesetz bekannte Grundgesetz der Galilei-Newtonschen Mechanik: Ein von anderen Körpern hinreichend entfernter Körper verharrt im Zustande der Ruhe oder der gleichförmig-geradlinigen Bewegung. Dieser Satz sagt nicht nur etwas aus über die Bewegung der Körper, sondern auch über die in der Mechanik zulässigen Bezugskörper oder Koordinatensysteme, welche bei der mechanischen Beschreibung verwendet werden dürfen. Körper, auf welche der Trägheitssatz sicherlich mit großer Annäherung Anwendung finden kann, sind die sichtbaren Fixsterne. Benutzen wir nun ein Koordinatensystem, welches mit der Erde starr verbunden ist, so beschreibt relativ zu ihm jeder Fixstern im Laufe eines (astronomischen) Tages einen Kreis von ungeheurem Radius, im Widerspruch mit dem Wortlaut des Trägheitsgesetzes. Hält man also an diesem Gesetze fest, so darf man die Bewegungen nur auf Koordinatensysteme beziehen, relativ zu welchen die Fixsterne keine Kreisbewegungen ausführen. Ein Koordinatensystem, dessen Bewegungszustand ein solcher ist, daß relativ zu ihm das Trägheitsgesetz gilt, nennen wir ein „Galileisches Koordinatensystem.“ Nur für ein Galileisches Koordinatensystem beanspruchen die Gesetze der Galilei-Newtonschen Mechanik Gültigkeit.
§ 5. Das Relativitätsprinzip (im engeren Sinne).
Wir gehen wieder, um möglichste Anschaulichkeit zu erzielen, von dem Beispiel des gleichmäßig fahrenden Eisenbahnwagens aus. Seine Bewegung nennen wir eine gleichförmige Translation („gleichförmig“, weil von konstanter Geschwindigkeit und Richtung, „Translation“, weil der Wagen relativ zum Fahrdamm zwar seinen Ort ändert, aber hierbei keine Drehungen ausführt). Es fliege ein Rabe geradlinig und gleichförmig — vom Bahndamm aus beurteilt — durch die Luft. Dann ist — vom fahrenden Wagen aus beurteilt — die Bewegung des Raben zwar eine Bewegung von anderer Geschwindigkeit und anderer Richtung; aber sie ist ebenfalls geradlinig und gleichförmig. Abstrakt ausgedrückt: Bewegt sich eine Masse m geradlinig und gleichförmig in bezug auf ein Koordinatensystem K, so bewegt sie sich auch geradlinig und gleichförmig in bezug auf ein zweites Koordinatensystem K′, falls letzteres in bezug auf K eine gleichförmige Translationsbewegung ausführt. Hieraus folgt mit Rücksicht auf die Darlegung des vorigen Paragraphen:
Ist K ein Galileisches Koordinatensystem, so ist auch jedes andere Koordinatensystem K′ ein Galileisches, wenn K′ gegenüber K im Zustande gleichförmiger Translationsbewegung ist. In bezug auf K′ gelten die Gesetze der Galilei-Newtonschen Mechanik ebenso wie in bezug auf K.
Wir gehen in der Verallgemeinerung noch einen Schritt weiter, indem wir den Satz aussprechen: Ist K′ ein in bezug auf K gleichförmig und drehungsfrei bewegtes Koordinatensystem, so verläuft das Naturgeschehen in bezug auf K′ nach genau denselben allgemeinen Gesetzen wie in bezug auf K. Diese Aussage nennen wir „Relativitätsprinzip“ (im engeren Sinne).
Solange man überzeugt war, daß sich alles Naturgeschehen mit Hilfe der klassischen Mechanik darstellen lasse, konnte man an der Gültigkeit dieses Relativitätsprinzips nicht zweifeln. Mit der neueren Entwickelung der Elektrodynamik und Optik aber ward es immer mehr offenkundig, daß die klassische Mechanik als Grundlage für alle physikalische Naturbeschreibung nicht zureichend sei. Damit wurde auch die Frage nach der Gültigkeit des Relativitätsprinzips zu einer wohl diskutierbaren, und es erschien nicht ausgeschlossen, daß die Antwort auf diese Frage verneinend sein könnte.
Immerhin gibt es zwei allgemeine Tatsachen, die von vornherein sehr für die Gültigkeit des Relativitätsprinzips sprechen. Wenn nämlich die klassische Mechanik auch nicht eine genügend breite Basis für die theoretische Darstellung aller physikalischen Erscheinungen liefert, so muß ihr doch ein sehr bedeutender Wahrheitsgehalt zukommen; denn sie liefert mit bewunderungswürdiger Schärfe die tatsächlichen Bewegungen der Himmelskörper. Es muß daher auch das Relativitätsprinzip auf dem Gebiete der Mechanik jedenfalls mit großer Genauigkeit gelten. Daß aber ein Prinzip von so großer Allgemeinheit, welches auf einem Erscheinungsgebiete mit solcher Exaktheit gilt, einem anderen Erscheinungsgebiete gegenüber versage, ist a priori wenig wahrscheinlich.
Das zweite Argument, auf welches wir später noch zurückkommen werden, ist folgendes. Wenn das Relativitätsprinzip (im engeren Sinne) nicht gilt, so werden die relativ zueinander gleichförmig bewegten Galileischen Koordinatensysteme K, K′, K″ usw. nicht gleichwertig sein für die Beschreibung des Naturgeschehens. Dann wäre es kaum anders denkbar, als daß die Naturgesetze besonders einfach und natürlich sich nur dann formulieren ließen, wenn unter allen Galileischen Koordinatensystemen eines (K0) von bestimmtem Bewegungszustande als Bezugskörper gewählt würde. Dieses würden wir dann mit Recht (wegen seiner Vorzüge für die Naturbeschreibung) als das „absolut ruhende“ bezeichnen, die übrigen Galileischen Systeme K aber als „bewegt“. Wäre z. B. unser Bahndamm das System K0, so wäre unser Eisenbahnwagen ein System K, in bezug auf welches weniger einfache Gesetze gelten würden als in bezug auf K0. Diese geringere Einfachheit würde darauf zurückzuführen sein, daß der Wagen K gegen K0 (d. h. „wirklich“) bewegt sei. In diesen in bezug auf K formulierten allgemeinen Naturgesetzen müßten Größe und Richtung der Fahrgeschwindigkeit des Wagens eine Rolle spielen. Es wäre z. B. zu erwarten, daß der Ton einer Orgelpfeife ein anderer wäre, wenn diese mit ihrer Achse parallel zur Fahrrichtung gestellt wird, als wenn sie mit ihrer Achse senkrecht zu dieser Richtung gestellt wird. Nun ist aber unsere Erde wegen ihrer Bahnbewegung um die Sonne einem mit etwa 20 km Geschwindigkeit fahrenden Wagen vergleichbar. Es wäre daher im Falle der Ungültigkeit des Relativitätsprinzips zu erwarten, daß die momentane Bewegungsrichtung der Erde in die Naturgesetze eingehe, daß also die physikalischen Systeme in ihrem Verhalten von der räumlichen Orientierung gegen die Erde abhängen sollten. Denn wegen der im Laufe des Jahres stattfindenden Änderung der Richtung der Geschwindigkeit der Umlaufbewegung der Erde kann diese nicht das ganze Jahr hindurch relativ zu dem hypothetischen System K0 in Ruhe sein. Bei aller Sorgfalt hat man aber eine derartige Anisotropie des irdischen physikalischen Raumes, d. h. eine physikalische Ungleichwertigkeit der verschiedenen Richtungen, niemals beobachten können. Dies ist ein schwer wiegendes Argument zugunsten des Relativitätsprinzips.
§ 6. Das Additionstheorem der Geschwindigkeiten gemäß der klassischen Mechanik.
Der schon oft betrachtete Eisenbahnwagen fahre mit der konstanten Geschwindigkeit v auf dem Geleise. Im Eisenbahnwagen durchschreite ein Mann den Wagen in dessen Längsrichtung, und zwar in Richtung der Fahrt mit der Geschwindigkeit w. Wie rasch bzw. mit welcher Geschwindigkeit W kommt der Mann relativ zum Bahndamm während des Gehens vorwärts? Die einzig mögliche Antwort scheint aus folgender Überlegung zu entspringen:
Würde der Mann eine Sekunde lang still stehen, so käme er relativ zum Bahndamm um eine der Fahrgeschwindigkeit des Wagens gleiche Strecke v vorwärts. In Wirklichkeit durchmißt er aber außerdem relativ zum Wagen, also auch relativ zum Bahndamm in dieser Sekunde durch sein Gehen die Strecke w, welche der Geschwindigkeit seines Ganges gleich ist. Er legt also in der betrachteten Sekunde relativ zum Bahndamm im ganzen die Strecke
W = v + w
zurück. Später werden wir sehen, daß diese Überlegung, welche das Additionstheorem der Geschwindigkeiten gemäß der klassischen Mechanik ausdrückt, nicht aufrecht erhalten werden kann, daß also das soeben hingeschriebene Gesetz in Wahrheit nicht zutrifft. Einstweilen aber werden wir auf dessen Richtigkeit bauen.
§ 7. Die scheinbare Unvereinbarkeit des Ausbreitungsgesetzes des Lichtes mit dem Relativitätsprinzip.
Es gibt kaum ein einfacheres Gesetz in der Physik als dasjenige, gemäß welchem sich das Licht im leeren Raume fortpflanzt. Jedes Schulkind weiß oder glaubt zu wissen, daß diese Fortpflanzung geradlinig mit einer Geschwindigkeit c = 300000 km/Sek. geschieht. Wir wissen jedenfalls mit großer Exaktheit, daß diese Geschwindigkeit für alle Farben dieselbe ist; denn wäre dies nicht der Fall, so würde bei der Bedeckung eines Fixsternes durch seinen dunklen Begleiter das Emissionsminimum für die verschiedenen Farben nicht gleichzeitig beobachtet werden. Durch eine ähnliche, an die Beobachtungen der Doppelsterne sich knüpfende Überlegung konnte der holländische Astronom De Sitter auch zeigen, daß die Fortpflanzungsgeschwindigkeit des Lichtes von der Bewegungsgeschwindigkeit des das Licht emittierenden Körpers nicht abhängen kann. Die Annahme, daß diese Fortpflanzungsgeschwindigkeit von der Richtung „im Raume“ abhänge, ist an sich unwahrscheinlich.
Kurz, nehmen wir einmal an, das einfache Gesetz von der konstanten Lichtgeschwindigkeit c (im Vakuum) werde von dem Schulkinde mit Recht geglaubt! Wer möchte denken, daß dieses simple Gesetz den gewissenhaft überlegenden Physiker in die größten gedanklichen Schwierigkeiten gestürzt hat? Diese Schwierigkeiten ergeben sich wie folgt.
Natürlich müssen wir den Vorgang der Lichtausbreitung wie jeden anderen auf einen starren Bezugskörper (Koordinatensystem) beziehen. Als solchen wählen wir wieder unseren Bahndamm. Die Luft über demselben wollen wir uns weggepumpt denken. Längs des Bahndammes werde ein Lichtstrahl gesandt, dessen Scheitel sich nach dem vorigen mit der Geschwindigkeit c relativ zum Bahndamme fortpflanzt. Auf dem Geleise fahre wieder unser Eisenbahnwagen mit der Geschwindigkeit v, und zwar in derselben Richtung, in der sich der Lichtstrahl fortpflanzt, aber natürlich viel langsamer. Wir fragen nach der Fortpflanzungsgeschwindigkeit des Lichtstrahles relativ zum Wagen. Es ist leicht ersichtlich, daß hier die Betrachtung des vorigen Paragraphen Anwendung finden kann; denn der relativ zum Eisenbahnwagen laufende Mann spielt die Rolle des Lichtstrahles. Statt dessen Geschwindigkeit W gegen den Bahndamm tritt hier die Lichtgeschwindigkeit gegen diesen; w ist die gesuchte Geschwindigkeit des Lichtes gegen den Wagen, für welche also gilt:
w = c − v.
Die Fortpflanzungsgeschwindigkeit des Lichtstrahles relativ zum Wagen ergibt sich also als kleiner als c.
Dies Ergebnis verstößt aber gegen das im § 5 dargelegte Relativitätsprinzip. Das Gesetz der Lichtausbreitung im Vakuum müßte nämlich nach dem Relativitätsprinzip wie jedes andere allgemeine Naturgesetz für den Eisenbahnwagen als Bezugskörper gleich lauten wie für das Geleise als Bezugskörper. Das erscheint aber nach unserer Betrachtung unmöglich. Wenn sich jeder Lichtstrahl in bezug auf den Damm mit der Geschwindigkeit c fortpflanzt, so scheint eben deshalb das Lichtausbreitungsgesetz in bezug auf den Wagen ein anderes sein zu müssen — im Widerspruch mit dem Relativitätsprinzip.
Im Hinblick auf dies Dilemma erscheint es unerläßlich, entweder das Relativitätsprinzip oder das einfache Gesetz der Fortpflanzung des Lichtes im Vakuum aufzugeben. Gewiß wird der Leser, der den bisherigen Ausführungen aufmerksam gefolgt ist, erwarten, daß das Prinzip der Relativität, das sich durch seine Natürlichkeit und Einfachheit dem Geiste als fast unabweislich empfiehlt, aufrecht zu erhalten sei, daß aber das Gesetz der Lichtausbreitung im Vakuum durch ein komplizierteres, mit dem Relativitätsprinzip vereinbares Gesetz zu ersetzen sei. Die Entwickelung der theoretischen Physik zeigte aber, daß dieser Weg nicht gangbar ist. Die bahnbrechenden theoretischen Forschungen von H. A. Lorentz über die elektrodynamischen und optischen Vorgänge in bewegten Körpern zeigten nämlich, daß die Erfahrungen in diesen Gebieten mit zwingender Notwendigkeit zu einer Theorie der elektromagnetischen Vorgänge führen, welche das Gesetz der Konstanz der Lichtgeschwindigkeit im Vakuum zur unabweisbaren Konsequenz hat. Deshalb waren die führenden Theoretiker eher geneigt, das Relativitätsprinzip fallen zu lassen, trotzdem sich keine einzige Erfahrungstatsache auffinden ließ, welche diesem Prinzip widersprochen hätte.
Hier setzte die Relativitätstheorie ein. Durch eine Analyse der physikalischen Begriffe von Zeit und Raum zeigte sich, daß in Wahrheit eine Unvereinbarkeit des Relativitätsprinzips mit dem Ausbreitungsgesetz des Lichtes gar nicht vorhanden sei, daß man vielmehr durch systematisches Festhalten an diesen beiden Gesetzen zu einer logisch einwandfreien Theorie gelange. Diese Theorie, welche wir zum Unterschiede von ihrer später zu besprechenden Erweiterung als „spezielle Relativitätstheorie“ bezeichnen, soll im folgenden in ihren Grundgedanken dargestellt werden.
§ 8. Über den Zeitbegriff in der Physik.
An zwei weit voneinander entfernten Stellen A und B unseres Bahndammes hat der Blitz ins Geleise eingeschlagen. Ich füge die Behauptung hinzu, diese beiden Schläge seien gleichzeitig erfolgt. Wenn ich dich nun frage, lieber Leser, ob diese Aussage einen Sinn habe, so wirst du mir mit einem überzeugten „Ja“ antworten. Wenn ich aber jetzt in dich dringe mit der Bitte, mir den Sinn der Aussage genauer zu erklären, merkst du nach einiger Überlegung, daß die Antwort auf diese Frage nicht so einfach ist, wie es auf den ersten Blick scheint.
Nach einiger Zeit wird dir vielleicht folgende Antwort in den Sinn kommen: „Die Bedeutung der Aussage ist an und für sich klar und bedarf keiner weiteren Erläuterung; einiges Nachdenken müßte ich allerdings aufwenden, wenn ich den Auftrag erhielte, durch Beobachtungen zu ermitteln, ob im konkreten Falle die beiden Ereignisse gleichzeitig stattfanden oder nicht.“ Mit dieser Antwort kann ich mich aber aus folgendem Grunde nicht zufrieden geben. Gesetzt, ein geschickter Meteorologe hätte durch scharfsinnige Überlegungen herausgefunden, daß es an den Orten A und B immer gleichzeitig einschlagen müsse, dann entsteht die Aufgabe, nachzuprüfen, ob dieses theoretische Resultat der Wirklichkeit entspricht oder nicht. Analog ist es bei allen physikalischen Aussagen, bei denen der Begriff „gleichzeitig“ eine Rolle spielt. Der Begriff existiert für den Physiker erst dann, wenn die Möglichkeit gegeben ist, im konkreten Falle herauszufinden, ob der Begriff zutrifft oder nicht. Es bedarf also einer solchen Definition der Gleichzeitigkeit, daß diese Definition die Methode an die Hand gibt, nach welcher im vorliegenden Falle aus Experimenten entschieden werden kann, ob beide Blitzschläge gleichzeitig erfolgt sind oder nicht. Solange diese Forderung nicht erfüllt ist, gebe ich mich als Physiker (allerdings auch als Nichtphysiker!) einer Täuschung hin, wenn ich glaube, mit der Aussage der Gleichzeitigkeit einen Sinn verbinden zu können. (Bevor du mir dies mit Überzeugung zugegeben hast, lieber Leser, lies nicht weiter.)
