\PGset[0.8em] \begin{picture}(10.5,10.5) % In a given circle let AOB be a diameter, OC any radius, CD the % perpendicular from C to AB. Upon OC take OM equal to CD. Find the % locus of the point M as OC turns about O. % r = 4.25 % Ellipse: u = 5.25 v = 5.25 a = 4.25 b = 4.25 phi = 0.0 Grad \qbezier(9.5, 5.25)(9.5, 7.0104)(8.2552, 8.2552) \qbezier(8.2552, 8.2552)(7.0104, 9.5)(5.25, 9.5) \qbezier(5.25, 9.5)(3.4896, 9.5)(2.2448, 8.2552) \qbezier(2.2448, 8.2552)(1.0, 7.0104)(1.0, 5.25) \qbezier(1.0, 5.25)(1.0, 3.4896)(2.2448, 2.2448) \qbezier(2.2448, 2.2448)(3.4896, 1.0)(5.25, 1.0) \qbezier(5.25, 1.0)(7.0104, 1.0)(8.2552, 2.2448) \qbezier(8.2552, 2.2448)(9.5, 3.4896)(9.5, 5.25) \drawline(1,5.25)(9.5,5.25) % BA \dashline[80]{0.2}(5.25,1)(5.25,9.5) % EO \drawline(5.25,5.25)(8.255,8.255)(8.255,5.25) % OCD % Ellipse: u = 5.25 v = 7.375 a = 2.125 b = 2.125 phi = 0.0 Grad \qbezier[10](7.375, 7.375)(7.375, 8.2552)(6.7526, 8.8776) \qbezier[10](6.7526, 8.8776)(6.1302, 9.5)(5.25, 9.5) \qbezier[10](5.25, 9.5)(4.3698, 9.5)(3.7474, 8.8776) \qbezier[10](3.7474, 8.8776)(3.125, 8.2552)(3.125, 7.375) \qbezier[10](3.125, 7.375)(3.125, 6.4948)(3.7474, 5.8724) \qbezier[10](3.7474, 5.8724)(4.3698, 5.25)(5.25, 5.25) \qbezier[10](5.25, 5.25)(6.1302, 5.25)(6.7526, 5.8724) \qbezier[10](6.7526, 5.8724)(7.375, 6.4948)(7.375, 7.375) \dashline[80]{0.2}(5.25,9.5)(7.375,7.375) % EM \put( 9.5, 5.0){$\scriptstyle A$} \put( 0.2, 5.0){$\scriptstyle B$} \put( 8.3, 8.3){$\scriptstyle C$} \put( 7.8, 4.5){$\scriptstyle D$} \put( 5.0, 9.6){$\scriptstyle E$} \put( 5.3, 4.5){$\scriptstyle O$} \put( 7.3, 6.7){$\scriptstyle M$} \end{picture} \PGrestore