Nach einiger Zeit des Nachdenkens machst du nun folgenden Vorschlag für das Konstatieren der Gleichzeitigkeit. Die Verbindungsstrecke AB werde dem Geleise nach ausgemessen und in die Mitte M der Strecke ein Beobachter gestellt, der mit einer Einrichtung versehen ist (etwa zwei um 90° gegeneinander geneigte Spiegel), die ihm eine gleichzeitige optische Fixierung beider Orte A und B erlaubt. Nimmt dieser die beiden Blitzschläge gleichzeitig wahr, so sind sie gleichzeitig.
Ich bin mit diesem Vorschlag sehr zufrieden und halte die Sache dennoch nicht für ganz geklärt, weil ich mich zu folgendem Einwand gedrängt fühle: „Deine Definition wäre unbedingt richtig, wenn ich schon wüßte, daß das Licht, welches dem Beobachter in M die Wahrnehmung der Blitzschläge vermittelt, sich mit der gleichen Geschwindigkeit auf der Strecke A⟶M wie auf der Strecke B⟶M fortpflanze. Eine Prüfung dieser Voraussetzung wäre aber nur dann möglich, wenn man über die Mittel der Zeitmessung bereits verfügte. Man scheint sich also hier in einem logischen Zirkel zu bewegen.“
Nach einiger weiterer Überlegung wirfst du mir aber mit Recht einen etwas verächtlichen Blick zu und erklärst mir: „Ich halte meine Definition von vorhin trotzdem aufrecht, da sie in Wahrheit gar nichts über das Licht voraussetzt. An die Definition der Gleichzeitigkeit ist nur die eine Forderung zu stellen, daß sie in jedem realen Falle eine empirische Entscheidung an die Hand gibt über das Zutreffen oder Nichtzutreffen des zu definierenden Begriffs. Daß meine Definition dies leistet, ist unbestreitbar. Daß das Licht zum Durchlaufen des Weges A⟶M und zum Durchlaufen der Strecke B⟶M dieselbe Zeit brauche, ist in Wahrheit keine Voraussetzung oder Hypothese über die physikalische Natur des Lichtes, sondern eine Festsetzung, die ich nach freiem Ermessen treffen kann, um zu einer Definition der Gleichzeitigkeit zu gelangen.“
Es ist klar, daß diese Definition benutzt werden kann, um der Aussage der Gleichzeitigkeit nicht nur zweier Ereignisse, sondern beliebig vieler Ereignisse einen exakten Sinn zu geben, wie die Ereignisorte relativ zum Bezugskörper (hier dem Bahndamm) gelagert sein mögen[6]. Damit gelangt man auch zu einer Definition der „Zeit“ in der Physik. Man denke sich nämlich in den Punkten A, B, C des Geleises (Koordinatensystems) Uhren von gleicher Beschaffenheit aufgestellt und derart gerichtet, daß deren Zeigerstellungen gleichzeitig (im obigen Sinne) dieselben sind. Dann versteht man unter der „Zeit“ eines Ereignisses die Zeitangabe (Zeigerstellung) derjenigen dieser Uhren, welche dem Ereignis (räumlich) unmittelbar benachbart ist. Auf diese Weise wird jedem Ereignis ein Zeitwert zugeordnet, der sich prinzipiell beobachten läßt.
Diese Festsetzung enthält noch eine physikalische Hypothese, an deren Zutreffen man ohne empirische Gründe kaum zweifeln wird. Es ist nämlich angenommen, daß alle diese Uhren „gleich rasch“ gehen, wenn sie von gleicher Beschaffenheit sind. Exakt formuliert: Wenn zwei an verschiedenen Stellen des Bezugskörpers ruhend angeordnete Uhren so eingestellt werden, daß eine Zeigerstellung der einen mit derselben Zeigerstellung der anderen gleichzeitig (im obigen Sinne) ist, so sind gleiche Zeigerstellungen überhaupt gleichzeitig (im Sinne obiger Definition).
§9. Die Relativität der Gleichzeitigkeit.
Bisher haben wir alle Betrachtungen auf einen bestimmten Bezugskörper bezogen, den wir als „Bahndamm“ bezeichnet haben. Es fahre nun auf dem Geleise ein sehr langer Zug mit der konstanten Geschwindigkeit v in der in Fig. 1 angegebenen Richtung. Menschen, die in diesem Zuge fahren, werden mit Vorteil den Zug als starren Bezugskörper (Koordinatensystem) verwenden; sie beziehen alle Ereignisse auf den Zug. Jedes Ereignis, welches längs des Geleises stattfindet, findet dann auch an einem bestimmten Punkte des Zuges statt. Auch die Definition der Gleichzeitigkeit läßt sich in bezug auf den Zug in genau derselben Weise geben, wie in bezug auf den Bahndamm. Es entsteht aber nun naturgemäß folgende Frage:
Sind zwei Ereignisse (z. B. die beiden Blitzschläge A und B), welche in bezug auf den Bahndamm gleichzeitig sind, auch in bezug auf den Zug gleichzeitig? Wir werden sogleich zeigen, daß die Antwort verneinend lauten muß.
Fig. 1.
Wenn wir sagen, daß die Blitzschläge A und B in bezug auf den Bahndamm gleichzeitig sind, so bedeutet dies: die von den Blitzorten A und B ausgehenden Lichtstrahlen begegnen sich in dem Mittelpunkte M der Fahrdammstrecke A–B. Den Ereignissen A und B entsprechen aber auch Stellen A und B auf dem Zuge. Es sei M′ der Mittelpunkt der Strecke A–B des fahrenden Zuges. Dieser Punkt M′ fällt zwar im Augenblick der Blitzschläge[7] mit dem Punkte M zusammen, bewegt sich aber in der Zeichnung mit der Geschwindigkeit v des Zuges nach rechts. Würde ein bei M′ im Zuge sitzender Beobachter diese Geschwindigkeit nicht besitzen, so würde er dauernd in M bleiben, und es würden ihn dann die von den Blitzschlägen A und B ausgehenden Lichtstrahlen gleichzeitig erreichen, d. h., diese beiden Strahlen würden sich gerade bei ihm begegnen. In Wahrheit aber eilt er (vom Bahndamm aus beurteilt) dem von B herkommenden Lichtstrahl entgegen, während er dem von A herkommenden Lichtstrahl vorauseilt. Der Beobachter wird also den von B ausgehenden Lichtstrahl früher sehen, als den von A ausgehenden. Die Beobachter, welche den Eisenbahnzug als Bezugskörper benutzen, müssen also zu dem Ergebnis kommen, der Blitzschlag B habe früher stattgefunden als der Blitzschlag A. Wir kommen also zu dem wichtigen Ergebnis:
Ereignisse, welche in bezug auf den Bahndamm gleichzeitig sind, sind in bezug auf den Zug nicht gleichzeitig und umgekehrt (Relativität der Gleichzeitigkeit). Jeder Bezugskörper (Koordinatensystem) hat seine besondere Zeit; eine Zeitangabe hat nur dann einen Sinn, wenn der Bezugskörper angegeben ist, auf den sich die Zeitangabe bezieht.
Die Physik hat nun vor der Relativitätstheorie stets stillschweigend angenommen, daß die Bedeutung der Zeitangaben eine absolute, d. h. vom Bewegungszustande des Bezugskörpers unabhängige, sei. Daß diese Annahme aber mit der nächstliegenden Definition der Gleichzeitigkeit unvereinbar ist, haben wir soeben gesehen; läßt man sie fallen, so verschwindet der in § 7 entwickelte Konflikt des Gesetzes der Vakuum-Lichtausbreitung mit dem Relativitätsprinzip.
Zu jenem Konflikt führt nämlich die Überlegung des § 6, die nun nicht mehr aufrecht zu erhalten ist. Wir schlossen dort, daß der Mann im Wagen, der relativ zu diesem die Strecke w in einer Sekunde durchläuft, diese Strecke auch relativ zum Bahndamm in einer Sekunde durchläuft. Da nun aber die Zeit, welche ein bestimmter Vorgang mit Bezug auf den Wagen braucht, nach den soeben angestellten Überlegungen nicht gleich gesetzt werden darf der vom Bahndamm als Bezugskörper aus beurteilten Dauer desselben Vorganges, so kann nicht behauptet werden, daß der Mann durch sein Gehen relativ zum Geleise die Strecke w in einer Zeit zurücklegt, welche — vom Bahndamm aus beurteilt — gleich einer Sekunde ist.
Die Überlegung des § 6 ruht übrigens noch auf einer zweiten Voraussetzung, die im Lichte einer strengen Überlegung als willkürlich erscheint, wenn sie auch vor der Aufstellung der Relativitätstheorie stets (stillschweigend) gemacht wurde.
§ 10. Über die Relativität des Begriffes der räumlichen Entfernung.
Wir betrachten zwei bestimmte Stellen des mit der Geschwindigkeit v längs des Bahndammes dahinfahrenden Zuges[8] und fragen nach deren Entfernung. Wir wissen bereits, daß man zur Messung einer Entfernung eines Bezugskörpers bedarf, mit Bezug auf welchen die Entfernung ausgemessen wird. Am einfachsten ist es, den Zug selbst als Bezugskörper (Koordinatensystem) zu verwenden. Ein im Zuge fahrender Beobachter mißt den Abstand, indem er in gerader Linie seinen Maßstab etwa längs der Wagenböden so oft aufträgt, bis er von dem einen markierten Punkte zum anderen gelangt. Die Zahl, welche angibt, wie oft der Stab angelegt werden muß, ist dann die gesuchte Entfernung.
Anders ist es, wenn die Entfernung vom Geleise aus beurteilt werden soll. Da bietet sich folgende Methode. Nennt man A′ und B′ die beiden Punkte des Zuges, um deren Entfernung es sich handelt, so sind diese beiden Punkte mit der Geschwindigkeit v längs des Bahndammes bewegt. Wir fragen nun zuerst nach den Punkten A bzw. B des Bahndammes, bei welchen die beiden Punkte A′ und B′ zu einer bestimmten Zeit t — vom Bahndamm aus beurteilt — gerade vorbeilaufen. Diese Punkte A und B des Bahndammes sind vermöge der in § 8 gegebenen Zeitdefinition ermittelbar. Hierauf wird der Abstand dieser Punkte A und B durch wiederholtes Abtragen des Meterstabes längs des Bahndammes gemessen.
Es ist a priori durchaus nicht ausgemacht, daß diese letztere Messung dasselbe Ergebnis zeitigen müsse wie die erstere. Vom Bahndamm aus gemessen kann also die Länge des Zuges eine andere sein als vom Zuge selbst aus gemessen. Dieser Umstand ergibt einen zweiten gegen die scheinbar so einleuchtende Betrachtung des § 6 zu erhebenden Einwand. Legt nämlich der Mann im Wagen in einer Zeiteinheit — vom Zuge aus gemessen — die Strecke w zurück, so braucht diese Strecke — vom Bahndamm aus gemessen — nicht auch gleich w zu sein.
§ 11. Die Lorentz-Transformation.
Die Überlegungen der letzten drei Paragraphen zeigen uns, daß die scheinbare Unvereinbarkeit des Ausbreitungsgesetzes des Lichtes mit dem Relativitätsprinzip in § 7 durch eine Betrachtung abgeleitet worden ist, welche der klassischen Mechanik zwei durch nichts gerechtfertigte Hypothesen entlehnte; diese Hypothesen lauten:
1. Der Zeitabstand zwischen zwei Ereignissen ist vom Bewegungszustande des Bezugskörpers unabhängig.
2. Der räumliche Abstand zwischen zwei Punkten eines starren Körpers ist vom Bewegungszustande des Bezugskörpers unabhängig.
Läßt man nun diese Hypothesen fallen, so verschwindet das Dilemma des § 7, weil das in § 6 abgeleitete Additionstheorem der Geschwindigkeiten ungültig wird. Es taucht vor uns die Möglichkeit auf, daß das Gesetz der Lichtausbreitung im Vakuum mit dem Relativitätsprinzip vereinbar sein könnte. Wir kommen zu der Frage: Wie ist die Überlegung des § 6 zu modifizieren, um den scheinbaren Widerspruch zwischen diesen beiden fundamentalen Ergebnissen der Erfahrung zu beseitigen? Diese Frage führt auf eine allgemeine. In der Überlegung des § 6 kommen Orte und Zeiten in bezug auf den Zug und in bezug auf den Bahndamm vor. Wie findet man Ort und Zeit eines Ereignisses in bezug auf den Zug, wenn Ort und Zeit des Ereignisses in bezug auf den Bahndamm bekannt sind? Gibt es eine solche denkbare Antwort auf diese Frage, daß das Gesetz der Lichtausbreitung im Vakuum dem Relativitätsprinzip nicht widerspricht? Anders ausgedrückt: Ist eine Relation zwischen Ort und Zeit der einzelnen Ereignisse in bezug auf beide Bezugskörper denkbar, derart, daß jeder Lichtstrahl relativ zum Bahndamm und relativ zum Zug die Ausbreitungsgeschwindigkeit c besitzt? Diese Frage führt zu einer bejahenden, ganz bestimmten Antwort, zu einem ganz bestimmten Verwandlungsgesetz für die Raum-Zeit-Größen eines Ereignisses beim Übergang von einem Bezugskörper zu einem anderen.
Bevor wir hierauf eingehen, sei folgende Zwischenüberlegung eingeschaltet. Wir haben bis jetzt stets nur Ereignisse betrachtet, die sich längs des Bahndammes abspielten, der mathematisch die Funktion einer geraden Linie zu übernehmen hatte. Man kann sich aber in der in § 2 angegebenen Weise diesen Bezugskörper seitlich und nach oben durch ein Stabgerüst derart fortgesetzt denken, daß ein irgendwo stattfindendes Ereignis relativ zu diesem Stabgerüst lokalisiert werden kann. Analog kann man sich den mit der Geschwindigkeit v fahrenden Zug durch den ganzen Raum fortgesetzt denken, so daß jedes noch so ferne Ereignis auch in bezug auf das zweite Gerüst lokalisiert werden könnte. Davon, daß diese Gerüste einander in Wahrheit wegen der Undurchdringlichkeit der festen Körper immer wieder zerstören müßten, können wir absehen, ohne in prinzipielle Fehler zu geraten. In jedem solchen Gerüst denken wir uns drei aufeinander senkrechte Wände ausgezeichnet und als „Koordinatenebenen“ bezeichnet („Koordinatensystem“). Dem Bahndamm entspricht dann ein Koordinatensystem K, dem Zug ein Koordinatensystem K′. Ein irgendwo stattfindendes Ereignis wird bezüglich K räumlich fixiert durch die drei Lote x, y, z auf die Koordinatenebenen und zeitlich fixiert durch einen Zeitwert t. Dasselbe Ereignis wird bezüglich K′ raum-zeitlich fixiert durch entsprechende Werte x′, y′, z′, t′, welche mit x, y, z, t natürlich nicht übereinstimmen. Wie diese Größen als Ergebnisse physikalischer Messungen aufzufassen sind, wurde früher ausführlich dargelegt.
Fig. 2.
Unser Problem lautet in exakter Formulierung offenbar folgendermaßen. Wie groß sind die Werte x′, y′, z′, t′ eines Ereignisses in bezug auf K′, wenn die Größen x, y, z, t desselben Ereignisses in bezug auf K gegeben sind? Die Beziehungen müssen so gewählt werden, daß dem Gesetz der Vakuumfortpflanzung des Lichtes für einen und denselben Lichtstrahl (und zwar für jeden) in bezug auf K und K′ Genüge geleistet wird. Dies Problem wird für die in der Zeichnung (Fig. 2) angegebene relative räumliche Orientierung der Koordinatensysteme gelöst durch die Gleichungen:
x′ =
x − v t
√1 − v2 c2
y′ = y
z′ = z
t′ =
t −
v
c2
x
√1 − v2 c2
welches Gleichungssystem mit dem Namen „Lorentz-Transformation“ bezeichnet wird.
Würden wir aber an Stelle des Lichtausbreitungsgesetzes die stillschweigenden Voraussetzungen der alten Mechanik von dem absoluten Charakter der Zeiten und Längen zugrunde gelegt haben, so würden wir statt dieser Transformationsgleichungen zu den Gleichungen
x′ = x - v t
y′ = y
z′ = z
t′ = t
gelangt sein, welches System man oft als „Galilei-Transformation“ bezeichnet. Die Galilei-Transformation geht aus der Lorentz-Transformation dadurch hervor, daß man in letzterer die Lichtgeschwindigkeit c gleich einem unendlich großen Werte setzt.
Daß gemäß der Lorentz-Transformation das Gesetz der Lichtausbreitung im Vakuum sowohl für den Bezugskörper K wie für den Bezugskörper K′ erfüllt sein kann, sieht man bequem an folgendem Beispiel. Es werde ein Lichtsignal längs der positiven x-Achse gesandt, und es pflanze sich die Lichterregung gemäß der Gleichung
x = c t,
also mit der Geschwindigkeit c fort. Gemäß den Gleichungen der Lorentz-Transformation bedingt diese einfache Beziehung zwischen x und t eine Beziehung zwischen x′ und t′. In der Tat liefert die erste und vierte Gleichung der Lorentz-Transformation, wenn man in dieselben für x den Wert ct einsetzt:
x′ =
(c − v) t
√1 − v2 c2
t′ =
(1 −
v
c
) t
√1 − v2 c2
aus welchen dann durch Division unmittelbar
x′ = c t′
folgt. Nach dieser Gleichung erfolgt die Lichterregung, wenn sie auf das System K′ bezogen wird. Es zeigt sich also, daß die Ausbreitungsgeschwindigkeit auch relativ zum Bezugskörper K′ gleich c ist. Analog ist es mit Lichtstrahlen, die sich in beliebiger anderer Richtung fortpflanzen. Dies ist natürlich nicht zu verwundern, denn die Gleichungen der Lorentz-Transformation sind ja nach diesem Gesichtspunkte abgeleitet.
§ 12. Das Verhalten bewegter Stäbe und Uhren.
Ich lege einen Meterstab in die x′-Achse von K′ derart, daß sein Anfang in den Punkt x′ = 0, sein Ende in den Punkt x′ = 1 fällt. Welches ist die Länge des Meterstabes relativ zum System K? Um das zu erfahren, brauchen wir nur zu fragen, wo Stabanfang und Stabende relativ zu K liegen zu einer bestimmten Zeit t des Systems K. Man findet für diese beiden Punkte aus der ersten Gleichung der Lorentz-Transformation:
x(Stabanfang) = 0 · √ 1 − v2 c2
x(Stabende) = 1 · √ 1 − v2 c2
welche beiden Punkte den Abstand √ 1 − v2 c2 1 − v2 c2 1 − v2 c2
Diese Rolle der Geschwindigkeit c als einer Grenzgeschwindigkeit folgt übrigens bereits aus den Gleichungen der Lorentz-Transformation selbst. Denn diese werden sinnlos, wenn v größer als c gewählt wird.
Hätten wir umgekehrt einen Meterstab betrachtet, der in der x-Achse relativ zu K ruht, so hätten wir gefunden, daß er, von K′ aus beurteilt, die Länge √ 1 − v2 c2
Daß wir aus den Transformationsgleichungen etwas über das physikalische Verhalten von Maßstäben und Uhren erfahren müssen, liegt a priori auf der Hand. Denn die Größen x, y, z, t sind ja nichts anderes als mit Maßstäben und Uhren zu gewinnende Meßresultate. Hätten wir die Galilei-Transformation zugrunde gelegt, so hätten wir eine Stabverkürzung infolge der Bewegung nicht erhalten.
Wir betrachten nun eine Sekundenuhr, die dauernd im Anfangspunkte (x′ = 0) von K′ ruht. t′ = 0 und t′ = 1 seien zwei aufeinander folgende Schläge dieser Uhr. Für diese beiden Schläge ergeben die erste und vierte der Gleichungen der Lorentz-Transformation:
t = 0
und
t =
1
√1 − v2 c2
Von K aus beurteilt ist die Uhr mit der Geschwindigkeit v bewegt; von diesem Bezugskörper aus beurteilt vergeht zwischen zweien ihrer Schläge nicht eine Sekunde, sondern 1 √ 1 − v2 c2
§ 13. Additionstheorem der Geschwindigkeiten Fizeauscher Versuch.
Da wir Uhren und Maßstäbe in praxi nur mit Geschwindigkeiten bewegen können, die klein sind gegen die Lichtgeschwindigkeit c, so werden die Ergebnisse des vorigen Paragraphen kaum direkt mit der Wirklichkeit verglichen werden können. Da dieselben andererseits dem Leser recht sonderbar vorkommen werden, so will ich nun aus der Theorie eine andere Konsequenz ziehen, die aus dem bisher Dargelegten leicht abzuleiten ist, und die durch das Experiment glänzend bestätigt wird.
In § 6 haben wir das Additionstheorem für gleich gerichtete Geschwindigkeiten abgeleitet, so, wie es sich aus den Hypothesen der klassischen Mechanik ergibt. Dasselbe läßt sich auch leicht aus der Galilei-Transformation (§ 11) folgern. Statt des gehenden Mannes im Wagen führen wir einen Punkt ein, der sich relativ zum Koordinatensystem K′ nach der Gleichung
x′ = w t′
bewegt. Aus der ersten und vierten Gleichung der Galilei-Transformation kann man x′ und t′ durch x und t ausdrücken und erhält so:
x = (v + w) t.
Diese Gleichung drückt nichts anderes aus als das Bewegungsgesetz des Punktes gegenüber dem System K (des Mannes gegenüber dem Bahndamm), welche Geschwindigkeit wir mit W bezeichnen, so daß man, wie in § 6, erhält:
W= v + w (A)
Wir können aber diese Betrachtung ebenso gut unter Zugrundelegung der Relativitätstheorie durchführen. Man hat dann in der Gleichung
x′ = w t′
x′ und t′ durch x und t auszudrücken unter Verwendung der ersten und vierten Gleichung der Lorentz-Transformation. Man erhält dann statt der Gleichung (A) die Gleichung:
W =
v + w
1 +
v w
c2
, (B)
welche dem Additionstheorem gleichgerichteter Geschwindigkeiten nach der Relativitätstheorie entspricht. Die Frage ist nun, welches von diesen beiden Theoremen der Erfahrung gegenüber standhält. Hierüber belehrt uns ein höchst wichtiges Experiment, welches der geniale Physiker Fizeau vor mehr als einem halben Jahrhundert ausführte, und das seitdem von einigen der besten Experimentalphysiker wiederholt wurde, so daß das Resultat unbezweifelbar ist. Das Experiment behandelt folgende Frage. In einer ruhenden Flüssigkeit pflanze sich das Licht mit einer bestimmten Geschwindigkeit w fort. Wie rasch pflanzt es sich in der Röhre R der Figur
in der Pfeilrichtung fort, wenn diese von der vorhin genannten Flüssigkeit mit der Geschwindigkeit v durchströmt ist?
Wir werden im Sinne des Relativitätsprinzips jedenfalls vorauszusetzen haben, daß relativ zur Flüssigkeit die Lichtausbreitung immer mit derselben Geschwindigkeit w erfolgt, mag die Flüssigkeit relativ zu anderen Körpern bewegt sein oder nicht. Es ist also die Geschwindigkeit des Lichtes relativ zur Flüssigkeit und die Geschwindigkeit der letzteren relativ zur Röhre bekannt, gesucht die Geschwindigkeit des Lichtes relativ zur Röhre.
Es ist klar, daß hier wieder die Aufgabe des § 6 vorliegt. Die Röhre spielt die Rolle des Bahndammes bzw. des Koordinatensystems K, die Flüssigkeit die Rolle des Wagens bzw. des Koordinatensystems K′, das Licht endlich die Rolle des im Wagen laufenden Mannes bzw. des bewegten Punktes in diesem Paragraphen. Bezeichnet man also mit W die Geschwindigkeit des Lichtes relativ zur Röhre, so ist diese durch die Gleichung (A) bzw. (B) gegeben, je nachdem die Galilei-Transformation oder die Lorentz-Transformation der Wirklichkeit entspricht.
Das Experiment[9] entscheidet für die aus der Relativitätstheorie abgeleitete Gleichung (B), und zwar sehr exakt. Der Einfluß der Strömungsgeschwindigkeit v auf die Lichtfortpflanzung wird nach den letzten, ausgleichenden Messungen von Zeemann durch die Formel (B) genauer als auf 1 Proz. genau dargestellt.
Es ist nun allerdings hervorzuheben, daß eine Theorie dieses Phänomens lange vor der Aufstellung der Relativitätstheorie auf rein elektrodynamischem Wege unter Benutzung bestimmter Hypothesen über die elektromagnetische Struktur der Materie von H. A. Lorentz gegeben worden ist. Dieser Umstand vermindert aber die Beweiskraft des Versuches als experimentum crucis zugunsten der Relativitätstheorie keineswegs. Denn die Maxwell-Lorentzsche Elektrodynamik, auf welcher die ursprüngliche Theorie beruhte, steht in keinerlei Gegensatz zur Relativitätstheorie. Letztere ist vielmehr aus der Elektrodynamik herausgewachsen als verblüffend einfache Zusammenfassung und Verallgemeinerung der früher voneinander unabhängigen Hypothesen, auf welchen die Elektrodynamik aufgebaut war.
§ 14. Der heuristische Wert der Relativitätstheorie.
Der bisher dargelegte Gedankengang läßt sich wie folgt kurz zusammenfassen. Die Erfahrung hat zu der Überzeugung geführt, daß einerseits das Relativitätsprinzip (im engeren Sinne) gelte und daß andererseits die Ausbreitungsgeschwindigkeit des Lichtes im Vakuum gleich einer Konstanten c zu setzen sei. Durch Vereinigung dieser beiden Postulate ergab sich das Transformationsgesetz für die rechtwinkeligen Koordinaten x, y, z und die Zeit t der Ereignisse, welche das Naturgeschehen zusammensetzen, und zwar ergab sich nicht die Galilei-Transformation, sondern (abweichend von der klassischen Mechanik) die Lorentz-Transformation.
In diesem Gedankengange spielte das Ausbreitungsgesetz des Lichtes eine wichtige Rolle, dessen Annahme sich aus unserem tatsächlichen Wissen rechtfertigt. Wir können aber, nachdem wir einmal im Besitz der Lorentz-Transformation sind, diese mit dem Relativitätsprinzip vereinigen und die Theorie in die Aussage zusammenfassen:
Jedes allgemeine Naturgesetz muß so beschaffen sein, daß es in ein Gesetz von genau gleicher Fassung übergeht, wenn man statt der Raum-Zeit-Variabeln x, y, z, t des ursprünglichen Koordinatensystems K neue Raum-Zeit-Variable x′, y′, z′, t′ eines Koordinatensystems K′ einführt, wobei der mathematische Zusammenhang zwischen den gestrichenen und ungestrichenen Größen durch die Lorentz-Transformation gegeben ist. Kurz formuliert: Die allgemeinen Naturgesetze sind kovariant bezüglich Lorentz-Transformationen.
Es ist dies eine bestimmte mathematische Bedingung, welche die Relativitätstheorie einem Naturgesetze vorschreibt; dadurch wird sie zu einem wertvollen heuristischen Hilfsmittel beim Aufsuchen der allgemeinen Naturgesetze. Würde ein allgemeines Naturgesetz aufgefunden, welches jener Bedingung nicht entspricht, so wäre mindestens eine der beiden Grundvoraussetzungen der Theorie widerlegt. Sehen wir nun zu, was letztere an allgemeinen Ergebnissen bisher gezeitigt hat.
§ 15. Allgemeine Ergebnisse der Theorie.
Aus den bisherigen Darlegungen ist ersichtlich, daß die (spezielle) Relativitätstheorie aus der Elektrodynamik und Optik herausgewachsen ist. Auf diesen Gebieten hat sie an den Aussagen der Theorie nicht viel geändert, aber sie hat das theoretische Gebäude, d. h. die Ableitung der Gesetze bedeutend vereinfacht und — was noch ungleich wichtiger ist — die Zahl der voneinander unabhängigen Hypothesen, auf welchen die Theorie beruht, erheblich vermindert. Sie hat der Maxwell-Lorentzschen Theorie einen solchen Grad von Evidenz verliehen, daß diese auch dann bei den Physikern allgemein durchgedrungen wäre, wenn das Experiment weniger überzeugend zu ihren Gunsten gesprochen hätte.
Die klassische Mechanik bedurfte erst einer Modifikation, um mit der Forderung der speziellen Relativitätstheorie in Einklang zu kommen. Diese Modifikation betrifft jedoch im wesentlichen nur die Gesetze für rasche Bewegungen, bei welchen die Geschwindigkeiten v der Materie gegenüber der Lichtgeschwindigkeit nicht gar zu klein sind. So rasche Bewegungen zeigt uns die Erfahrung nur an Elektronen und Ionen; bei anderen Bewegungen sind die Abweichungen von den Gesetzen der klassischen Mechanik zu gering, um sich praktisch bemerkbar zu machen. Von der Bewegung der Gestirne wird erst bei der allgemeinen Relativitätstheorie zu sprechen sein. Nach der Relativitätstheorie wird die kinetische Energie eines materiellen Punktes von der Masse m nicht mehr durch den bekannten Ausdruck
m v2
2
gegeben, sondern durch den Ausdruck:
m c2
√1 − v2 c2
Dieser Ausdruck wird unendlich, wenn sich die Geschwindigkeit v der Lichtgeschwindigkeit c nähert. Es muß also die Geschwindigkeit stets kleiner als c bleiben, wie große Energien man auch auf die Beschleunigung verwenden mag. Entwickelt man den Ausdruck für die kinetische Theorie in eine Reihe, so erhält man:
m c2 + m
v2
2
+
3
8
v4
c2
+ …
Das dritte dieser Glieder ist gegenüber dem zweiten, in der klassischen Mechanik allein berücksichtigten, stets klein, wenn
v2
c2
klein gegen 1 ist. Das erste Glied mc2 enthält die Geschwindigkeit nicht, kommt also nicht in Betracht, wenn es sich nur um die Frage handelt, wie die Energie eines Massenpunktes von der Geschwindigkeit abhängt. Über seine prinzipielle Bedeutung wird nachher gesprochen werden.
Das wichtigste Ergebnis allgemeiner Art, zu dem die spezielle Relativitätstheorie geführt hat, betrifft den Begriff der Masse. Die vorrelativistische Physik kennt zwei Erhaltungssätze von grundlegender Bedeutung, nämlich den Satz von der Erhaltung der Energie und den Satz von der Erhaltung der Masse; diese beiden Fundamentalsätze erscheinen als ganz unabhängig voneinander. Durch die Relativitätstheorie werden sie zu einem Satze verschmolzen. Wie dies kam, und wie diese Verschmelzung aufzufassen ist, soll nun kurz dargelegt werden.
Das Relativitätsprinzip fordert, daß der Satz von der Erhaltung der Energie nicht nur bezüglich eines Koordinatensystems K gelte, sondern bezüglich eines jeden Koordinatensystems K′, das relativ zu K sich in gleichförmiger Translationsbewegung befindet (kurz gesagt, bezüglich jedes „Galileischen“ Koordinatensystems). Für den Übergang zwischen zwei solchen Systemen ist im Gegensatz zur klassischen Mechanik die Lorentz-Transformation maßgebend.
Aus diesen Prämissen in Verbindung mit den Grundgleichungen der Maxwellschen Elektrodynamik kann man mit zwingender Notwendigkeit durch verhältnismäßig einfache Betrachtungen folgenden Schluß ziehen: Ein mit der Geschwindigkeit v fliegender Körper, der in Form von Strahlung die Energie E0 aufnimmt[10], ohne hierbei seine Geschwindigkeit zu ändern, erfährt dabei eine Zunahme seiner Energie um den Betrag:
E0
√1 − v2 c2
Die gesuchte Energie des Körpers ist also dann mit Rücksicht auf den vorher angegebenen Ausdruck für die kinetische Energie gegeben durch:
(m +
E0
c2
) c2
√1 − v2 c2
Der Körper hat also dann dieselbe Energie wie ein mit der Geschwindigkeit v bewegter Körper von der Masse m +
E0
c2
. Man kann also sagen: Nimmt ein Körper die Energie E0 auf, so wächst seine träge Masse um
E0
c2
; die träge Masse eines Körpers ist keine Konstante, sondern nach Maßgabe seiner Energieänderung veränderlich. Die träge Masse eines Körpersystems kann geradezu als Maß für seine Energie angesehen werden. Der Satz von der Erhaltung der Masse eines Systems fällt mit dem Satze von der Erhaltung der Energie zusammen und gilt nur insoweit, als das System keine Energie aufnimmt und abgibt. Schreibt man den Ausdruck für eine kinetische Energie in der Form
m c2 +E0
√1 − v2 c2
so sieht man, daß die Form mc2, die uns schon vorhin auffiel, nichts anderes ist als die Energie, welche der Körper schon besaß[11], bevor er die Energie E0 aufgenommen hatte.
Der direkte Vergleich dieses Satzes mit der Erfahrung scheitert vorläufig daran, daß die Energieänderungen E0, welche wir einem System erteilen können, nicht groß genug sind, um sich als Änderung der trägen Masse des Systems bemerkbar zu machen.
E0
c2
ist zu klein im Vergleich zu der Masse m, die vor der Energieänderung vorhanden war. Auf diesem Umstande beruht es, daß ein Satz von der Erhaltung der Masse von selbständiger Geltung mit Erfolg aufgestellt werden konnte.
Noch eine letzte Bemerkung prinzipieller Natur. Der Erfolg der Faraday-Maxwellschen Deutung der elektromagnetischen Fernwirkung durch intermediäre Vorgänge mit endlicher Ausbreitungsgeschwindigkeit brachte es mit sich, daß bei den Physikern sich die Überzeugung Bahn brach, daß es unvermittelte, momentane Fernwirkungen vom Typus des Newtonschen Gravitationsgesetzes nicht gebe. Nach der Relativitätstheorie tritt an die Stelle der Momentanwirkung in die Ferne bzw. der Fernwirkung mit unendlicher Ausbreitungsgeschwindigkeit stets die Fernwirkung mit Lichtgeschwindigkeit. Es hängt dies zusammen mit der prinzipiellen Rolle, welche die Geschwindigkeit c in dieser Theorie spielt. Im zweiten Teile wird sich zeigen, in welcher Weise dies Ergebnis in der allgemeinen Relativitätstheorie modifiziert wird.
§ 16. Spezielle Relativitätstheorie und Erfahrung.
Die Beantwortung der Frage, inwieweit die spezielle Relativitätstheorie durch die Erfahrung gestützt wird, ist nicht einfach zu beantworten aus einem Grunde, der schon bei Gelegenheit des Fundamentalversuches von Fizeau erwähnt ist. Die spezielle Relativitätstheorie ist aus der Maxwell-Lorentzschen Theorie der elektromagnetischen Erscheinungen auskristallisiert. Somit stützen alle Erfahrungstatsachen die Relativitätstheorie, welche jene elektromagnetische Theorie stützen. Ich erwähne hier als besonders wichtig, daß die Relativitätstheorie in überaus einfacher Weise in Übereinstimmung mit der Erfahrung die Einflüsse abzuleiten gestattet, welche das von den Fixsternen zu uns gesandte Licht durch die Relativbewegung der Erde gegen jene Fixsterne erfährt. Es ist dies die jährliche Wanderung des scheinbaren Ortes der Fixsterne infolge der Erdbewegung um die Sonne (Aberration) und der Einfluß der Radialkomponente der Relativbewegungen der Fixsterne gegen die Erde auf die Farbe des zu uns gelangenden Lichtes; der letztere Einfluß äußert sich in einer kleinen Verschiebung der Spektrallinien des von einem Fixstern zu uns gelangenden Lichtes gegenüber der spektralen Lage der gleichen, mit einer irdischen Lichtquelle erzeugten Spektrallinie (Dopplersches Prinzip). Die experimentellen Argumente zugunsten der Maxwell-Lorentzschen Theorie, welche alle zugleich Argumente zugunsten der Relativitätstheorie sind, sind zu zahlreich, um hier dargelegt zu werden. Sie engen tatsächlich die theoretischen Möglichkeiten derart ein, daß sich keine andere Theorie als die Maxwell-Lorentzsche der Erfahrung gegenüber hat behaupten können.
Zwei Klassen von bisher ermittelten experimentellen Tatsachen aber gibt es, welche die Maxwell-Lorentzsche Theorie nur durch Hinzuziehung einer Hilfshypothese darstellen kann, die an sich — d. h. ohne Benutzung der Relativitätstheorie — befremdlich erscheint.
Es ist bekannt, daß die Kathodenstrahlen und die von radioaktiven Substanzen ausgesandten sogenannten β-Strahlen aus negativ elektrischen Körperchen (Elektronen) von sehr geringer Trägheit und großer Geschwindigkeit bestehen. Dadurch, daß man die Ablenkung dieser Strahlungen unter dem Einfluß elektrischer und magnetischer Felder untersucht, kann man das Bewegungsgesetz dieser Körperchen sehr genau studieren.
Bei der theoretischen Behandlung dieser Elektronen hat man mit der Schwierigkeit zu kämpfen, daß die Elektrodynamik allein von ihrer Natur keine Rechenschaft zu geben vermag. Denn da elektrische Massen eines Vorzeichens sich abstoßen, müßten die das Elektron konstituierenden negativen elektrischen Massen unter dem Einfluß ihrer Wechselwirkung auseinander getrieben werden, wenn nicht noch Kräfte anderer Art zwischen ihnen wirksam wären, deren Natur uns bisher dunkel ist. Nimmt man nun an, daß die relativen Abstände der das Elektron konstituierenden elektrischen Massen bei den Bewegungen des Elektrons ungeändert bleiben (starre Verbindung im Sinne der klassischen Mechanik), so gelangt man zu einem Bewegungsgesetz des Elektrons, welches mit der Erfahrung nicht übereinstimmt. H. A. Lorentz hat als Erster, geführt durch rein formale Gesichtspunkte, die Hypothese eingeführt, daß der Körper des Elektrons durch die Bewegung eine Kontraktion in der Bewegungsrichtung erfahre, proportional dem Ausdruck √ 1 − v2 c2
Die Relativitätstheorie liefert dasselbe Bewegungsgesetz, ohne daß sie irgendeiner speziellen Hypothese über den Bau und das Verhalten des Elektrons bedürfte. Analog liegen die Dinge, wie wir in § 13 gesehen haben, bei dem Versuch von Fizeau, dessen Ergebnis die Relativitätstheorie lieferte, ohne daß Hypothesen über die physikalische Natur der Flüssigkeit gemacht werden mußten.
Die zweite Klasse von Tatsachen, auf die hier hingewiesen ist, bezieht sich auf die Frage, ob bei Versuchen auf der Erde deren Bewegung im Weltenraume sich bemerkbar mache. Es wurde schon in § 5 bemerkt, daß alle derartigen Bemühungen ein negatives Resultat lieferten. Vor der Aufstellung der Relativitätstheorie hatte es die Wissenschaft schwer, sich mit diesem negativen Befunde auseinanderzusetzen; die Sachlage war nämlich folgende. Die überkommenen Vorurteile über Zeit und Raum ließen keinen Zweifel darüber aufkommen, daß die Galilei-Transformation für den Übergang von einem Bezugskörper zu einem anderen maßgebend sei. Angenommen nun, die Maxwell-Lorentzschen Gleichungen gelten für einen Bezugskörper K, so findet man, daß sie nicht gelten für einen relativ zu K gleichförmig bewegten Bezugskörper K′, wenn man annimmt, daß zwischen den Koordinaten von K und K′ die Beziehungen der Galilei-Transformation bestehen. Dadurch scheint es, daß von allen Galileischen Koordinatensystemen eines (K) von bestimmtem Bewegungszustande physikalisch ausgezeichnet sei. Physikalisch interpretierte man dies Ergebnis dahin, daß man K als relativ zu einem hypothetischen Lichtäther ruhend ansah. Dagegen sollten alle gegen K bewegten Koordinatensysteme K′ gegen den Äther bewegt sein. Dieser Bewegung von K′ gegen den Äther („Ätherwind“ relativ zu K′) schrieb man die komplizierteren Gesetze zu, welche relativ zu K′ gelten sollten. Auch relativ zur Erde mußte folgerichtig ein solcher Ätherwind angenommen werden, und das Bestreben der Physiker war lange darauf gerichtet, diesen nachzuweisen.
Hierfür hatte Michelson einen Weg gefunden, der nicht fehlschlagen zu können schien. Man denke sich an einem starren Körper zwei Spiegel angeordnet, welche einander die reflektierende Seite zukehren. Ein Lichtstrahl braucht eine ganz bestimmte Zeit T, um von einem Spiegel zum anderen und wieder zurück zu gelangen, falls dies ganze System gegen den Lichtäther ruht. Man findet für diesen Vorgang aber eine etwas andere Zeit T′, wenn der Körper nebst Spiegeln relativ zum Äther bewegt ist. Ja noch mehr! Die Rechnung ergibt, daß diese Zeit T′ bei gegebener Geschwindigkeit v gegen den Äther eine andere sei, wenn der Körper senkrecht zu den Spiegelebenen bewegt ist, als wenn er parallel zu den Spiegelebenen bewegt ist. So winzig die so berechnete Differenz zwischen diesen beiden Zeitdauern auch sich ergab, Michelson und Morley führten ein Interferenzexperiment aus, bei welchem die Differenz deutlich hätte in Erscheinung treten müssen. Das Experiment fiel aber negativ aus, zur großen Verlegenheit der Physiker. Lorentz und FitzGerald zogen die Theorie aus dieser Verlegenheit, indem sie annahmen, daß die Bewegung des Körpers gegen den Äther eine Kontraktion in der Bewegungsrichtung bewirke, welche das Verschwinden der genannten Zeitdifferenz gerade bewirken sollte. Ein Vergleich mit den Darlegungen des § 12 zeigt, daß dieser Ausweg auch vom Standpunkt der Relativitätstheorie der richtige war. Die Auffassung der Sachlage ist aber nach der Relativitätstheorie eine unvergleichlich befriedigendere. Nach ihr gibt es kein bevorzugtes Koordinatensystem, welches zur Einführung der Ätheridee Anlaß gibt, mithin auch keinen Ätherwind und kein Experiment, um einen solchen in Evidenz zu setzen. Die Kontraktion bewegter Körper folgt hier ohne besondere Hypothesen aus den beiden Grundprinzipien der Theorie; und zwar ergibt sich als maßgebend für diese Kontraktion nicht die Bewegung an sich, welcher wir keinen Sinn beizulegen vermögen, sondern die Bewegung gegen den jeweilen gewählten Bezugskörper. So ist also für ein mit der Erde bewegtes Bezugssystem der Spiegelkörper von Michelson und Morley nicht verkürzt, wohl aber für ein relativ zur Sonne ruhendes Bezugssystem.
§ 17. Minkowskis vierdimensionaler Raum.
Ein mystischer Schauer ergreift den Nichtmathematiker, wenn er von „vierdimensional“ hört, ein Gefühl, das dem vom Theatergespenst erzeugten nicht unähnlich ist. Und doch ist keine Aussage banaler als die, daß unsere gewohnte Welt ein vierdimensionales zeiträumliches Kontinuum ist.
Der Raum ist ein dreidimensionales Kontinuum. Dies will sagen, daß es möglich ist, die Lage eines (ruhenden) Punktes durch drei Zahlen (Koordinaten), x, y, z, zu beschreiben, und daß es zu jedem Punkte beliebig „benachbarte“ Punkte gibt, deren Lage durch solche Koordinatenwerte (Koordinaten) x1, y1, z1 beschrieben werden kann, die den Koordinaten x, y, z des erstgenannten beliebig nahe kommen. Wegen der letzteren Eigenschaft sprechen wir von „Kontinuum“, wegen der Dreizahl der Koordinaten von „dreidimensional“.
Analog ist die Welt des physikalischen Geschehens, von Minkowski kurz „Welt“ genannt, natürlich vierdimensional in zeiträumlichem Sinne. Denn sie setzt sich aus Einzelereignissen zusammen, deren jedes durch vier Zahlen, nämlich drei räumliche Koordinaten x, y, z und eine zeitliche Koordinate, den Zeitwert t beschrieben ist. Die „Welt“ ist in diesem Sinne auch ein Kontinuum; denn es gibt zu jedem Ereignis beliebig „benachbarte“ (realisierte oder doch denkbare) Ereignisse, deren Koordinaten x1, y1, z1, t1 sich von denen des ursprünglich betrachteten Ereignisses x, y, z, t beliebig wenig unterscheiden. Daß wir nicht daran gewöhnt sind, die Welt in diesem Sinne als vierdimensionales Kontinuum aufzufassen, liegt darin, daß die Zeit in der vorrelativistischen Physik gegenüber den räumlichen Koordinaten eine verschiedene, mehr selbständige Rolle spielt. Darum haben wir uns daran gewöhnt, die Zeit als ein selbständiges Kontinuum zu behandeln. In der Tat ist die Zeit gemäß der klassischen Physik absolut, d. h. von der Lage und dem Bewegungszustande des Bezugssystems unabhängig. Dies kommt in der letzten Gleichung der Galilei-Transformation (t′ = t) zum Ausdruck.
Durch die Relativitätstheorie ist die vierdimensionale Betrachtungsweise der „Welt“ geboten, da ja gemäß dieser Theorie die Zeit ihrer Selbständigkeit beraubt wird, wie die vierte der Gleichungen der Lorentz-Transformation
t′ =
t −
v
c2
x
√1 − v2 c2
lehrt. Denn nach dieser Gleichung verschwindet die Zeitdifferenz Δt′ zweier Ereignisse in bezug auf K′ auch dann im allgemeinen nicht, wenn die Zeitdifferenz Δt derselben in bezug auf K verschwindet. Rein räumliche Distanz zweier Ereignisse in bezug auf K hat zeitliche Distanz derselben in bezug auf K′ zur Folge. Auch hierin liegt nicht Minkowskis für die formale Entwicklung der Relativitätstheorie wichtige Entdeckung. Diese liegt vielmehr in der Erkenntnis, daß das vierdimensionale zeiträumliche Kontinuum der Relativitätstheorie in seinen maßgebenden formalen Eigenschaften die weitgehendste Verwandtschaft zeigt zu dem dreidimensionalen Kontinuum des Euklidischen geometrischen Raumes. Um diese Verwandtschaft ganz hervortreten zu lassen, muß man allerdings statt der üblichen Zeitkoordinate t die ihr proportionale imaginäre Größe √−1 c t einführen. Dann aber nehmen die den Forderungen der (speziellen) Relativitätstheorie genügenden Naturgesetze mathematische Formen an, in denen die Zeitkoordinate genau dieselbe Rolle spielt wie die drei räumlichen Koordinaten. Diese vier Koordinaten entsprechen formal genau den drei räumlichen Koordinaten der Euklidischen Geometrie. Es muß auch dem Nichtmathematiker einleuchten, daß durch diese rein formale Erkenntnis die Theorie außerordentlich an Übersichtlichkeit gewinnen mußte.
Diese dürftigen Andeutungen geben dem Leser nur eine vage Idee von dem wichtigen Gedanken Minkowskis, ohne den die im folgenden in ihren Grundgedanken entwickelte allgemeine Relativitätstheorie vielleicht in den Windeln stecken geblieben wäre. Da aber ein exakteres Erfassen dieses für den mathematisch nichtgeübten Leser zweifellos schwer zugänglichen Gegenstandes für das Verständnis der Grundgedanken weder der speziellen noch der allgemeinen Relativitätstheorie nötig ist, so will ich denselben hier verlassen, um erst in den letzten Darlegungen dieses Büchleins wieder darauf zurückzukommen.
[2] Damit ist auch der geraden Linie ein Naturobjekt zugeordnet. Drei Punkte eines starren Körpers A, B, C liegen dann in einer Geraden, wenn bei gegebenen Punkten A und C der Punkt B so gewählt ist, daß die Summe der Entfernungen AB und BC möglichst gering wird. Diese lückenhafte Andeutung mag in diesem Zusammenhange genügen.
[3] Dabei ist allerdings angenommen, daß die Messung aufgehe, d. h. eine ganze Zahl ergebe. Von dieser Schwierigkeit befreit man sich durch die Anwendung geteilter Maßstäbe, deren Einführung keine prinzipiell neue Methode verlangt.
[4] Eine weitere Untersuchung darüber, was hier „räumliche Koinzidenz“ bedeutet, ist hier nicht nötig; denn dieser Begriff ist insofern klar, als im einzelnen realen Falle Meinungsverschiedenheiten darüber, ob er zutreffe oder nicht, kaum auftreten dürften.
[5] Erst durch die im zweiten Teil des Büchleins behandelte allgemeine Relativitätstheorie wird eine Verfeinerung und Änderung dieser Auffassungen nötig.
[6] Wir nehmen ferner an, daß, wenn drei Ereignisse A, B, C derartig an verschiedenen Orten stattfinden, daß, wenn A gleichzeitig mit B und B gleichzeitig mit C ist (gleichzeitig im Sinne obiger Definition), das Kriterium der Gleichzeitigkeit auch für das Ereignispaar A–C erfüllt sei. Diese Annahme ist eine physikalische Hypothese über das Ausbreitungsgesetz des Lichtes; sie muß unbedingt erfüllt sein, wenn es möglich sein soll, an dem Gesetz von der Konstanz der Vakuum-Lichtgeschwindigkeit festzuhalten.
[7] Vom Fahrdamm aus beurteilt!
[8] Etwa die Mitte des 1. und 100. Wagens.
[9] Fizeau fand W = w + v (1 −
1
n2
), wobei n =
c
w
der Brechungsexponent der Flüssigkeit ist. Andererseits kann für (B) wegen der Kleinheit von
v w
c2
gegenüber 1 zunächst W = (w + v) (1 −
v w
c2
), oder mit der gleichen Näherung W = w + v (1 −
1
n2
) gesetzt werden, was mit Fizeaus Resultat übereinstimmt.
[10] E0 ist die aufgenommene Energie, von einem mit dem Körper bewegten Koordinatensystem aus beurteilt.
[11] Von einem mitbewegten Koordinatensystem aus beurteilt.
Zweiter Teil.
Über die allgemeine Relativitätstheorie.
§ 18. Spezielles und allgemeines Relativitätsprinzip.
Die Grundthese, um welche sich alle bisherigen Ausführungen drehten, war das spezielle Relativitätsprinzip, d. h. das Prinzip von der physikalischen Relativität aller gleichförmigen Bewegung. Analysieren wir noch einmal genau seinen Inhalt!
Daß jegliche Bewegung ihrem Begriff nach nur als relative Bewegung gedacht werden muß, war zu allen Zeiten einleuchtend. Bei unserem viel benutzten Beispiel vom Bahndamm und vom Eisenbahnwagen kann z. B. die Tatsache der hier stattfindenden Bewegung mit gleichem Rechte in den beiden Formen ausgesprochen werden:
a) Der Wagen bewegt sich relativ zum Bahndamm,
b) Der Bahndamm bewegt sich relativ zum Wagen.
Im Falle a) dient bei dieser Aussage der Bahndamm, im Falle b) der Wagen als Bezugskörper. Bei der bloßen Feststellung bzw. Beschreibung der Bewegung ist es prinzipiell gleichgültig, auf was für einen Bezugskörper man die Bewegung bezieht. Dies ist, wie gesagt, selbstverständlich und darf nicht mit der viel weitergehenden Aussage verwechselt werden, welche wir „Relativitätsprinzip“ genannt und unseren Untersuchungen zugrunde gelegt haben.
Das von uns benutzte Prinzip behauptet nicht nur, daß man für die Beschreibung jeglichen Geschehens ebensowohl den Wagen wie den Bahndamm als Bezugskörper wählen könne (denn auch dies ist selbstverständlich). Unser Prinzip behauptet vielmehr: Formuliert man die allgemeinen Naturgesetze, wie sie sich aus der Erfahrung ergeben, indem man sich
a) des Bahndammes als Bezugskörpers bedient,
b) des Wagens als Bezugskörpers bedient,
so lauten diese allgemeinen Naturgesetze (z. B. die Gesetze der Mechanik oder das Gesetz der Lichtausbreitung im Vakuum) genau gleich in beiden Fällen. Man kann das auch so ausdrücken: Für die physikalische Beschreibung der Naturvorgänge ist keiner der Bezugskörper K, K′ vor dem anderen ausgezeichnet. Diese letztere Aussage muß nicht a priori notwendig zutreffen wie die erstere; sie ist nicht in den Begriffen „Bewegung“ und „Bezugskörper“ enthalten und aus ihnen ableitbar, sondern über ihre Richtigkeit oder Unrichtigkeit kann nur die Erfahrung entscheiden.
Wir haben nun aber bisher keineswegs die Gleichwertigkeit aller Bezugskörper K mit Bezug auf die Formulierung der Naturgesetze behauptet. Unser Weg war vielmehr folgender. Wir gingen zunächst von der Annahme aus, daß es einen Bezugskörper K von solchem Bewegungszustande gebe, daß relativ zu ihm der Galileische Grundsatz gilt: Ein sich selbst überlassener, von allen übrigen hinlänglich entfernter Massenpunkt bewegt sich gleichförmig und geradlinig. Auf K (Galileischer Bezugskörper) bezogen sollten die Naturgesetze möglichst einfache sein. Außer K sollten aber alle diejenigen Bezugskörper K′ in diesem Sinne bevorzugt und mit K für die Formulierung der Naturgesetze genau gleichwertig sein, welche relativ zu K eine geradlinig gleichförmige, rotationsfreie Bewegung ausführen; alle diese Bezugskörper werden als Galileische Bezugskörper angesehen. Nur für diese Bezugskörper wurde die Gültigkeit des Relativitätsprinzips angenommen, für andere (anders bewegte) nicht. In diesem Sinne sprechen wir vom speziellen Relativitätsprinzip bzw. spezieller Relativitätstheorie.
Im Gegensatz hierzu wollen wir unter „allgemeinem Relativitätsprinzip“ die Behauptung verstehen: Alle Bezugskörper K, K′ usw. sind für die Naturbeschreibung (Formulierung der allgemeinen Naturgesetze) gleichwertig, welches auch deren Bewegungszustand sein mag. Es sei aber gleich bemerkt, daß diese Formulierung später durch eine abstraktere ersetzt werden muß aus Gründen, die erst später zutage treten werden.
Nachdem sich die Einführung des speziellen Relativitätsprinzips bewährt hat, muß es jedem nach Verallgemeinerung strebenden Geiste verlockend erscheinen, den Schritt zum allgemeinen Relativitätsprinzip zu wagen. Aber eine einfache, scheinbar ganz zuverlässige Betrachtung läßt einen solchen Versuch zunächst aussichtslos erscheinen. Der Leser denke sich in den schon so oft betrachteten, gleichförmig fahrenden Eisenbahnwagen versetzt. Solange der Wagen gleichförmig fährt, ist für den Insassen nichts vom Fahren des Wagens zu merken. Daher kommt es auch, daß der Insasse den Tatbestand ohne inneres Widerstreben dahin deuten kann, daß der Wagen ruhe, der Bahndamm aber bewegt sei. Diese Interpretation ist übrigens nach dem speziellen Relativitätsprinzip auch physikalisch ganz berechtigt.
Wird nun aber die Bewegung des Wagens etwa dadurch in eine ungleichförmige verwandelt, daß der Wagen kräftig gebremst wird, so erhält der Insasse einen entsprechend kräftigen Ruck nach vorne. Die beschleunigte Bewegung des Wagens äußert sich in dem mechanischen Verhalten der Körper relativ zu ihm; das mechanische Verhalten ist ein anderes als im vorhin betrachteten Falle, und es erscheint deshalb ausgeschlossen zu sein, daß relativ zum ungleichförmig bewegten Wagen die gleichen mechanischen Gesetze gelten, wie relativ zum ruhenden bzw. gleichförmig bewegten Wagen. Jedenfalls ist klar, daß relativ zum ungleichförmig bewegten Wagen der Galileische Grundsatz nicht gilt. Wir fühlen uns daher zunächst genötigt, entgegen dem allgemeinen Relativitätsprinzip der ungleichförmigen Bewegung eine Art absolute physikalische Realität zuzusprechen. Im folgenden werden wir aber bald sehen, daß dieser Schluß nicht stichhaltig ist.
§ 19. Das Gravitationsfeld.
Auf die Frage: „Warum fällt ein Stein, den wir emporheben und darauf loslassen, zur Erde?“ antwortet man gewöhnlich: „Weil er von der Erde angezogen wird.“ Die moderne Physik formuliert die Antwort etwas anders aus folgendem Grunde. Durch genaueres Studium der elektromagnetischen Erscheinungen ist man zu der Auffassung gekommen, daß es eine unvermittelte Wirkung in die Ferne nicht gebe. Zieht z. B. ein Magnet ein Stück Eisen an, so darf man sich nicht mit der Auffassung zufrieden geben, daß der Magnet durch den leeren Zwischenraum hindurch auf das Eisen direkt einwirke, sondern man stellt sich nach Faraday vor, daß der Magnet in dem ihn umgebenden Raume etwas physikalisch Reales stets hervorrufe, was man als „magnetisches Feld“ bezeichnet. Dies magnetische Feld wirkt seinerseits wieder auf das Eisenstück ein, so daß es sich zum Magneten zu bewegen strebt. Die Berechtigung dieses an sich willkürlichen Zwischenbegriffes wollen wir hier nicht erörtern. Es sei nur bemerkt, daß man mit seiner Hilfe die elektromagnetischen Erscheinungen, insbesondere die Ausbreitung der elektromagnetischen Wellen, viel befriedigender theoretisch darstellen kann als ohne denselben. Analog faßt man auch die Wirkungen der Gravitation auf.
Die Einwirkung der Erde auf den Stein kommt indirekt zustande. Die Erde erzeugt in ihrer Umgebung ein Gravitationsfeld. Dieses wirkt auf den Stein und veranlaßt seine Fallbewegung. Die Stärke der Einwirkung auf einen Körper nimmt erfahrungsgemäß ab, wenn man sich mehr und mehr von der Erde entfernt, nach einem ganz bestimmten Gesetze. Dies heißt in unserer Auffassungsweise: Das Gesetz, welches die räumlichen Eigenschaften des Gravitationsfeldes beherrscht, muß ein ganz bestimmtes sein, um die Abnahme der Gravitationswirkung mit der Entfernung vom wirksamen Körper richtig darzustellen. Man stellt sich etwa vor, der Körper erzeuge direkt das Feld in seiner unmittelbaren Nähe; Stärke und Richtung des Feldes in größerer Entfernung sind dann hieraus durch das Gesetz bestimmt, welches die räumlichen Eigenschaften der Gravitationsfelder selbst beherrscht.
Das Gravitationsfeld weist im Gegensatz zum elektrischen und magnetischen Felde eine höchst merkwürdige Eigenschaft auf, welche für das Folgende von fundamentaler Bedeutung ist. Körper, die sich unter ausschließlicher Wirkung des Schwerefeldes bewegen, erfahren eine Beschleunigung, welche weder vom Material noch vom physikalischen Zustande des Körpers im geringsten abhängt. Ein Stück Blei und ein Stück Holz fallen beispielsweise im Schwerefelde (im luftleeren Raume) genau gleich, wenn man sie ohne bzw. mit gleicher Anfangsgeschwindigkeit fallen läßt. Man kann dies äußerst genau gültige Gesetz auch noch anders formulieren auf Grund folgender Erwägung.
Nach Newtons Bewegungsgesetz ist
(Kraft) = (träge Masse) . (Beschleunigung),
wobei die „träge Masse“ eine charakteristische Konstante des beschleunigten Körpers ist. Ist nun die beschleunigende Kraft die Schwere, so ist andererseits
(Kraft) = (schwere Masse) . (Intensität des Schwerefeldes),
wobei die „schwere Masse“ ebenfalls eine für den Körper charakteristische Konstante ist. Aus beiden Relationen folgt:
(Beschleunigung) =
(schwere Masse)
(träge Masse)
. (Intensität des Schwerefeldes)
Soll nun, wie die Erfahrung ergibt, bei gegebenem Schwerefelde die Beschleunigung unabhängig von der Natur und dem Zustande des Körpers stets dieselbe sein, so muß das Verhältnis der schweren zur trägen Masse ebenfalls für alle Körper gleich sein. Man kann also dies Verhältnis bei passender Wahl der Einheiten zu 1 machen; dann gilt der Satz: Die schwere und die träge Masse eines Körpers sind einander gleich.
Die bisherige Mechanik hat diesen wichtigen Satz zwar registriert, aber nicht interpretiert. Eine befriedigende Interpretation kann nur so zustande kommen, daß man einsieht: Dieselbe Qualität des Körpers äußert sich je nach Umständen als „Trägheit“ oder als „Schwere“. Inwiefern dies tatsächlich der Fall ist, und wie diese Frage mit dem allgemeinen Relativitätspostulat zusammenhängt, wird im nächsten Paragraphen dargelegt werden.
§ 20. Die Gleichheit der trägen und schweren Masse als Argument für das allgemeine Relativitätspostulat.
Wir denken uns ein geräumiges Stück leeren Weltraumes, so weit weg von Sternen und erheblichen Massen, daß wir mit erheblicher Genauigkeit den Fall vor uns haben, der im Galileischen Grundgesetz vorgesehen ist. Es ist dann möglich, für diesen Teil Welt einen Galileischen Bezugskörper zu wählen, relativ zu dem ruhende Punkte ruhend bleiben, bewegte dauernd in geradlinig gleichförmiger Bewegung verharren. Als Bezugskörper denken wir uns einen geräumigen Kasten von der Gestalt eines Zimmers; darin befinde sich ein mit Apparaten ausgestatteter Beobachter. Für diesen gibt es natürlich keine Schwere. Er muß sich mit Schnüren am Boden befestigen, wenn er nicht beim leisesten Stoß gegen den Boden langsam gegen die Decke des Zimmers entschweben will.
In der Mitte der Kastendecke sei außen ein Haken mit Seil befestigt und an diesem fange nun ein Wesen von uns gleichgültiger Art mit konstanter Kraft zu ziehen an. Dann beginnt der Kasten samt dem Beobachter in gleichförmig beschleunigtem Fluge nach „oben“ zu fliegen. Seine Geschwindigkeit wird im Laufe der Zeit ins Phantastische zunehmen — falls wir all dies beurteilen von einem anderen Bezugskörper aus, an dem nicht mit einem Stricke gezogen wird.
Wie beurteilt aber der Mann im Kasten den Vorgang? Die Beschleunigung des Kastens wird vom Boden desselben durch Gegendruck auf ihn übertragen. Er muß also diesen Druck mittels seiner Beine aufnehmen, wenn er nicht seiner ganzen Länge nach den Boden berühren will. Er steht dann im Kasten genau wie einer in einem Zimmer eines Hauses auf unserer Erde steht. Läßt er einen Körper los, den er vorher in der Hand hatte, so wird auf diesen die Beschleunigung des Kastens nicht mehr übertragen; der Körper wird sich daher in beschleunigter Relativbewegung dem Boden des Kastens nähern. Der Beobachter wird sich ferner überzeugen, daß die Beschleunigung des Körpers gegen den Boden immer gleich groß ist, mit was für einem Körper er auch den Versuch ausführen mag.
Der Mann im Kasten wird also, gestützt auf seine Kenntnisse vom Schwerefelde, wie wir sie im letzten Paragraphen besprochen, zu dem Ergebnis kommen, daß er samt dem Kasten sich in einem zeitlich konstanten Schwerefelde befinde. Er wird allerdings einen Augenblick verwundert sein darüber, daß der Kasten in diesem Schwerefelde nicht falle. Da entdeckt er aber den Haken in der Mitte der Decke und das an demselben befestigte gespannte Seil, und er kommt folgerichtig zu dem Ergebnis, daß der Kasten in dem Schwerefelde ruhend aufgehängt sei.
Dürfen wir über den Mann lächeln und sagen, er befinde sich mit seiner Auffassung im Irrtum? Ich glaube, wir dürfen das nicht, wenn wir konsequent bleiben wollen, sondern wir müssen zugeben, daß seine Auffassungsweise weder gegen die Vernunft noch gegen die bekannten mechanischen Gesetze verstößt. Wir können den Kasten, wenn er auch gegen den zuerst betrachteten „Galileischen Raum“ beschleunigt ist, dennoch als ruhend ansehen. Wir haben also guten Grund, das Relativitätsprinzip auszudehnen auf relativ zueinander beschleunigte Bezugskörper und haben so ein kräftiges Argument für ein verallgemeinertes Relativitätspostulat gewonnen.
Man beachte wohl, daß die Möglichkeit dieser Auffassungsweise auf der fundamentalen Eigenschaft des Schwerefeldes beruht, allen Körpern dieselbe Beschleunigung zu erteilen, oder, was dasselbe bedeutet, auf dem Satz von der Gleichheit der trägen und schweren Masse. Würde dies Naturgesetz nicht bestehen, so würde der Mann im beschleunigten Kasten das Verhalten der Körper seiner Umgebung nicht durch die Voraussetzung eines Gravitationsfeldes deuten können, und er wäre auf Grund keiner Erfahrung berechtigt, seinen Bezugskörper als einen „ruhenden“ vorauszusetzen.
Der Mann im Kasten befestige an der Innenseite der Kastendecke ein Seil und an dessen freiem Ende einen Körper. Durch diesen wird bewirkt werden, daß das Seil in gespanntem Zustande „vertikal“ herabhängt. Wir fragen nach der Ursache der Spannung des Seiles. Der Mann im Kasten wird sagen: „Der aufgehängte Körper erfährt in dem Schwerefelde eine Kraft nach unten, welcher durch die Seilspannung das Gleichgewicht gehalten wird; maßgebend für die Größe der Seilspannung ist die schwere Masse des aufgehängten Körpers.“ Andererseits wird aber ein Beurteiler, der frei im Raume schwebt, den Zustand so beurteilen: „Das Seil ist gezwungen, die beschleunigte Bewegung des Kastens mitzumachen und überträgt diese auf den daran befestigten Körper. Die Seilspannung ist so groß, daß sie die Beschleunigung des letzteren gerade zu bewirken vermag. Maßgebend für die Größe der Spannung im Seile ist die träge Masse des Körpers.“ Wir sehen aus diesem Beispiele, daß unsere Erweiterung des Relativitätsprinzips den Satz von der Gleichheit der trägen und schweren Masse als notwendig erscheinen läßt. Damit ist eine physikalische Interpretation dieses Satzes gewonnen.
Aus der Betrachtung des beschleunigten Kastens sieht man, daß eine allgemeine Relativitätstheorie wichtige Ergebnisse über die Gesetze der Gravitation liefern muß. Tatsächlich hat die konsequente Verfolgung des allgemeinen Relativitätsgedankens die Gesetze geliefert, denen das Gravitationsfeld genügt. Ich muß jedoch schon hier den Leser vor einem Mißverständnis warnen, das durch diese Überlegungen nahegelegt wird. Für den Mann im Kasten existiert ein Gravitationsfeld, trotzdem für das zuerst gewählte Koordinatensystem ein solches nicht vorhanden war. Man könnte nun leicht meinen, daß die Existenz eines Gravitationsfeldes stets eine nur scheinbare sei. Man könnte denken, daß, was auch immer für ein Gravitationsfeld vorhanden sein mag, man immer einen anderen Bezugskörper so wählen könne, daß in bezug auf ihn kein Gravitationsfeld existiert. Dies trifft aber keineswegs für alle Gravitationsfelder zu, sondern nur für solche von ganz speziellem Bau. So ist es beispielsweise unmöglich, einen Bezugskörper so zu wählen, daß von ihm aus beurteilt das Gravitationsfeld der Erde (in seiner ganzen Ausdehnung) verschwindet.
Wir bemerken jetzt, warum das gegen das allgemeine Relativitätsprinzip am Ende des § 18 vorgebrachte Argument nicht beweisend ist. Es ist wohl richtig, daß der im gebremsten Eisenbahnwagen befindliche Beobachter infolge der Bremsung einen Ruck nach vorn empfindet und daß er daran die Ungleichförmigkeit (Beschleunigung) des Wagens merkt. Aber niemand zwingt ihn, den Ruck auf eine „wirkliche“ Beschleunigung des Wagens zurückzuführen. Er kann sein Erlebnis auch so interpretieren: „Mein Bezugskörper (der Wagen) bleibt dauernd in Ruhe. Es herrscht aber (während der Bremsungsperiode) in bezug auf denselben ein nach vorn gerichtetes, zeitlich veränderliches Schwerefeld. Unter dem Einfluß des letzteren bewegt sich der Bahndamm samt der Erde ungleichförmig derart, daß dessen ursprüngliche, nach rückwärts gerichtete Geschwindigkeit immer mehr abnimmt.“
§ 21. Inwiefern sind die Grundlagen der klassischen Mechanik und der speziellen Relativitätstheorie unbefriedigend?
Wie schon mehrfach erwähnt, geht die klassische Mechanik von dem Satze aus: Von anderen materiellen Punkten hinreichend entfernte materielle Punkte bewegen sich geradlinig gleichförmig oder verharren im Ruhezustande. Wir haben auch mehrfach hervorgehoben, daß das Grundgesetz nur gültig sein kann für Bezugskörper K von gewissen ausgezeichneten Bewegungszuständen, welche relativ zueinander sich in gleichförmiger Translationsbewegung befinden. Relativ zu anderen Bezugskörpern K gilt der Satz nicht. Sowohl in der klassischen Mechanik wie in der speziellen Relativitätstheorie unterscheidet man demgemäß zwischen Bezugskörpern K, relativ zu denen die Naturgesetze gültig sind, und zwischen Bezugskörpern K, relativ zu welchen die Naturgesetze nicht gelten.
Mit dieser Sachlage kann sich aber kein konsequent denkender Mensch zufrieden geben. Er fragt: „Wie ist es möglich, daß gewisse Bezugskörper (bzw. deren Bewegungszustände) vor anderen Bezugskörpern (bzw. deren Bewegungszuständen) ausgezeichnet sind? Welches ist der Grund für diese Bevorzugung?“ Um deutlich zu zeigen, was ich mit dieser Frage meine, will ich mich eines Vergleichs bedienen.
Ich stehe vor einem Gasherde. Auf demselben stehen nebeneinander zwei Kochtöpfe, die einander zum Verwechseln ähnlich sind. Beide sind zur Hälfte mit Wasser gefüllt. Ich nehme wahr, daß aus dem einen unaufhörlich Dampf entweicht, aus dem anderen nicht. Hierüber wundere ich mich, auch wenn mir ein Gasherd und ein Kochtopf noch nie zu Gesicht gekommen ist. Nehme ich nun unter dem ersteren Kochtopfe ein bläulich leuchtendes Etwas wahr, unter dem letzteren nicht, so schwindet meine Verwunderung auch dann, wenn ich noch nie eine Gasflamme wahrgenommen habe. Denn ich kann nur sagen, daß dieses bläuliche Etwas das Entweichen des Dampfes verursachen wird, oder wenigstens möglicherweise verursacht. Nehme ich aber bei keinem Topfe das bläuliche Etwas wahr, und sehe ich, daß der eine unaufhörlich dampft, der andere nicht, so bin ich so lange verwundert und unbefriedigt, bis ich irgendeinen Umstand wahrgenommen habe, den ich für das verschiedene Verhalten beider Töpfe verantwortlich machen kann.
Analog suche ich in der klassischen Mechanik (bzw. in der speziellen Relativitätstheorie) vergeblich nach einem realen Etwas, auf das ich das verschiedene Verhalten der Körper gegenüber den Bezugssystemen K und K′ zurückführen könnte[12]. Diesen Mangel fühlte schon Newton und suchte ihn vergeblich zu entkräften. Am klarsten hat ihn aber E. Mach erkannt und seinetwegen gefordert, daß die Mechanik auf eine neue Grundlage gestellt werden müsse. Dieser Einwand läßt sich nur durch eine Physik vermeiden, welche dem allgemeinen Relativitätsprinzip entspricht. Denn die Gleichungen einer solchen Theorie gelten für jeden Bezugskörper, in was für einem Bewegungszustande derselbe auch sein mag.
§22. Einige Schlüsse aus dem allgemeinen Relativitätsprinzip.
Die Betrachtungen des § 20 zeigen, daß das allgemeine Relativitätsprinzip uns in den Stand setzt, auf rein theoretischem Wege Eigenschaften des Gravitationsfeldes abzuleiten. Es sei nämlich der raum-zeitliche Verlauf irgendeines Naturvorganges bekannt, so wie er sich im Galileischen Gebiete relativ zu einem Galileischen Bezugskörper K abspielt. Dann kann man durch rein theoretische Operationen, d. h. durch bloße Rechnung, finden, wie sich dieser bekannte Naturvorgang von einem relativ zu K beschleunigten Bezugskörper K′ aus ausnimmt. Da aber relativ zu diesem neuen Bezugskörper K′ ein Gravitationsfeld existiert, so erfährt man bei der Betrachtung, wie das Gravitationsfeld den studierten Vorgang beeinflußt.
So erfahren wir beispielsweise, daß ein Körper, der gegenüber K eine geradlinig gleichförmige Bewegung ausführt (entsprechend dem Galileischen Satze), gegenüber dem beschleunigten Bezugskörper K′ (Kasten) eine beschleunigte, im allgemeinen krummlinige Bewegung ausführt. Diese Beschleunigung bzw. Krümmung entspricht dem Einfluß des relativ zu K′ herrschenden Gravitationsfeldes auf den bewegten Körper. Daß das Gravitationsfeld in dieser Weise die Bewegung der Körper beeinflußt, ist bekannt, so daß die Überlegung nichts prinzipiell Neues liefert.
Ein neues Ergebnis von fundamentaler Wichtigkeit erhält man aber, wenn man die entsprechende Überlegung für einen Lichtstrahl durchführt. Gegenüber dem Galileischen Bezugskörper K pflanzt sich dieser in gerader Linie mit der Geschwindigkeit c fort. In bezug auf den beschleunigten Kasten (Bezugskörper K′) ist, wie leicht abzuleiten ist, die Bahn desselben Lichtstrahles keine Gerade mehr. Hieraus ist zu schließen, daß sich Lichtstrahlen in Gravitationsfeldern im allgemeinen krummlinig fortpflanzen. Dies Ergebnis ist in zweifacher Hinsicht von großer Wichtigkeit.
Erstens nämlich kann dasselbe mit der Wirklichkeit verglichen werden. Wenn eine eingehende Überlegung auch ergibt, daß die Krümmung der Lichtstrahlen, welche die allgemeine Relativitätstheorie liefert, für die uns in der Erfahrung zur Verfügung stehenden Gravitationsfelder nur äußerst gering ist, so soll sie für Lichtstrahlen, die in der Nähe der Sonne vorbeigehen, doch 1,7 Bogensekunden betragen. Dies müßte sich dadurch äußern, daß die in der Nähe der Sonne erscheinenden Fixsterne, welche bei totalen Sonnenfinsternissen der Beobachtung zugänglich sind, um diesen Betrag von der Sonne weggerückt erscheinen müssen gegenüber der Lage, die sie für uns am Himmel annehmen, wenn die Sonne an einer anderen Stelle am Himmel steht. Die Prüfung des Zutreffens oder Nichtzutreffens dieser Konsequenz ist eine Aufgabe von höchster Wichtigkeit, deren baldige Lösung wir von den Astronomen erhoffen dürfen.
Zweitens aber zeigt diese Konsequenz, daß nach der allgemeinen Relativitätstheorie das schon oft erwähnte Gesetz von der Konstanz der Vakuumlichtgeschwindigkeit, das eine der beiden grundlegenden Annahmen der speziellen Relativitätstheorie bildet, keine unbegrenzte Gültigkeit beanspruchen kann. Eine Krümmung der Lichtstrahlen kann nämlich nur dann eintreten, wenn die Ausbreitungsgeschwindigkeit des Lichtes mit dem Orte variiert. Man könnte nun denken, daß durch diese Konsequenz die spezielle Relativitätstheorie, und mit ihr die Relativitätstheorie überhaupt, zu Fall gebracht würde. Dies trifft aber in Wahrheit nicht zu. Es läßt sich nur schließen, daß die spezielle Relativitätstheorie kein unbegrenztes Gültigkeitsgebiet beanspruchen kann; ihre Ergebnisse gelten nur insoweit, als man von den Einflüssen der Gravitationsfelder auf die Erscheinungen (z. B. des Lichtes) absehen kann.
Da die Gegner der Relativitätstheorie öfters behauptet haben, die spezielle Relativitätstheorie werde durch die allgemeine Relativitätstheorie über den Haufen geworfen, will ich den wirklichen Sachverhalt durch einen Vergleich deutlicher machen. Vor der Aufstellung der Elektrodynamik wurden die Gesetze der Elektrostatik für die Gesetze der Elektrizität schlechthin angesehen. Heute wissen wir, daß die Elektrostatik die elektrischen Felder nur in dem nie streng realisierten Falle richtig liefern kann, daß die elektrischen Massen relativ zueinander und zum Koordinatensystem exakt ruhen. Ist deshalb die Elektrostatik durch Maxwells Feldgleichungen der Elektrodynamik über den Haufen geworfen worden? Keineswegs! Die Elektrostatik ist als Grenzfall in der Elektrodynamik enthalten; die Gesetze der letzteren führen direkt auf die ersteren in dem Falle, daß die Felder zeitlich unveränderlich sind. Es ist das schönste Los einer physikalischen Theorie, wenn sie selbst zur Aufstellung einer umfassenden Theorie den Weg weist, in welcher sie als Grenzfall weiterlebt.
Bei dem eben behandelten Beispiel der Lichtausbreitung haben wir gesehen, daß das allgemeine Relativitätsprinzip uns in den Stand setzt, den Einfluß des Gravitationsfeldes auf den Ablauf von Vorgängen auf theoretischem Wege abzuleiten, deren Gesetze für den Fall des Fehlens eines Gravitationsfeldes bereits bekannt sind. Die reizvollste Aufgabe, zu deren Lösung das allgemeine Relativitätsprinzip den Schlüssel liefert, betrifft aber die Ermittelung der Gesetze, denen das Gravitationsfeld selbst genügt. Der Sachverhalt ist hier folgender.
Wir kennen raum-zeitliche Gebiete, die sich bei passender Wahl des Bezugskörpers (annähernd) „galileisch“ verhalten, d. h. Gebiete, in denen Gravitationsfelder fehlen. Beziehen wir nun ein solches Gebiet auf einen beliebig bewegten Bezugskörper K′, so ist in bezug auf K′ ein zeitlich und räumlich veränderliches Gravitationsfeld vorhanden[13]. Die Beschaffenheit des letzteren hängt natürlich davon ab, wie wir die Bewegung von K′ wählen. Das allgemeine Gesetz des Gravitationsfeldes muß nach der allgemeinen Relativitätstheorie für alle so erhältlichen Gravitationsfelder erfüllt sein. Wenn nun auch keineswegs alle Gravitationsfelder auf diese Weise erzeugt werden können, so schöpft man doch Hoffnung, aus diesen Gravitationsfeldern spezieller Art das allgemeine Gesetz der Gravitation ableiten zu können. Diese Hoffnung ist aufs schönste in Erfüllung gegangen! Aber vom klaren Sehen dieses Zieles bis zum tatsächlichen Erreichen desselben bedurfte es noch der Überwindung einer ernstlichen Schwierigkeit, die ich dem Leser nicht vorenthalten darf, da sie tief im Wesen der Sache liegt. Es bedarf einer abermaligen Vertiefung der Begriffe von dem raum-zeitlichen Kontinuum.
§ 23. Verhalten von Uhren und Maßstäben auf einem rotierenden Bezugskörper.
Ich habe bis jetzt absichtlich nicht gesprochen über die physikalische Interpretation von räumlichen und zeitlichen Angaben in dem Falle der allgemeinen Relativitätstheorie. Dadurch habe ich mich einer gewissen Unsauberkeit schuldig gemacht, von der wir aus der speziellen Relativitätstheorie wissen, daß sie keineswegs unwichtig und verzeihlich ist. Nun ist es hohe Zeit, daß wir diese Lücke ausfüllen; ich bemerke aber im voraus, daß diese Angelegenheit an die Geduld und das Abstraktionsvermögen des Lesers keine geringen Anforderungen stellt.
Wir gehen wieder von oft herangezogenen, ganz speziellen Fällen aus. Es liege ein raum-zeitliches Gebiet vor, in welchem relativ zu einem Bezugskörper K von passend gewähltem Bewegungszustande kein Gravitationsfeld existiere; in bezug auf das ins Auge gefaßte Gebiet ist dann K ein Galileischer Bezugskörper, und es gelten relativ zu K die Ergebnisse der speziellen Relativitätstheorie. Dasselbe Gebiet denken wir uns auf einen zweiten Bezugskörper K′ bezogen, welcher relativ zu K gleichförmig rotiert. Um die Vorstellung zu fixieren, denken wir uns K′ in Gestalt einer ebenen Kreisscheibe, welche um ihren Mittelpunkt in ihrer Ebene gleichmäßig rotiere. Ein exzentrisch auf der Kreisscheibe K′ sitzender Beobachter empfindet eine Kraft, die in radialer Richtung nach außen wirkt, und welche von einem relativ zum ursprünglichen Bezugskörper K ruhenden Beobachter als Trägheitswirkung (Zentrifugalkraft) gedeutet wird. Der auf der Scheibe sitzende Beobachter möge jedoch seine Scheibe als „ruhenden“ Bezugskörper auffassen; dazu ist er auf Grund des allgemeinen Relativitätsprinzips berechtigt. Die auf ihn und überhaupt auf relativ zur Scheibe ruhende Körper wirkende Kraft faßt er als Wirkung eines Gravitationsfeldes auf. Allerdings ist die räumliche Verteilung dieses Schwerefeldes eine solche, wie sie nach Newtons Theorie der Gravitation nicht möglich wäre[14]. Aber da der Beobachter an die allgemeine Relativität glaubt, stört ihn dies nicht; er hofft mit Recht, daß ein allgemeines Gravitationsgesetz sich aufstellen lasse, welches nicht nur die Bewegung der Gestirne, sondern auch das von ihm wahrgenommene Kraftfeld richtig erklärt.
Dieser Beobachter experimentiert auf seiner Kreisscheibe mit Uhren und Maßstäben, in der Absicht, auf Grund seiner Beobachtungen exakte Definitionen für die Bedeutung zeitlicher und räumlicher Angaben in bezug auf die Kreisscheibe K′ zu erhalten. Was wird er dabei für Erfahrungen machen?
Der Beobachter stelle zunächst von zwei gleich beschaffenen Uhren die eine in dem Mittelpunkte der Kreisscheibe, die andere an der Peripherie derselben auf, so daß sie relativ zur Kreisscheibe ruhen. Wir fragen uns zunächst, ob diese beiden Uhren gleich schnell gehen vom Standpunkt des nicht rotierenden Galileischen Bezugskörpers K. Von diesem aus beurteilt, hat die Uhr im Mittelpunkt keine Geschwindigkeit, während die Uhr an der Peripherie infolge der Rotation relativ zu K in Bewegung ist. Nach einem Ergebnis des § 12 geht deshalb die letztere Uhr von K aus beurteilt dauernd langsamer als die Uhr in der Mitte der Kreisscheibe. Dasselbe müßte offenbar auch der Mann auf der Kreisscheibe konstatieren, den wir uns etwa als in der Mitte der Kreisscheibe neben der dortigen Uhr sitzend vorstellen wollen. Auf unserer Kreisscheibe und allgemeiner in jedem Gravitationsfelde wird also eine Uhr rascher oder langsamer laufen, je nach der Stelle, in welcher die Uhr (ruhend) angeordnet ist. Eine vernünftige Definition der Zeit mit Hilfe von relativ zum Bezugskörper ruhend angeordneten Uhren ist also nicht möglich. Eine ähnliche Schwierigkeit zeigt sich, wenn man versucht, unsere frühere Definition der Gleichzeitigkeit hier anzuwenden, worauf ich nicht weiter eingehen will.
Aber auch die Definition der räumlichen Koordinaten macht hier zunächst unüberwindliche Schwierigkeiten. Legt nämlich der Beobachter seinen Einheitsmaßstab (ein relativ zum Scheibenradius kleines Stäbchen) an der Scheibenperipherie tangential zu dieser an, so ist derselbe, vom Galileischen System aus beurteilt, kürzer als 1, weil bewegte Körper nach § 12 in Richtung der Bewegung eine Verkürzung erfahren. Legt er dagegen seinen Maßstab in die Richtung des Scheibenradius, so erfährt er, von K aus beurteilt, keine Verkürzung. Mißt der Beobachter also zuerst den Scheibenumfang, dann den Scheibendurchmesser mit seinem Maßstab und dividiert er hierauf diese beiden Meßergebnisse, so findet er als Quotienten nicht die bekannte Zahl π = 3,14..., sondern eine größere Zahl, während sich auf einer relativ zu K ruhenden Scheibe bei dieser Operation natürlich exakt π ergeben müßte. Damit ist bereits bewiesen, daß die Sätze der Euklidischen Geometrie auf der rotierenden Scheibe und damit überhaupt in einem Gravitationsfelde nicht genau gelten können, wenigstens wenn man dem Stäbchen überall und in jeder Orientierung die Länge 1 zuschreibt. Auch der Begriff der geraden Linie verliert damit seine Bedeutung. Wir sind deshalb nicht in der Lage, relativ zur Scheibe die Koordinaten x, y, z nach der in der speziellen Relativität benutzten Methode exakt zu definieren. Solange jedoch Koordinaten und Zeiten der Ereignisse nicht definiert sind, haben auch Naturgesetze, in welchen diese vorkommen, keine exakte Bedeutung.
Damit scheinen alle Überlegungen, welche wir bisher über allgemeine Relativität angestellt haben, in Frage gestellt zu sein. In der Tat bedarf es eines subtilen Umweges, um das Postulat der allgemeinen Relativität exakt anzuwenden. Auf diesen wird der Leser durch die folgenden Betrachtungen vorbereitet werden.
§ 24. Euklidisches und Nicht-Euklidisches Kontinuum.
Die Oberfläche eines Marmortisches liegt vor mir. Ich kann von irgendeinem Punkte derselben aus zu irgendeinem anderen gelangen, indem ich eine (große) Anzahl von Malen immer zu einem „benachbarten“ Punkte übergehe, oder — anders gesagt — indem ich von Punkt zu Punkt gehe, ohne „Sprünge“ zu machen. Was hier unter „benachbart“ und unter „Sprüngen“ zu verstehen ist, empfindet der Leser gewiß mit genügender Schärfe (wenn er nicht gar zu anspruchsvoll ist). Dies drücken wir aus, indem wir sagen, die Oberfläche sei ein Kontinuum.
Wir denken uns nun eine große Zahl gegen die Abmessungen der Tischplatte kleiner Stäbchen hergestellt, die alle gleich lang seien. Darunter ist verstanden, daß die Enden je zweier davon zur Deckung gebracht werden können. Wir legen nun vier dieser Stäbchen auf der Tischplatte so aufeinander, daß ihre Enden ein Viereck bilden, dessen Diagonalen gleich lang seien (Quadrat). Zur Erzielung der Diagonalengleichheit bedienen wir uns eines Probierstäbchens. An dies Quadrat legen wir gleiche Quadrate an, welche mit ihm ein Stäbchen gemein haben, an diese letzteren Quadrate ebenfalls usw. Schließlich ist die ganze Tischplatte mit Quadraten belegt, derart, daß jede Quadratseite zu zwei Quadraten und jede Quadratecke zu vier Quadraten gehört.
Daß man dies Geschäft ausführen kann, ohne in die größten Schwierigkeiten zu geraten, ist ein wahres Wunder! Man braucht nur an folgendes zu denken. Stoßen an einer Ecke bereits drei Quadrate zusammen, so sind auch von dem vierten bereits zwei Seiten gelegt. Wie die beiden anderen Seiten desselben gelegt werden müssen, ist dadurch schon vollkommen bestimmt. Jetzt kann ich das Viereck aber nicht mehr zurechtrücken, damit seine Diagonalen gleich werden. Sind sie es von selbst schon, so ist dies eine besondere Gunst der Tischplatte und der Stäbchen, über die ich mich nur dankbar wundern kann! Analoger Wunder müssen wir viele erleben, wenn die Konstruktion gelingen soll.
Ist wirklich alles glatt vonstatten gegangen, so sage ich, daß die Punkte der Tischplatte ein Euklidisches Kontinuum mit Bezug auf das benutzte Stäbchen als Strecke bilden. Hebe ich eine Quadratecke als „Anfangspunkt“ hervor, so kann ich jede andere Quadratecke mit Bezug auf den Anfangspunkt durch zwei Zahlen charakterisieren. Ich brauche nur anzugeben, wie viele Stäbchen ich nach „rechts“ und wie viele darauf nach „oben“ ich vom Anfangspunkte zurücklegen muß, um zu der ins Auge gefaßten Quadratecke zu gelangen. Diese zwei Zahlen sind dann die „Kartesischen Koordinaten“ der letzteren mit Bezug auf das durch die gelegten Stäbchen bestimmte „Kartesische Koordinatensystem“.
Daß es auch Fälle geben muß, in denen das Experiment mißlingt, erkennen wir an folgender Modifikation des Gedankenexperiments. Die Stäbchen sollen sich nach Maßgabe der Temperatur „ausdehnen“. Die Tischplatte werde in der Mitte erwärmt, am Rande aber nicht, wobei zwei unserer Stäbchen immer noch an jeder Stelle des Tisches zur Deckung gebracht werden können. Aber unsere Quadratkonstruktion muß dabei notwendig in Unordnung kommen, weil sich die Stäbchen der inneren Partie der Tischplatte ausdehnen, die der äußeren Partie aber nicht.
Mit Bezug auf unsere Stäbchen — als Einheitsstrecken definiert — ist die Tischplatte nun kein Euklidisches Kontinuum mehr, und wir sind auch nicht mehr in der Lage, unmittelbar mit ihrer Hilfe Kartesische Koordinaten zu definieren, da die obige Konstruktion sich nicht mehr durchführen läßt. Da es aber andere Dinge gibt, welche durch die Temperatur des Tisches nicht in analoger Weise wie die Stäbchen (oder überhaupt nicht) beeinflußt werden, gelingt es, in einer natürlichen Weise die Auffassung aufrecht zu erhalten, daß die Tischplatte ein „Euklidisches Kontinuum“ sei; es gelingt in befriedigender Weise durch eine subtilere Festsetzung über das Messen bzw. Vergleichen von Strecken.
Würden aber Stäbchen jeder Art, d. h. jeden Materials, sich in gleicher Weise temperaturempfindlich verhalten auf der verschieden temperierten Tischplatte, und hätten wir kein anderes Mittel, die Wirkung der Temperatur wahrzunehmen, als das geometrische Verhalten der Stäbchen bei Experimenten analog dem oben beschriebenen, so könnte es wohl zweckmäßig sein, zwei Punkten des Tisches die Entfernung 1 zuzuschreiben, wenn sich die Enden eines unserer Stäbchen mit ihnen zur Deckung bringen lassen; denn wie sollte man ohne die krasseste Willkür die Strecke anders definieren? Dann aber muß die Kartesische Koordinatenmethode verlassen und durch eine andere ersetzt werden, welche die Gültigkeit der Euklidischen Geometrie für starre Körper nicht voraussetzt[15]. Der Leser bemerkt, daß die hier geschilderte Situation derjenigen entspricht, welche das allgemeine Relativitätspostulat mit sich gebracht hat (§ 23).
§ 25. Gaußsche Koordinaten.
Fig. 3.
Diese analytisch-geometrische Behandlungsweise läßt sich nach Gauß folgendermaßen erzielen. Man denke sich auf die Tischplatte ein System von beliebigen Kurven (vgl. Fig. 3) aufgezeichnet, die wir als u-Kurven bezeichnen und die wir je mit einer Zahl bezeichnen. In der Zeichnung sind die Kurven u = 1, u = 2 und u = 3 gezeichnet. Zwischen den Kurven u = 1 und u = 2 sind aber noch unendlich viele eingezeichnet zu denken, welche allen reellen Zahlen entsprechen, die zwischen 1 und 2 liegen. Es liegt dann ein System von u-Kurven vor, welche unendlich dicht die ganze Tischplatte überdecken. Keine u-Kurve soll eine andere schneiden, sondern durch jeden Punkt der Tischplatte eine und nur eine Kurve hindurchgehen. Zu jedem Punkte der Oberfläche der Tischplatte gehört dann ein ganz bestimmter u-Wert. Ebenso sei auf die Fläche ein System von v Kurven gezeichnet, die denselben Bedingungen genügen, in entsprechender Weise mit Zahlen versehen sind, aber ebenfalls beliebig gestaltet sein können. Es gehört dann zu jedem Punkte der Tischplatte ein u-Wert und ein v-Wert, welche beiden Zahlen wir die Koordinaten der Tischplatte nennen (Gaußsche Koordinaten). Der Punkt P der Figur hat beispielsweise die Gaußschen Koordinaten u = 3; v = 1. Zwei benachbarten Punkten P und P′ auf der Fläche entsprechen dann die Koordinaten
P : u; v
P′ : u + du, v + dv,
wobei du und dv sehr kleine Zahlen bedeuten. Der mit einem Stäbchen gemessene Abstand von P und P′ sei die ebenfalls sehr kleine Zahl ds. Dann ist nach Gauß:
ds² = g11 du² + 2 g12 du dv + g22 dv²,
wobei g11, g12, g22 Größen sind, die in ganz bestimmter Weise von u und v abhängen. Die Größen g11, g12 und g22 bestimmen das Verhalten der Stäbchen relativ zu den u-Kurven und v-Kurven, also auch relativ zur Oberfläche des Tisches. In dem Falle, daß die Punkte der betrachteten Oberfläche in bezug auf die Meßstäbchen ein Euklidisches Kontinuum bilden, aber auch nur dann, ist es möglich, die u-Kurven und v-Kurven so zu zeichnen und mit Zahlen zu versehen, daß einfach
ds² = du² + dv²
wird. Dann sind die u-Kurven und v-Kurven gerade Linien im Sinne der Euklidischen Geometrie, welche aufeinander senkrecht stehen. Dann sind die Gaußschen Koordinaten einfach Kartesische. Man sieht, daß die Gaußschen Koordinaten weiter nichts sind als eine Zuordnung je zweier Zahlen zu den Punkten der betrachteten Fläche, derart, daß räumlich benachbarten Punkten sehr wenig verschiedene Zahlenwerte zugeordnet sind.
Diese Betrachtungen gelten zunächst für ein Kontinuum von zwei Dimensionen. Aber die Gaußsche Methode läßt sich auch auf ein Kontinuum von drei, vier oder mehr Dimensionen anwenden. Liegt z. B. ein Kontinuum von vier Dimensionen vor, so ergibt sich folgende Darstellung. Jedem Punkte des Kontinuums werden willkürlich vier Zahlen x1, x2, x3, x4 zugeordnet, welche „Koordinaten“ genannt werden. Benachbarten Punkten entsprechen benachbarte Koordinatenwerte. Ist nun benachbarten Punkten P und P′ ein durch Messungen ermittelbarer, physikalisch wohldefinierter Abstand ds zugeordnet, so gilt eine Formel:
ds² = g11 dx1² + 2 g12 dx1 dx2 ··· + g44 dx4² ,
wobei die Größen g11 usw. Werte haben, die mit dem Orte im Kontinuum variieren. Nur in dem Falle, daß das Kontinuum ein Euklidisches ist, ist es möglich, die Koordinaten x1···x4 den Punkten des Kontinuums so zuzuordnen, daß einfach
ds² = dx1² + dx2² + dx3² + dx4²
wird. Dann gelten in dem vierdimensionalen Kontinuum Beziehungen, welche den in unseren dreidimensionalen Messungen geltenden analog sind.
Die angegebene Gaußsche Darstellung für ds² ist übrigens nicht immer möglich, sondern nur dann, wenn genügend kleine Gebiete des betrachteten Kontinuums sich als Euklidische Kontinua ansehen lassen. Dies trifft z. B. offenbar zu in dem Falle der Tischplatte und örtlich veränderlicher Temperatur. Denn für einen kleinen Teil der Platte ist die Temperatur praktisch konstant, das geometrische Verhalten der Stäbchen also beinahe ein solches, wie es gemäß den Regeln der Euklidischen Geometrie sein soll. Die Unstimmigkeiten der Quadratkonstruktion des vorigen Paragraphen treten somit erst deutlich zutage, wenn die Konstruktion des vorigen Paragraphen über einen beträchtlichen Teil der Tischplatte ausgedehnt wird.
Zusammenfassend können wir also sagen: Gauß hat eine Methode zur mathematischen Behandlung beliebiger Kontinua erfunden, in denen Maßbeziehungen („Abstand“ benachbarter Punkte) definiert sind. Jedem Punkte des Kontinuums werden so viel Zahlen (Gaußsche Koordinaten) zugeordnet, als das Kontinuum Dimensionen hat. Die Zuordnung erfolgt so, daß die Eindeutigkeit der Zuordnung gewahrt wird, und daß benachbarten Punkten unendlich wenig verschiedene Zahlen (Gaußsche Koordinaten) zugeordnet werden. Das Gaußsche Koordinatensystem ist eine logische Verallgemeinerung des Kartesischen Koordinatensystems. Es ist auch auf Nicht-Euklidische Kontinua anwendbar, allerdings nur dann, wenn kleine Teile des betrachteten Kontinuums mit Bezug auf das definierte Maß („Abstand“) sich mit desto größerer Annäherung Euklidisch verhalten, je kleiner der ins Auge gefaßte Teil des Kontinuums ist.
§ 26. Das raum-zeitliche Kontinuum der speziellen Relativitätstheorie als Euklidisches Kontinuum.
Wir sind nun in der Lage, den in § 17 nur lose angedeuteten Gedanken Minkowskis etwas genauer zu formulieren. Gemäß der speziellen Relativitätstheorie sind für die Beschreibung des raum-zeitlichen, vierdimensionalen Kontinuums gewisse Koordinatensysteme bevorzugt, die wir „Galileische Koordinatensysteme“ genannt haben. Für sie sind die vier Koordinaten x, y, z, t, welche ein Ereignis oder — anders ausgedrückt — einen Punkt des vierdimensionalen Kontinuums bestimmen, in einfacher Weise physikalisch definiert, wie im ersten Teile dieses Büchleins ausführlich dargelegt ist. Für den Übergang von einem Galileischen System zu einem anderen, relativ zum ersten gleichförmig bewegten gelten die Gleichungen der Lorentz-Transformation, welche die Basis für die Ableitung der Konsequenzen der speziellen Relativitätstheorie bilden und ihrerseits weiter nichts sind als der Ausdruck der universellen Gültigkeit des Lichtausbreitungsgesetzes für alle Galileischen Bezugssysteme.
Minkowski fand, daß die Lorentz-Transformationen folgenden einfachen Bedingungen genügen. Es seien zwei benachbarte Ereignisse betrachtet, deren gegenseitige Lage im vierdimensionalen Kontinuum durch die räumlichen Koordinatendifferenzen dx, dy, dz und die zeitliche Differenz dt bezüglich eines Galileischen Bezugskörpers K gegeben seien. Bezüglich eines zweiten Galileischen Systems seien die analogen Differenzen für diese beiden Ereignisse dx′, dy′, dz′, dt′. Dann gilt zwischen ihnen stets die Bedingung:
d x2 + d y2 + d z2 − c2 d t2 = d x′2 + d y′2 + d z′2 − c2 d t′2 .
Diese Bedingung hat die Gültigkeit der Lorentz-Transformation zur Konsequenz. Wir können das so aussprechen: Die zu zwei benachbarten Punkten des vierdimensionalen raum-zeitlichen Kontinuums gehörige Größe
d s2 = d x2 + d y2 + d z2 − c2 d t2
hat für alle bevorzugten (Galileischen) Bezugskörper denselben Wert. Ersetzt man x, y, z, √−1 c t durch x1, x2, x3, x4, so erhält man auch das Resultat, daß
d s2 = d x12 + d x22 + dx 32 + d x42
von der Wahl des Bezugskörpers unabhängig ist. Die Größe ds nennen wir den „Abstand“ der beiden Ereignisse oder vierdimensionalen Punkte.
Wählt man also die imaginäre Variable √−1 c t statt des reellen t als Zeitvariable, so kann man das raum-zeitliche Kontinuum gemäß der speziellen Relativitätstheorie als ein „Euklidisches“ vierdimensionales Kontinuum auffassen, wie aus den Darlegungen des letzten Paragraphen hervorgeht.
§ 27. Das raum-zeitliche Kontinuum der allgemeinen Relativitätstheorie ist kein Euklidisches Kontinuum.
Im ersten Teil dieses Schriftchens haben wir uns raum-zeitlicher Koordinaten bedienen können, welche eine einfache, direkte physikalische Interpretation zuließen und welche sich nach § 26 als vierdimensionale Kartesische Koordinaten deuten lassen. Dies war möglich auf Grund des Gesetzes von der Konstanz der Lichtgeschwindigkeit, an welchem aber nach § 21 die allgemeine Relativitätstheorie nicht festhalten kann; wir kamen vielmehr zu dem Ergebnis, daß gemäß letzterer Theorie die Lichtgeschwindigkeit stets von den Koordinaten abhängen muß, falls ein Gravitationsfeld vorhanden ist. Wir fanden ferner in § 23 an einem speziellen Beispiel, daß das Vorhandensein eines Gravitationsfeldes jene Definition der Koordinaten und der Zeit unmöglich macht, welche bei der speziellen Relativitätstheorie zum Ziele geführt hat.
Mit Rücksicht auf diese Überlegungsergebnisse kommen wir zu der Überzeugung, daß gemäß dem allgemeinen Relativitätsprinzip das raum-zeitliche Kontinuum nicht als ein Euklidisches aufgefaßt werden kann, sondern daß hier der allgemeine Fall vorliegt, welchen wir für das zweidimensionale Kontinuum der Tischplatte von örtlich variabler Temperatur kennen gelernt haben. Wie es dort unmöglich war, aus gleichen Stäbchen ein Kartesisches Koordinatensystem zu konstruieren, so ist es hier unmöglich, aus starren Körpern und Uhren ein System (Bezugskörper) aufzubauen, derart, daß relativ zueinander fest angeordnete Maßstäbe und Uhren direkt Ort und Zeit anzeigen. Dies ist das Wesen der Schwierigkeit, die uns in § 23 entgegentrat.
Die Darlegungen des § 25 und § 26 zeigen aber den Weg, auf dem diese Schwierigkeit zu überwinden ist. Wir beziehen das vierdimensionale raum-zeitliche Kontinuum in willkürlicher Weise auf Gaußsche Koordinaten. Jedem Punkte des Kontinuums (Ereignis) ordnen wir vier Zahlen x1, x2, x3, x4 (Koordinaten) zu, die gar keine unmittelbare physikalische Bedeutung besitzen, sondern nur dazu dienen, die Punkte des Kontinuums in bestimmter, aber willkürlicher Weise zu numerieren. Solche Koordinaten legen wir der Beschreibung der physikalischen Vorgänge zugrunde. Bei dieser Zuordnung ist zwischen „räumlicher“ und „zeitlicher“ Ausdehnung nicht unterschieden, so daß man nicht mehr die Koordinaten x1, x2, x3 als „räumliche“, die Koordinaten x4 als „zeitliche“ unterscheiden kann.
Der Leser könnte denken, daß eine derartige Beschreibung der Welt gänzlich unzulänglich wäre. Was bedeutet es, wenn ich einem Ereignis die bestimmten Koordinaten x1, x2, x3, x4 zuschreibe, wenn diese Koordinaten selbst nichts bedeuten? Bei genauerer Überlegung zeigt sich jedoch, daß diese Sorge nicht begründet ist. Betrachten wir z. B. einen beliebig bewegten materiellen Punkt! Hätte derselbe nur eine momentane Existenz ohne Dauer, so wäre er raum-zeitlich beschrieben durch ein einziges Wertsystem x1, x2, x3, x4. Seine bleibende Existenz ist also durch eine unendlich große Zahl von solchen Wertsystemen charakterisiert, deren Koordinatenwerte sich stetig aneinanderreihen; dem Massenpunkte entspricht also eine (eindimensionale) Linie im vierdimensionalen Kontinuum. Vielen bewegten Punkten entsprechen ebensowohl derartige Linien in unserem Kontinuum. Die einzigen diese Punkte betreffenden Aussagen, welche physikalische Realität beanspruchen können, sind in Wahrheit die Aussagen über Begegnungen dieser Punkte. Eine solche Begegnung äußert sich in unserer mathematischen Darstellung darin, daß die beiden Linien, welche die betreffenden Punktbewegungen darstellen, ein gewisses System x1, x2, x3, x4 von Koordinatenwerten gemeinsam haben. Daß solche Begegnungen in Wahrheit die einzigen tatsächlichen Konstatierungen zeit-räumlichen Charakters sind, die wir in physikalischen Aussagen antreffen, wird der Leser nach eingehender Überlegung ohne Zweifel zugeben.
Wenn wir früher die Bewegung eines materiellen Punktes relativ zu einem Bezugskörper beschrieben, gaben wir nichts weiter an, als die Begegnungen dieses Punktes mit bestimmten Punkten des Bezugskörpers. Auch die zugehörigen Zeitangaben lassen sich auflösen in die Konstatierung von Begegnungen des Körpers mit Uhren, in Verbindung mit Konstatierung der Begegnung von Uhrzeigern mit bestimmten Punkten von Zifferblättern. Nicht anders ist es mit den räumlichen Messungen durch Maßstäbe, wie einiges Nachdenken zeigt.
Allgemein gilt: „Jede physikalische Beschreibung löst sich auf in eine Zahl von Aussagen, deren jede sich auf die raum-zeitliche Koinzidenz zweier Ereignisse A und B bezieht. Jede solche Aussage drückt sich in Gaußschen Koordinaten durch die Übereinstimmung der vier Koordinaten x1, x2, x3, x4 aus.“ Die Beschreibung des zeit-räumlichen Kontinuums durch Gaußsche Koordinaten ersetzt also tatsächlich die Beschreibung mit Hilfe eines Bezugskörpers vollständig, ohne an den Mängeln der letzteren Beschreibungsmethode zu kranken; sie ist nicht an den Euklidischen Charakter des darzustellenden Kontinuums gebunden.
§ 28. Exakte Formulierung des allgemeinen Relativitätsprinzips.
Nun sind wir in der Lage, die in § 18 gegebene vorläufige Formulierung des allgemeinen Relativitätsprinzips durch eine exakte zu ersetzen. Die damalige Fassung, „Alle Bezugskörper K, K′ usw. sind für die Naturbeschreibung (Formulierung der allgemeinen Naturgesetze) gleichwertig, welches auch deren Bewegungszustand sein mag“, läßt sich nicht aufrecht erhalten, weil die Benutzung von starren Bezugskörpern bei der raum-zeitlichen Beschreibung im Sinne der bei der speziellen Relativitätstheorie befolgten Methode im allgemeinen nicht möglich ist. An die Stelle des Bezugskörpers hat das Gaußsche Koordinatensystem zu treten. Dem Grundgedanken des allgemeinen Relativitätsprinzips entspricht die Aussage: „Alle Gaußschen Koordinatensysteme sind für die Formulierung der allgemeinen Naturgesetze prinzipiell gleichwertig.“
Man kann dies allgemeine Relativitätsprinzip auch noch in einer anderen Form aussprechen, die dasselbe noch deutlicher als die naturgemäße Erweiterung des speziellen Relativitätsprinzips erkennen läßt. Nach der speziellen Relativitätstheorie gehen die die allgemeinen Naturgesetze ausdrückenden Gleichungen in Gleichungen derselben Form über, wenn man statt der Raum-Zeit-Variabeln x, y, z, t eines (Galileischen) Bezugskörpers K unter Benutzung der Lorentz-Transformation die Raum-Zeit-Variabeln x′, y′, z′, t′ eines neuen Bezugskörpers K′ einführt. Nach der allgemeinen Relativitätstheorie dagegen müssen die Gleichungen bei Anwendung beliebiger Substitutionen der Gaußschen Variabeln x1, x2, x3, x4 in Gleichungen derselben Form übergehen; denn jede Transformation (nicht nur die Lorentz-Transformation) entspricht dem Übergang eines Gaußschen Koordinatensystems in ein anderes.
Will man auf die gewohnte dreidimensionale Anschauung nicht verzichten, so kann man die Entwicklung, welche wir den Grundgedanken der allgemeinen Relativitätstheorie durchmachen sehen, wie folgt charakterisieren: Die spezielle Relativitätstheorie bezieht sich auf Galileische Gebiete, d. h. auf solche, in welchen kein Gravitationsfeld existiert. Als Bezugskörper dient dabei ein Galileischer Bezugskörper, d. h. ein starrer Körper von so gewähltem Bewegungszustande, daß relativ zu ihm der Galileische Satz von der gleichförmig-geradlinigen Bewegung „isolierter“ materieller Punkte gilt.
Gewisse Überlegungen legen es nahe, dieselben Galileischen Gebiete auch auf Nicht-Galileische Bezugskörper zu beziehen. Relativ zu diesen ist dann ein Gravitationsfeld von spezieller Art vorhanden (§ 20 und § 23).
Starre Körper mit Euklidischen Eigenschaften gibt es aber in Gravitationsfeldern nicht; die Fiktion des starren Bezugskörpers versagt daher in der allgemeinen Relativitätstheorie. Auch wird der Gang der Uhren von Gravitationsfeldern beeinflußt, derart, daß eine physikalische Zeitdefinition direkt mit Hilfe von Uhren durchaus nicht jenen Grad der Evidenz hat wie in der speziellen Relativitätstheorie.
Man benutzt daher nichtstarre Bezugskörper, welche nicht nur als Ganzes beliebig bewegt sind, sondern auch während ihrer Bewegung beliebige Gestaltsänderungen erleiden. Zur Definition der Zeit dienen Uhren von beliebigem, noch so unregelmäßigem Ganggesetz, welche man sich je an einem Punkte des nichtstarren Bezugskörpers befestigt zu denken hat, und welche nur die eine Bedingung erfüllen, daß die gleichzeitig wahrnehmbaren Angaben örtlich benachbarter Uhren unendlich wenig voneinander abweichen. Dieser nichtstarre Bezugskörper, den man nicht mit Unrecht als „Bezugsmolluske“ bezeichnen könnte, ist im wesentlichen gleichwertig mit einem beliebigen Gaußschen vierdimensionalen Koordinatensystem. Was der „Molluske“ gegenüber dem Gaußschen Koordinatensystem eine gewisse Anschaulichkeit gibt, ist die (eigentlich unberechtigte) formale Wahrung der Sonderexistenz der räumlichen Koordinaten gegenüber der Zeitkoordinate. Jeder Punkt der Molluske wird als Raumpunkt behandelt, jeder relativ zu ihm ruhende materielle Punkt schlechthin als ruhend, solange die Molluske als Bezugskörper behandelt wird. Das allgemeine Relativitätsprinzip fordert, daß alle diese Mollusken mit gleichem Rechte und gleichem Erfolge bei der Formulierung der allgemeinen Naturgesetze als Bezugskörper verwendet werden können; die Gesetze sollen von der Molluskenwahl gänzlich unabhängig sein.
In der weitgehenden Beschränkung, welche hierdurch den Naturgesetzen auferlegt wird, liegt die Spürkraft, die dem allgemeinen Relativitätsprinzip innewohnt.
§ 29. Die Lösung des Gravitationsproblems auf Grund des allgemeinen Relativitätsprinzips.
Ist der Leser allen bisherigen Überlegungen gefolgt, so bereitet ihm das Verstehen der zur Lösung des Gravitationsproblems führenden Methoden keine Schwierigkeiten mehr.
Wir gehen aus von der Betrachtung eines Galileischen Gebietes, d. h. eines solchen, in welchem relativ zum Galileischen Bezugskörper K kein Gravitationsfeld existiert. Das Verhalten von Maßstäben und Uhren in bezug auf K ist aus der speziellen Relativitätstheorie bekannt, ebenso das Verhalten von „isolierten“ Massepunkten; letztere bewegen sich geradlinig und gleichförmig.
Nun beziehen wir dies Gebiet auf ein beliebiges Gaußsches Koordinatensystem bzw. auf eine „Molluske“ als Bezugskörper K′. In bezug auf K′ besteht dann ein Gravitationsfeld G (besonderer Art). Durch bloße Umrechnung erfährt man dann das Verhalten von Maßstäben und Uhren sowie von frei beweglichen materiellen Punkten in bezug auf K′. Dies Verhalten interpretiert man als das Verhalten von Maßstäben, Uhren, materiellen Punkten unter der Wirkung des Gravitationsfeldes G. Man führt hierauf die Hypothese ein, daß die Einwirkung des Gravitationsfeldes auf Maßstäbe, Uhren und frei bewegliche, materielle Punkte auch dann nach denselben Gesetzen vor sich gehe, wenn sich das herrschende Gravitationsfeld nicht durch bloße Koordinatentransformation aus dem Galileischen Spezialfall ableiten läßt.
Hierauf untersucht man das raum-zeitliche Verhalten des aus dem Galileischen Spezialfall durch bloße Transformation der Koordinaten abgeleiteten Gravitationsfeldes G und formuliert dies Verhalten durch ein Gesetz, das immer gültig ist, wie auch der zur Beschreibung benutzte Bezugskörper (Molluske) gewählt werden mag.
Dies Gesetz ist noch nicht das allgemeine Gesetz des Gravitationsfeldes, da das studierte Gravitationsfeld G von spezieller Art ist. Zur Auffindung des allgemeinen Feldgesetzes der Gravitation bedarf es noch einer Verallgemeinerung des so gewonnenen Gesetzes, welche jedoch ohne Willkür aufgefunden werden kann, unter Berücksichtigung der folgenden Forderungen:
a) Die gesuchte Verallgemeinerung muß ebenfalls dem allgemeinen Relativitätspostulat genügen.
b) Ist Materie in dem betrachteten Gebiete vorhanden, so ist für deren felderregende Wirkung allein deren träge Masse, also gemäß § 15 allein deren Energie maßgebend.
c) Gravitationsfeld und Materie zusammen müssen dem Gesetz von der Erhaltung der Energie (und des Impulses) genügen.
Endlich erlaubt uns das allgemeine Relativitätsprinzip, den Einfluß des Gravitationsfeldes auf den Ablauf aller derjenigen Vorgänge zu ermitteln, die für den Fall des Fehlens eines Gravitationsfeldes nach bekannten Gesetzen ablaufen, d. h. in den Rahmen der speziellen Relativitätstheorie bereits eingefügt sind. Man verfährt dabei im Prinzip nach der Methode, die vorhin für Maßstäbe, Uhren und frei bewegliche Massenpunkte auseinandergesetzt worden ist.
Die so aus dem allgemeinen Relativitätspostulat abgeleitete Gravitationstheorie zeichnet sich nicht nur durch ihre Schönheit aus, sie beseitigt nicht nur den in § 21 beleuchteten Mangel, welcher der klassischen Mechanik anhaftet, sie interpretiert nicht nur das Erfahrungsgesetz von der Gleichheit der trägen und schweren Masse, sondern sie hat auch schon ein Beobachtungsergebnis der Astronomie erklärt, dem gegenüber die klassische Mechanik versagt.
Spezialisiert man sie nämlich auf den Fall, daß die Gravitationsfelder als schwach anzusehen sind, und daß alle Massen sich mit Geschwindigkeiten gegen das Koordinatensystem bewegen, welche gegen die Lichtgeschwindigkeit klein sind, so erhält man zunächst die Newtonsche Theorie als erste Näherung; letztere ergibt sich also hier ohne besondere Annahme, während Newton die dem Quadrat der Distanz aufeinander wirkender Massenpunkte indirekt proportionale Anziehungskraft als Hypothese einführen mußte. Vergrößert man die Genauigkeit der Rechnung, so treten Abweichungen von der Newtonschen Theorie auf, die sich allerdings wegen ihrer Kleinheit fast alle noch der Beobachtung entziehen müssen.
Eine dieser Abweichungen müssen wir hier speziell ins Auge fassen. Nach der Newtonschen Theorie bewegt sich ein Planet um die Sonne in einer Ellipse, welche gegenüber den Fixsternen ihre Lage ewig beibehalten würde, wenn von der Einwirkung der anderen Planeten auf den betrachteten Planeten und von der Eigenbewegung der Fixsterne abgesehen werden könnte. Korrigiert man daher die beobachtete Bewegung der Planeten auf diese beiden Einflüsse, so soll als Bahn des Planeten eine gegen die Fixsterne feste Ellipse resultieren, wenn Newtons Theorie genau richtig ist. Bei allen Planeten, bis auf den der Sonne nächsten Planeten Merkur, hat sich diese mit eminenter Genauigkeit prüfbare Konsequenz mit der Genauigkeit bestätigt, welche die heute erreichbare Beobachtungsschärfe zu erzielen gestattet. Vom Planeten Merkur aber wissen wir seit Leverrier, daß die Ellipse seiner im obigen Sinne korrigierten Bahn gegenüber den Fixsternen nicht feststeht, sondern, wenn auch ungeheuer langsam, in der Ebene der Bahn im Sinne der Umlaufbewegung rotiert. Für diese Rotationsbewegung der Bahnellipse ergab sich ein Betrag von 43 Bogen-Sekunden pro Jahrhundert, welcher Betrag bis auf wenige Bogen-Sekunden sichergestellt ist. Die Erklärung dieser Erscheinung nach der klassischen Mechanik gelingt nur unter Zugrundelegung von ausschließlich ihrethalben ersonnenen, wenig wahrscheinlichen Hypothesen.
Nach der allgemeinen Relativitätstheorie ergibt sich, daß jede Planetenellipse um die Sonne in der oben angegebenen Weise notwendig rotieren muß, daß diese Rotation bei allen Planeten außer Merkur zu klein ist, um bei der heute erzielbaren Beobachtungsgenauigkeit festgestellt zu werden, daß sie aber bei Merkur 43 Bogen-Sekunden pro Jahrhundert betragen muß, genau wie es die Beobachtung verlangt.
Außerdem haben aus der Theorie bisher nur zwei Konsequenzen gezogen werden können, die sich nicht wegen ihrer Kleinheit der Beobachtung entziehen müssen, nämlich die Krümmung der Lichtstrahlen durch das Gravitationsfeld der Sonne und eine Spektralverschiebung des von großen Sternen zu uns gesandten Lichtes gegenüber dem auf der Erde in entsprechender Weise (d. h. durch dieselbe Molekülart) erzeugten Lichte. Ich zweifle nicht daran, daß auch diese Konsequenzen der Theorie ihre Bestätigung finden werden.
[12] Der Einwand ist besonders dann von Gewicht, wenn der Bewegungszustand des Bezugskörpers ein solcher ist, daß er zu seiner Aufrechterhaltung keiner äußeren Einwirkung bedarf, z. B. in dem Falle, daß der Bezugskörper gleichmäßig rotiert.
[13] Dies folgt durch Verallgemeinerung der Betrachtung des § 20.
[14] Das Feld verschwindet im Mittelpunkt der Scheibe und nimmt proportional dem Abstand von diesem nach außen hin zu.
[15] Unser Problem ist den Mathematikern in folgender Form entgegengetreten. Ist im Euklidischen, dreidimensionalen Meßraume eine Fläche, z. B. ein Ellipsoid, gegeben, so gibt es auf dieser Fläche eine zweidimensionale Geometrie, ebensogut wie in der Ebene. Gauß hat sich das Problem gestellt, diese zweidimensionale Geometrie prinzipiell zu behandeln, ohne zu benutzen, daß die Fläche einem Euklidischen Kontinuum von drei Dimensionen angehört. Denkt man sich in der Fläche mit starren Stäbchen Konstruktionen ausgeführt (ähnlich wie vorhin auf der Tischplatte), so gelten für diese andere Gesetze als gemäß der Euklidischen Geometrie der Ebene. Die Fläche ist in bezug auf die Stäbchen kein Euklidisches Kontinuum, und es lassen sich in der Fläche keine Kartesischen Koordinaten definieren. Gauß zeigte, nach welchen Prinzipien man die geometrischen Verhältnisse in der Fläche behandeln kann, und wies damit den Weg zu der Riemannschen Behandlung mehr-dimensionaler, Nicht-Euklidischer Kontinua. So kam es, daß die Mathematiker die formalen Probleme bereits seit langem gelöst haben, zu denen das allgemeine Relativitätspostulat führt.
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